CAO-94-1005 Revision 1

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report

CAO-94-1005, Peril

February 1995

SANDIA NATIONAL LABORATORIES TECHNICAL LIBRARY

SANDIA NATIONAL LABORATORIES NWMP LIBRARY 6352 P. O. BOX 5800 ALBUQUERQUE, NM 87185-1330

دىر. ي

Volume 1

memorandum

Carlsbad Area Office Carlsbad, New Mexico 88221

DATE:

MAR 1 3 1995

REPLY TO

CAO: JSD 95-0676

SUBJECT:

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report, Revision 1

TO:

Those on Attached List

Please find attached a copy of Revision 1 to the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR), CAO-94-1005 (February 1995).

Like Revision 0, Revision 1 presents a methodology for combining individual waste streams into waste profiles with similar physical and chemical properties. It also documents, by waste stream, the waste material parameters which have been identified as potentially important to the WIPP repository performance. These waste material parameters are then rolled-up through the waste profiles to describe the total WIPP disposal inventory.

In addition, Revision 1 now reflects waste information which was collected directly from the generator/storage sites. It also presents radionuclide information at the waste stream level and reports waste volumes in the final waste forms that will be shipped to WIPP.

Revision 1 also includes a "read only" diskette containing the waste stream profile data used to produce the report. The software runs on Access 2.00, and instructions for loading and operating the program are included on the diskette.

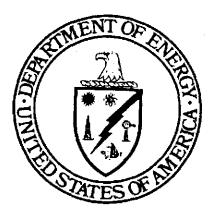
Because of the need to ensure only the most current data is discussed among DOE and the regulators, we have produced both "controlled" and "information" copies of Revision 1. Those of you receiving "controlled" copies are requested to sign and return the Document Transmittal Acknowledgement Receipt (DTAR), which can be found in the inside pocket of Volume 1, to Jim Teak, Advanced Sciences, Incorporated at 6739 Academy Road, NE, Albuquerque, NM 87109-3345. The receipt of the signed DTAR will provide ready reference to those organizations which are in possession of the controlled copies of Revision 1.

If you require further assistance, please contact Jimmy S. Dyke, of my staff, at $(505)\ 234-7476$:

Mark L. Matthews, P.E.

Manager

National TRU Program Office


Attachment

cc w/ attachment: Mike McFadden, CAO

cc w/o attachment: George Dials, CAO Vernon Daub, CAO Dennis Hurtt, CAO

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report

February 1995

Prepared by WIPP Technical Assistance Contractor for U.S. Department of Energy under Contract No. DE-AC04-93AL-96904

Volume 1

TABLE OF CONTENTS

S	ection	į	Pag
V	OLUME		
LI	ST OF	FIGURES	. ,
		TABLES	
		MS AND ABBREVIATIONS	
		= =	
		VE SUMMARY	
		DDUCTION	
	1.1	BACKGROUND	
	1.2	PURPOSE	
	1.3	WASTE INVENTORY TERMINOLOGY 1.3.1 Inventory Terminology 1.3.2 Waste Matrix Code Terminology 1.3.3 Waste Profile Terminology 1.3.4 Database Terminology 1.3.5 Other Terminology	1 - 4 - 4 - 4 - 5
	1.4	OBJECTIVES 1	- 14
	1.5	TRU SYSTEM-WIDE DATA ASSUMPTIONS 1 1.5.1 Waste Material Parameter Assumptions 1 1.5.2 Inventory Volume Assumptions 1 1.5.3 Packaging Material Assumptions 1 1.5.4 Radionuclide Information Assumptions 1 1.5.5 Comparison of IDB versus WTWBIR Waste Volumes 1	- 14 - 15 - 15 - 17
	1.6	BASELINE INVENTORY UPDATES	
	1.7	DOCUMENT ORGANIZATION 1 -	
<u>}</u>	TRU W	ASTE DISPOSAL INVENTORY	
	2.1	INTRODUCTION 2	
	2.2	SOURCE OF TRU WASTE INFORMATION	- 1 - 1

	2.3	METHODOLOGY FOR DEVELOPMENT OF DISPOSAL INVENTORY 2 -	
3.	WAS	TE PROFILE METHODOLOGY	
•	3.1	WASTE STREAM PROFILE METHODOLOGY 3.1.1 Introduction	
	3.2	SITE-SPECIFIC WASTE PROFILE METHODOLOGY 3 -	
	3.3	WIPP WASTE PROFILE METHODOLOGY 3.3.1 Introduction and Methodology	-
4.	WIPP	DISPOSAL RADIONUCLIDE INVENTORY 4 -	1
	4.1	INTRODUCTION 4 -	1
	4.2	METHODOLOGY 4 -	1
5.	WAST	TE MATERIAL PARAMETERS 5 -	1
	5.1	INTRODUCTION 5 -	1
	5.2	PARAMETER DESCRIPTION	1
	5.3	METHODOLOGY 5 - 3	3
	5.4	WIPP WASTE MATERIAL PARAMETER ROLLUPS 5 - 3	3
	5.5	UTILIZATION OF WASTE MATERIAL PARAMETER DATA IN APPLICATIONS	3
6.	STORI	ED AND PROJECTED CH-TRU AND RH-TRU INVENTORIES BY SITE 6 - 1	İ
7.	WIPP '	TRANSURANIC WASTE BASELINE INVENTORY DATABASE 7 - 1	
	7.1	DATABASE DESCRIPTION 7 - 1	
	7.2	DATA DICTIONARY 7 - 5	;
	7.3	DATABASE OPERATING INSTRUCTIONS 7 - 9	}
	7.4	WTWBID QUALITY CONTROL	
В.	GLOSS	SARY8-1	
9.	REFER	RENCES	

VOLUME 2	
APPENDIX A	. WASTE STREAM PROFILES
VOLUME 3	
APPENDIX B	. SITE-SPECIFIC WASTE PROFILES B -
APPENDIX C	. SANDIA/NM MEMO
APPENDIX D	. WTWBIR REVISION 1 QUESTIONNAIRE
APPENDIX E.	SITE-SPECIFIC STORED RADIONUCLIDE INVENTORIES FROM DRAFT REVISION 10 IDB E - 1
APPENDIX F.	WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE F - 1
APPENDIX G.	MWIR CODE DESIGNATIONS AND DESCRIPTIONS G - 1
APPENDIX H.	WTWBIR RADIONUCLIDE ISOTOPIC MIXTURES H - 1
APPENDIX I.	DRAFT INTEGRATED DATA BASE FOR 1995: REVISION 10
APPENDIX J.	WEST VALLEY DEMONSTRATION PROJECT WASTE STREAM PROFILES

LIST OF FIGURES

Figur	'e	Page
1-1	U.S. Department of Energy Transuranic Waste Generator/Storage Sites	1 - 2
1-2	Blank Waste Stream Profile Form	1 - 9
1-3	Blank Site-Specific Waste Profile Form	. 1 - 1 ⁻
1-4	Blank WIPP Waste Profile Form	. 1 - 13
3-1	Example of TRU Waste Stream Profile from Idaho National Engineering Laboratory	3 - 2
3-2	Schematic of Waste Stream Profile Methodology	3 - 9
3-3	Example of Site-Specific Waste Profile	. 3 - 10
3-4	WIPP CH-TRU Waste Profile for Final Waste Form Combustible	. 3 - 16
3-5	WIPP CH-TRU Waste Profile for Final Waste Form Filter	. 3 - 17
3-6	WIPP CH-TRU Waste Profile for Final Waste Form Graphite	3 - 18
3-7	WIPP CH-TRU Waste Profile for Final Waste Form Heterogeneous	3 - 19
3-8	WIPP CH-TRU Waste Profile for Final Waste Form Inorganic Non-metal	3 - 21
3-9	WIPP CH-TRU Waste Profile for Final Waste Form Lead/Cadmium Metal Waste	3 - 22
3-10	WIPP CH-TRU Waste Profile for Final Waste Form Salt Waste	3 - 23
3-11	WIPP CH-TRU Waste Profile for Final Waste Form Soils	3 - 24
3-12	WIPP CH-TRU Waste Profile for Final Waste Form Solidified Inorganics	3 - 25
3-13	WIPP CH-TRU Waste Profile for Final Waste Form Solidified Organics	3 - 26
3-14	WIPP CH-TRU Waste Profile for Final Waste Form Uncategorized Metal	3 - 27
3-15	WIPP CH-TRU Waste Profile for Final Waste Form Unknown	

3-16	WIPP RH-TRU Waste Profile for Final Waste Form Combustible 3 - 29
3-17	WIPP RH-TRU Waste Profile for Final Waste Form Filter
3-18	WIPP RH-TRU Waste Profile Final Waste Form Heterogeneous
3-19	WIPP RH-TRU Waste Profile for Final Waste Form Lead/Cadmium Metal Waste
3-20	WIPP RH-TRU Waste Profile for Final Waste Form Salt Waste
3-21	WIPP RH-TRU Waste Profile for Final Waste Form Solidified Inorganics
3-22	WIPP RH-TRU Waste Profile for Final Waste Form Uncategorized Metal
3-23	WIPP RH-TRU Waste Profile for Final Waste Form Unknown

LIST OF TABLES

lable	Page
1-1	Technical Data Needs for Systems Prioritization Methodology/Performance Assessment Waste Material Parameters
1-2	Waste Matrix Code Group Names
1-3	Packaging Material Assumptions
3-1	Sources of Information Used in Waste Stream Profiles 3 - 4
3-2	Toxic Substances Control Act (TSCA) TRU Waste
3-3	Sources of Information Used in Site-Specific Waste Profiles 3 - 12
3-4	Sources of Information Used in WiPP Waste Profiles
3-5	Transuranic Waste Disposal Inventory for WIPP 3 - 15
4-1	CH-TRU and RH-TRU IDB Waste Inventories
4-2	Disposal Radionuclide Inventory
5-1	WIPP CH-TRU Waste Material Parameter Disposal Inventory 5 - 4
5-2	WIPP RH-TRU Waste Material Parameter Disposal Inventory 5 - 5
6-1	Contact-Handled Transuranic Waste Disposal Inventory by Site 6 - 2
6-2	Remote-Handled Transuranic Waste Disposal Inventory by Site 6 - 3
6-3	AMES LAB Final Waste Form Volumes
6-4	ANL-E Final Waste Form Volumes
6-5	ANL-W Final Waste Form Volumes 6 - 6
6-6	BCDLP Final Waste Form Volumes 6 - 7
6-7	BT Final Waste Form Volumes
6-8	ETEC Final Waste Form Volumes
s-9	HANFORD Final Waste Form Volumes
-10	INEL Final Waste Form Volumes 6 - 11

6-11	KAPL Final Waste Form Volumes
6-12	LANL Final Waste Form Volumes
6-13	LBL Final Waste Form Volumes
6-14	LLNL Final Waste Form Volumes
6-15	MOUND Final Waste Form Volumes
6-16	MU Final Waste Form Volumes 6 - 17
6-17	NTS Final Waste Form Volumes 6 - 18
6-18	ORNL Final Waste Form Volumes 6 - 19
6-19	PA Final Waste Form Volumes
6-20	PANTEX Final Waste Form Volumes 6 - 21
6-21	RFP Final Waste Form Volumes 6 - 22
6-22	SNL/NM Final Waste Form Volumes
6 -23	SRS Final Waste Form Volumes 6 - 24
7-1	Table of Materials for CH and RH Waste Containers
7-2	WTWBID Data Dictionary

ACRONYMS AND ABBREVIATIONS

ΑE ANL-E site identifier AL Ames Laboratory site identifier ANL-E Argonne National Laboratory-East AW ANL-W site identifier **ANL-W** Argonne National Laboratory-West BC Battelle Columbus Laboratory site identifier BT Bettis Atomic Power Laboratory site identifier CFR Code of Federal Regulations CH contact handled CY calendar year D&D decontamination and decommissioning DOE U.S. Department of Energy **EPA** U.S. Environmental Protection Agency ER environmental restoration ET ETEC site identifier **ETEC** Energy Technology Engineering Center **FFCAct** Federal Facility Compliance Act **FGE** Fissile Gram Equivalent **HDPE** high-density polyethylene HQ (DOE) Headquarters ID identification IDB Integrated Data Base IDC item description code IN INEL site identifier INEL Idaho National Engineering Laboratory IT ITRI site identifier ITRI Inhalation Toxicology Research Institute KA KAPL site identifier **KAPL** Knolls Atomic Power Laboratory - Schenectady kg kilograms LA LANL site identifier LANL Los Alamos National Laboratory LB LBL site identifier LBL Lawrence Berkeley Laboratory LL LLNL site identifier LLNL Lawrence Livermore National Laboratory MD Mound Plant site identifier m³ cubic meters mrem millirem MU University of Missouri site identifier MTRU mixed transuranic **MWIR** Mixed Waste Inventory Report **NMVP** No-Migration Variance Petition NT NTS site identifier NTS Nevada Test Site

OR

ORNL site identifier

ORNL Oak Ridge National Laboratory PA performance assessment (in text only) PA PGDP site identifier (in waste profiles only) **PCB** polychiorinated biphenyls **PGDP** Paducah Gaseous Diffusion Plant PX Pantex site identifier RADAC Radioactive Decay and Accumulation Code (System) Resource Conservation and Recovery Act **RCRA** RF RFETS site identifier **RFETS** Rocky Flats Environmental Technology Site RH remote handled RL Richland (Hanford) site identifier SA SNL/NM site identifier SARP Safety Analysis Report for Packaging SNL/NM Sandia National Laboratories/New Mexico **SPM** Systems Prioritization Methodology SR SRS identifier SRS Savannah River Site SWB Standard Waste Bay TRU transuranic TRUCON TRUPACT-II Content Codes TRUPACT-II Transuranic Package Transporter-II TSCA Toxic Substances Control Act WAC waste acceptance criteria WIPP Waste Isolation Pilot Plant **WMC** waste matrix code **WMCG** waste matrix code group WS waste stream WTWBIR Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report WTWBID Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Database WV WVDP site identifier **WVDP** West Valley Demonstration Project

PREFACE

PREFACE

The information in this report summarizes the U.S. Department of Energy's (DOE) transuranic (TRU) waste inventory, projections, and characteristics. Revision 0 of the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) published in June 1994, was the first attempt ever made by the DOE complex to report all of its TRU waste at the waste stream level. The waste data reported in Revision 0 was considered preliminary until quality checks of the data were completed by the DOE TRU waste generator/storage sites. Data changes resulting from the site reviews are contained herein.

The primary differences between Revision 0 and Revision 1 of the WTWBIR are as follows:

- The WIPP baseline inventory reported in Revision 0 was complied from three existing DOE databases, whereas, inventory data in Revision 1 was collected directly from the sites through a request made by the National TRU Program Office.
- The nonmixed, TRU waste streams reported in Revision 0 were derived from the volume differences between the Integrated Data Base (IDB) and Mixed Waste Inventory Report (MWIR), while the nonmixed TRU waste streams contained in Revision 1 are as reported by the TRU waste generator/storage sites.
- Revision 1 of the WTWBIR reports radionuclide data at the waste stream level. Where sites
 provided radionuclide data as the waste stream level, it is replicated in Appendix A. A WIPP
 radionuclide inventory is provided in Table 4-2. This table is derived from the data submitted
 to support the IDB. Revision 0 reported the radionculide data at the WIPP level.
- Revision 1 reports the waste volumes in the final waste form that will be sent to WIPP. All
 previous databases, including Revision 0 of WTWBIR, report the waste in terms of volumes
 in storage before processing to meet WIPP requirements.
- The total radionuclide inventory for contact-handled (CH) TRU waste is much higher in Revision 1 than reported in Revision 0. This is due to two reasons: 1) Savannah River Site waste that was previously reported as "unknown" had not been included in the estimates, and 2) the "projected" part (1993-2022) of the CH-TRU radionuclide inventory was inadvertently left out of the totals reported in Revision 0, causing the inventory to be approximately 25% low. Revision 1 corrects the inventory reporting error.
- The total radionuclide inventory for remote-handled (RH) TRU waste is also much higher in Revision 1. During calculation of the RH-TRU inventory the volume defined by the sites included more waste than the repository is authorized to accept. During those calculations, the IDB radionuclide numbers only covered the "stored" part of the inventory. This made the RH-TRU inventory reported in Revision 0 to be low by a factor of approximately 3-4. Revision 1 corrects the inventory reporting error.
- Oak Ridge National Laboratory has reported a very conservative inventory for U-235 in its RH-TRU waste (=367 curies). In order to provide a more realistic estimate of the U-235 inventory, an anticipated transportation requirement for the RH-TRU cask was imposed in Revision 1. This requirement modifies the U-235 estimate reported in Revision 0.

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

170

The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the U.S. Department of Energy (DOE) transuranic (TRU) waste system, into a series of "waste profiles" that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project.

The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

Based on methodology presented in this WTWBIR, a maximum of 11 site-specific waste profiles have been identified for contact-handled (CH) TRU waste and a maximum of 11 have been identified for remote-handled (RH) TRU waste for each site. Each of these site-specific waste profiles have unique WMCG criteria and they are developed, if appropriate, for each of the TRU waste generator/storage sites. A particular site-specific waste profile, with a specific WMCG, can be combined with other site-specific waste profiles having identical WMCGs from the TRU waste generator/storage sites to derive a WIPP waste profile.

The anticipated inventory of TRU waste is defined as the sum of retrievably stored waste (waste generated after 1970) plus currently projected TRU waste volumes. The anticipated inventory for CH-TRU waste is not sufficient to fill the maximum allowed capacity of WIPP (calculated: 6.2 million cubic feet [≈176,000 cubic meters]), and scaling has been developed as a means for Sandia National Laboratories' model to examine the impacts of the full repository. Scaling has also been applied to the RH-TRU inventory since sufficient volume has not been identified in the anticipated RH-TRU inventory to fill WIPP to the RH-TRU design capacity (≈7080 cubic meters). Additionally, there is a high uncertainty in and a current lack of data on wastes produced from decontamination and decommissioning (D&D) and environmental restoration (ER) activities. Therefore, the anticipated CH-TRU inventory has been "scaled" to the maximum allowed WIPP capacity and the RH-TRU to the design capacity. The scaling of the inventories in this and future revisions of the WTWBIR will be derived from the best available data and assumptions.

An example of five waste streams at two sites (Figure 3-2 in the main body of the report) has been used to illustrate the waste profile methodology. Total WIPP inventory volumes for the WIPP waste profiles are provided.

Using the same waste profile methodology, the WTWBIR also estimates the WIPP disposal inventory (anticipated inventory that has been scaled to WIPP design capacity) in terms of 10 waste material parameters and additional packaging materials that have been identified as inputs needed for the system prioritization methodology (SPM) and performance assessment (PA) calculations. The 10 waste material parameters and additional packaging materials are waste constituents that occur in TRU waste and are input parameters for one or more SPM and PA models or are required to adequately describe the waste form. These parameters may change as a result of SPM and PA efforts.

The 10 waste material parameters have been grouped by their chemical/physical properties and are indicated in bold lettering. The 10 waste material parameters and additional packaging materials that are defined and included in the WTWBIR are:

- Inorganics
 - Iron-based metals/alloys
 - Aluminum-based metals/alloys
 - Other metals
 - Other inorganic materials
- Organics
 - Cellulosics
 - Rubber
 - Plastics
- Solidified Materials
 - Inorganic matrix
 - Organic matrix
- Soils
- Packaging Materials
 - Steel
 - Plastic
 - Lead

The waste material parameter information is reported in kilograms per cubic meter of waste matrix (kg/m³). The waste material parameters in the waste stream, site-specific, and WIPP waste profiles are expressed on a weight/volume basis. However, the occurrence of more than one waste material parameter at the maximum value within a waste stream is highly unlikely. If needed, during SPM and PA (Tables 5-1 and 5-2) calculations, the sampling statistics (if used) must be controlled so that several waste material parameters do not get sampled all at their maximum value (weight/volume), lest the average weight/volume is exceeded. To illustrate the waste profile methodology, five waste streams from two sites are used as examples. This revision of the WTWBIR provides a diskette that contains the WIPP TRU Waste Baseline Inventory Database in Microsoft Access®.

Although the initial purpose of this report is to provide data to be included in the Sandia National Laboratories/New Mexico SPM and PA processes, all data are presented and explained in such a way that they can be adapted as needed for other applications. The WTWBIR, Revision 1, is presented in three parts: Volume 1 contains this Executive Summary through Chapter 9 and the WTWBID diskette; Volume 2 contains Appendix A, Waste Stream Profiles; and Volume 3 Appendices B through J.

CHAPTER 1

1. INTRODUCTION

1.1 BACKGROUND

The Waste Isolation Pilot Plant (WIPP) is a transuranic (TRU) waste management facility operated by the U.S. Department of Energy (DOE). The WIPP is currently identified as the permanent disposal site for DOE TRU waste.

TRU waste is defined as waste that is contaminated with alpha-emitting radionuclides with an atomic number greater than 92, with half-lives greater than 20 years, and concentrations of TRU isotopes greater than 100 nanocuries per gram of waste (DOE, 1988). TRU wastes are classified as either contact-handled (CH) waste or remote-handled (RH) waste, depending on the dose rate at the surface of the waste container. CH-TRU wastes are packaged TRU wastes with an external surface dose rate of 200 millirems (mrem) or less per hour, while RH-TRU wastes are packaged TRU wastes with an external surface dose rate exceeding 200 mrem per hour. Unless otherwise indicated, for purposes of this document, all references to TRU waste include TRU waste and mixed TRU waste (waste that contains both radioactive and hazardous components, as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act [RCRA] as codified in Title 40 Code of Federal Regulations [CFR] Parts 264, 265, 268, and 270 [EPA, 1980a; 1980b; 1986; and 1983]).

The DOE is committed to demonstrating compliance with all applicable regulations prior to permanent disposal of TRU wastes in the WIPP repository. These regulations are the environmental standards for management and disposal of TRU wastes as mandated in 40 CFR Part 191 (EPA, 1993) and Part 194 (DOE, 1995), and the RCRA regulations. Compliance will be demonstrated through Sandia National Laboratory/New Mexico (SNL/NM) performance assessment (PA) caiculations based on the inventory of existing and currently projected waste streams developed in this document, as reported by the DOE TRU waste generator/storage sites. The WIPP is scheduled to receive and dispose of TRU wastes from 10 major and several minor DOE TRU waste generator/storage sites (see Figure 1-1).

1.2 PURPOSE

The purpose of this report, the *Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report* (WTWBIR), is to document the disposal inventory of TRU waste to be emplaced in WIPP as defined by the DOE TRU waste generator/storage sites. This inventory of CH-TRU and RH-TRU waste will be used in the SNL/NM systems prioritization methodology (SPM)/PA calculations and sensitivity analyses that will support the development of compliance applications to the appropriate regulatory agencies regarding the operations and post-closure timeframes of the WIPP repository.

To accomplish this purpose, the WTWBIR has been developed from the best available information and process knowledge provided by the DOE TRU waste generator/storage sites. In support of SPM/PA, the WTWBIR describes a process for grouping individual waste streams with similar physical and chemical properties into waste profiles, based on their waste matrix code (WMC) (DOE, 1993a) assigned by the DOE TRU waste generator/storage sites. Waste profiles with similar WMCs, are then combined across the DOE TRU waste system to provide estimated total volumes and total waste material parameters. The methodology for this grouping and combining is discussed in detail in Section 2.3, Methodology for Development of Disposal Inventory.

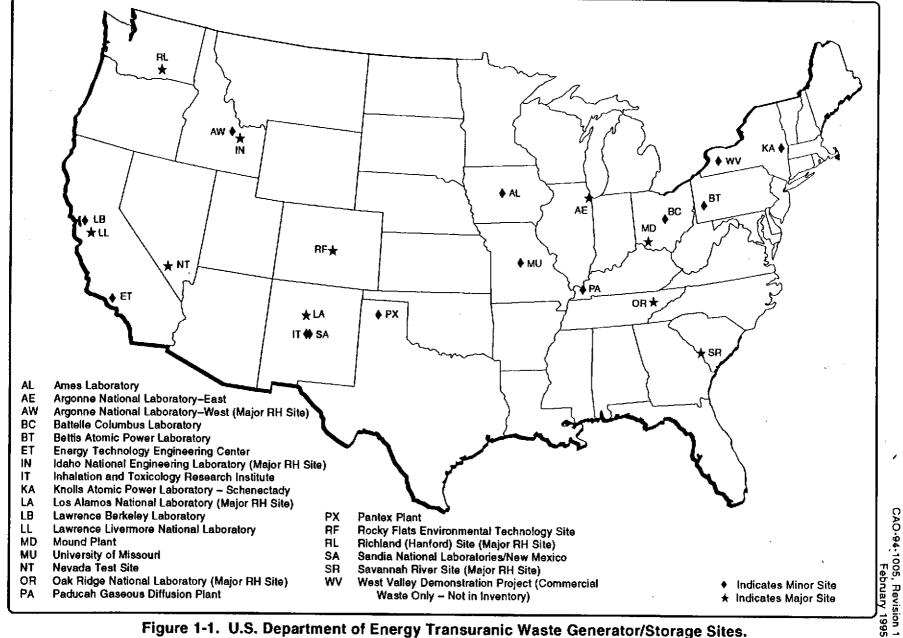


Figure 1-1. U.S. Department of Energy Transuranic Waste Generator/Storage Sites.

The individual waste streams also are evaluated to estimate the occurrence and quantities of non-radioactive waste material parameters as defined in Appendix C and listed in Table 1-1 (e.g., cellulosics, plastics, iron-based metals/alloys, etc.) that have been identified by SNL/NM as being potentially important to the performance of the WIPP repository. The methodology, assumptions, and totals of these waste material parameters are described in Chapter 5, Waste Material Parameters.

TABLE 1-1. TECHNICAL DATA NEEDS FOR SYSTEMS PRIORITIZATION METHODOLOGY/PERFORMANCE ASSESSMENT WASTE MATERIAL PARAMETERS

Waste Material Parameter		able in <u>Current</u> A Models	Input Variable in SPM/PA	Input Variable in Possible
	Gas Generation	Mechanical Characteristics	Models <u>Under</u> <u>Development</u>	Future SPM/PA Models
Iron-Based Metals/Alloys	YES	YES	YES	YES
Aluminum-Based Metals/Alloys	YES ⁽²⁾	YES	YES	YES
Other Metals		YES		YES
Other Inorganic Materials		YES	YES	YES
Cellulosics	YES	YES	YES	YES
Plastics	YES ⁽²⁾	YES	YES	YES
Rubber	YES ⁽¹⁾	YES	YES	YES
Solidified Inorganic Matrix		YES	YES	YES
Solidified Organic Matrix		YES	YES	YES
Soils		YES		

⁽¹⁾ Only 50 weight percent included

The information/data presented in this report is derived from the WIPP Transuranic Waste Baseline Inventory Database (WTWBID). The only currently defined application of the WTWBID in this revision of the WTWBIR is in support of the SPM/PA calculations. However, the WTWBID can support other projects and applications requiring waste information in formats different than that used in the WTWBIR. The WTWBID structure and a data dictionary are included in Chapter 7 of this report.

⁽²⁾ Added for SPM-2 (Sanchez, 1995)

1.3 WASTE INVENTORY TERMINOLOGY

The derivation of a disposal inventory from individual waste streams is a formidable and complex process. To document each step of this process, a system of waste inventory terminology needs to be defined so the reader may more easily follow the process. The following sections provide definitions of terminology used throughout the WTWBIR. These definitions also are summarized in Chapter 8, Glossary. A list of acronyms and abbreviations used are provided in the front of the document.

1.3.1 Inventory Terminology

Stored Inventory – That part of the TRU inventory currently in retrievable storage at the time of the last data call for inventory information is known as "stored inventory." For Revision 1, stored waste includes that waste in storage as of December 31, 1993. Retrievably stored waste includes waste stored since approximately 1970 in buildings or in berms with earthen cover and does not include any waste that was buried prior to 1970 (DOE, 1994b).

Projected Inventory – That part of the TRU inventory that has not been generated but is currently estimated to be generated at some time in the future by the TRU waste generator/storage sites is considered "projected inventory." Because of the uncertainty associated with ER and D&D waste inventory projections, the ER and D&D wastes are not included in the projected inventory. For Revision 1, a projected inventory includes waste scheduled for generation between calendar years (CY) 1994 and 2022. "Newly generated waste" also is sometimes used as a synonym for the projected inventory.

Anticipated Inventory - For the WTWBIR, this is the sum of the stored and projected inventories, calculated:

Stored + Projected = Anticipated Inventory = Inventory

Scaling – The process for adjusting, if needed, the projected inventory to the design limit (disposal inventory) of the WIPP repository is called "scaling." Section 2.3, describes the scaling process used for developing the WTWBIR.

Projected Inventory Scaling + Stored Inventory = Disposal Inventory

Disposal Inventory – The total design (\approx 176,000 x 10⁵ m³ for CH-TRU and 7080 m³ for RH-TRU) inventory defined for WIPP emplacement (after scaling, if necessary) to be used for SPM and PA calculations is the "disposal inventory."

1.3.2 Waste Matrix Code Terminology

Waste Matrix Code (WMC) - The WMCs were developed by DOE, in response to the Federal Facilities Compliance Act (FFCAct)(Public Law 102-386, 1992), as a methodology to aid in classifying mixed waste streams in the DOE system into a series of four-digit codes (e.g., 5400; Heterogeneous Waste) that represent different physical/chemical matrices. The WMC is assigned

by the TRU waste generator/storage sites. The WTWBIR has adopted this system to remain consistent with the Mixed Waste Inventory Report (MWIR)(DOE, 1994a) which was a database-derived report to meet the first deliverable under the FFCAct. The WMC methodology has been applied to nonmixed TRU waste streams for consistency.

Waste Matrix Code Group (WMCG) – A WMCG consists of a series of WMCs that for SPM or PA purposes have similar physical and chemical properties. An example of combining three WMCs which either contain particulates or are cemented particulate waste is presented below:

WMC 3100 (inorganic process residues) WMC 3110 (inorganic particulates) WMC 3150 (solidified process residues)

Solidified Inorganics

Because of the restriction on particulate wastes in the *TRU Waste Acceptance Criteria (WAC)* for the Waste Isolation Pilot Plant, Revision 4 (DOE, 1991), all particulate waste will usually be immobilized prior to shipment to WIPP. Therefore, all three of these WMCs would be the same basic waste form when emplaced in WIPP and have similar physical and chemical properties. The combined WMCG for this example is solidified inorganics. Table 1-2 presents all anticipated WMCs for TRU waste and indicates in which WMCG each WMC occurs for the WTWBIR. There are 11 WMCGs used in this WTWBIR. The last two rows in Table 1-2 group WMCs that will not be accepted at WIPP unless additional characterization and/or processing occurs to meet the WIPP WAC (DOE, 1991).

1.3.3 Waste Profile Terminology

Waste Stream Profile – This is a description of a CH-TRU or RH-TRU waste stream potentially destined for shipment to and disposal in WIPP, if authorized under permits and certifications by appropriate regulatory agencies. The waste stream profile is presented in tabular format and is intended to provide a summary of important information about a particular waste stream. Examples of information included in a waste stream profile are:

- · Currently used identification codes, including the DOE TRU waste site matrix description;
- WMC assigned by the TRU waste generator/storage sites;
- Volumes of waste currently in retrievable storage and waste projected to be generated: estimated minimum, average, and maximum weights of waste material parameters per cubic meter of waste volume (e.g., iron-based metals/alloys, aluminum-based metals/alloys, cellulosics, etc.);
- · Indication as to whether the waste is CH-TRU or RH-TRU; and
- Hazardous waste codes (EPA codes) from MWIR or as assigned by the DOE TRU waste generator/storage sites for the RCRA regulated portion of the waste stream. Some waste streams (waste stream profiles) contain hazardous waste codes that would not be currently acceptable for disposal in WIPP (e.g., D001, D002, and D003) under the most recent WIPP Part B Permit Application (DOE, 1993b). These hazardous waste codes are applied to the waste in its current physical form. These waste streams will have to be treated for any unacceptable hazardous waste codes prior to transport to WIPP for disposal.

TABLE 1-2. WASTE MATRIX CODE GROUP NAMES

Waste Matrix Code Group	Waste Matrix Codes
Solidified Inorganics	1000 ¹ , 1100 ¹ , 1110 ¹ , 1120 ¹ , 1130 ¹ , 1140 ¹ , 1190 ¹ ,1200 ¹ , 1210 ¹ , 1220 ¹ , 1230 ¹ , 1240 ¹ , 1290 ¹ , 3000 ² , 3100, 3110 ³ , 3111 ³ , 3112 ³ , 3113, 3115 ³ , 3116 ³ , 3119 ³ , 3120, 3121, 3122, 3123, 3124, 3125, 3129, 3130, 3131 ³ , 3132 ¹ , 3139 ¹ or ³ , 3150, 3190, 3900 ² , 6100 ⁴ , 6120 ⁵ , 6130 ⁶ , 6140 ⁵ , 6190 ⁴ , 6200 ⁷ , 6210 ⁸ , 6230 ⁸ , 6290 ⁷ , 7300 ³ , 9100 ² , 9200 ²
Salt Waste	3000 ² , 3140, 3141, 3142, 3143, 3149,3900 ²
Solidified Organics	2000 ¹ , 2100 ¹ , 2110 ¹ , 2120 ¹ , 2190 ¹ , 2200 ¹ , 2210 ¹ , 2220 ¹ , 2290 ¹ , 2900 ¹ , 3000 ² , 3114, 3200, 3210, 3211, 3212, 3213, 3219, 3220, 3221, 3222, 3223, 3229, 3230, 3290, 3900 ² , 6100 ⁴ , 6110 ⁵ , 6190 ⁴ , 6200 ⁷ , 6290 ⁷ , 9100 ² , 9200 ²
Soils	4000, 4100, 4200, 4900
Uncategorized Metal (Metal Waste Other Than Lead and/or Cadmium)	5000 ⁹ , 5100, 5110, 5190, 6200 ⁷ , 6220 ⁸ , 7000 ¹⁰ , 7490 ¹¹ , 9300 ¹⁰
Lead/Cadmium Metal	5000 ⁹ , 5120, 5130, 6200 ⁷ , 6220 ⁸ , 7000 ¹⁰ , 7200, 7210, 7220, 7400 ¹¹ , 7410 ¹¹ , 7420 ¹¹ , 9300 ¹⁰
Inorganic Non-Metal Waste	5000 ⁹ , 5200, 5210, 5220, 5230, 5240, 5290
Combustible	5000 ⁹ , 5300, 5310, 5311, 5312, 5313, 5319, 5320, 5330, 5390
Graphite	5000 ⁹ , 5340
Heterogeneous	5000 ⁹ , 5400, 5420, 5430, 5440, 5450, 5490, 6200 ⁷ , 6220 ⁸ , 6290 ⁷
Filter	5000 ⁹ , 5410
Excluded Waste Streams ¹²	5250, 5350, 6300, 6400, 7100
Unknown ¹³	8000, 8100, 8200, 8900
	Information Only

TABLE 1-2. WASTE MATRIX CODE GROUP NAMES (CONTINUED)

- ¹ Liquid waste streams are assumed to be solidified prior to sending to WIPP.
- ² WMCs 3000, 3900, 9100, and 9200 are placed in "solidified inorganics," "salt waste," or "solidified organics," depending on the information provided by the TRU waste generator/storage site.
- ³ Particulate waste streams are assumed to be solidified prior to sending to WIPP.
- ⁴ WMCs 6100 and 6190 are placed in "solidified organics," or "solidified inorganics," depending on the information provided by the TRU waste generator/storage site.
- ⁵ Liquid lab pack waste is assumed to be solidified prior to sending to WIPP.
- ⁶ Solid lab packs are assumed to be solidified prior to sending to WIPP.
- ⁷ WMCs 6200 and 6290 are placed in "solidified organics," "solidified inorganics," or "heterogeneous" if the waste stream must be solidified per the generator/storage site. They are placed in "uncategorized metal," or "lead/cadmium metal waste" if they are primarily nonreactive metal contaminated with reactive metal. Reactive waste streams must be treated prior to shipment to WIPP.
- ⁸ Waste stream is assumed to be treated prior to sending to WIPP. Volume change is provided by the TRU waste generator/storage site .
- ⁹ WMC 5000 is placed in "uncategorized metal," "lead/cadmium metal," "inorganic non-metal," "combustible," "graphite," "heterogeneous," or "filter," depending on the information provided by the generator/storage site.
- ¹⁰ WMC 7000 and 9300 are placed in "uncategorized metal" or "lead/cadmium metal," depending on the information provided by the generator/storage site.
- 11 WMCs 7400, 7410, 7420, and 7490 are assumed to be drained of liquid and contain only metal waste.
- ¹² These waste streams are excluded from disposal in WIPP at this time, e.g., PCB and asbestos wastes (see Table 3-2).
- ¹³ If adequate information is provided by the generator/storage site, these WMCs are changed. If there is not enough information, these waste streams remain as "unknown" and are excluded from disposal in WIPP until characterized.

- Comments provided by the TRU waste generator/storage sites to further explain the data provided.
- Footnotes generated by the WTWBIR team to explain information provided by the generator/storage sites.
- TRUPACT-II Content (TRUCON) Codes (DOE, 1992) and No Migration Variance Petition (NMVP) (DOE, 1990) identifiers.

Figure 1-2 provides an example of a blank waste stream profile form. The methodology for developing waste stream profiles is provided in Chapter 3 and printouts of TRU waste stream profiles are provided in Appendix A.

Site-Specific Waste Profile – This represents a WMCG at a particular DOE TRU waste generator/storage site. That is, one or more waste stream profiles at a particular DOE TRU waste site, that have been placed in the same WMCG, are summarized in the site-specific waste profile. Examples of information included in a site-specific waste profile are:

- DOE TRU waste generator/storage site identification;
- The WMCG that the profile represents;
- Listing of the waste streams (represented by waste stream profiles provided by the TRU waste generator/storage sites) that are included in the site-specific waste profile, including the waste stream identification;
- · Volumes of stored and currently projected waste; and
- Summary of minimum, volume weighted average, and maximum weights of waste material parameters per cubic meter of waste volume (e.g., iron-based metals/alloys, aluminumbased metals/alloys, cellulosics, etc.).

Figure 1-3 provides an example of a blank site-specific waste profile form. The methodology for developing site-specific waste profiles is provided in Chapter 3 and printouts of TRU site-specific waste profiles are provided in Appendix B.

WIPP Waste Profile – The WIPP waste profile represents a summary of TRU waste at all DOE TRU waste generator/storage sites that have an identical WMCG. Examples of information included in a WIPP waste profile are:

- · Profile name:
- The WMCG that the profile represents;
- Listing of the DOE TRU waste sites (represented by the same WMCG) that are included in the WIPP waste profile, including the name of the DOE TRU waste site;
- Volumes of stored and currently projected waste for each site for the particular WMCG represented; and
- Summary of minimum, volume weighted average, and maximum weights of waste material parameters per cubic meter of waste volume (e.g., iron-based metals/alloys, aluminumbased metals/alloys, cellulosics, etc.).

	•
	ì
	•
	ι
	-
	q
	•
	ì
	-
	C
П	đ
₾.	ō
Ē	
₹.	_
_	_
āū	đ
=	5
•	-
	44

WASTE STRE		TRU WASTE BASELINE INVENTO	ORY REPORT GENERATOR SITE
WASTE STREAM MWIR ID WIPP ID Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description	DESCRIP		
NO MIGRATION VARIANCE PETITIO		TRUCON CODE	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	SCA Asbestos PCBs Other N/A Unknown

Figure 1-2. Blank Waste Stream Profile Form

	•
	'n
	-
	L
	- 4
	σ
	4
	•
	-
_	О
ת	О
OD.	Œ
Ť	•
흥	<u>~</u>
7	·I
ğ	, In
7	, He
7	, Hevi
7	, Hevis
uary 1	, Hevisio
uary 1	, Hevision
uary 1	, Hevision
uary 1	, Hevision 1
7	, Hevision 1

NAME	 	WAS	TE TYPE	HAND	LING GE	NERATOR S	ыте
CONTAINER Type/Size Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	Lower Limit	fnt. 1	mer Matl: Vol/Ctnr: 3) STORES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	OF WASTE Projected	Liner Type: .iner Material: E_ESTIMATED GENERATION Final Form m3 m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr	TYPICAL Nuclide	Number Stored: Number Projected: ISOTOPIC COMPOSITIO Activity

Figure 1-2. Blank Waste Stream Profile Form (continued)

Site-Specific Contact Handled Waste Profiles

Site Name:		·		
Final Waste	e Form:			•
Waste Stre	eam ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
Total Volu	ıme:	<u>-</u>		
Material P	Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based			
	Aluminum Based			
	Other Metals			
	Other Inorganics			
Organics	Cellulose			
	Rubber			
	Plastics			
Solidified Ma	terials Inorganic			
	Organic			
Soils				

Figure 1-3. Blank Site-Specific Waste Profile Form

Figure 1-4 provides an example of a blank WIPP waste profile form. The methodology and assumptions for developing WIPP waste profiles and printouts of the WIPP profiles are provided in Chapter 3.

1.3.4 Database Terminology

Mixed Waste Inventory Report (MWIR) – The MWIR refers to the latest release of information from the MWIR database that supports requirements under the FFCAct of 1992 (Public Law 102-386). The latest version of the MWIR documentation/files is *Distribute* [Distribution] of Phase II Mixed Waste Inventory Report Data, dated May 17, 1994 (DOE, 1994a).

Integrated Data Base (IDB) – The IDB refers to the latest version of the Integrated Data Base: U.S. Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics (DOE, 1994b).

WIPP Transuranic Waste Baseline Inventory Database (WTWBID) - The WTWBID is the database specifically developed to support the WTWBIR and any other applications that might need waste information on a waste-stream basis or for higher-level roll-ups.

1.3.5 Other Terminology

Waste Material Parameter – This is one or more nonradioactive waste constituents that occur in a TRU waste stream that is an input parameter into one or more current SPM or PA models, an SPM or PA model under development, a potential future model, or is required to adequately describe the waste form (see Appendix C). The 10 waste material parameters have been grouped by their chemical/physical properties and are indicated in bold lettering. The 10 waste material parameters and additional packaging materials that are reported in densities and included in the WTWBIR are:

- Inorganics
 - Iron-based metals/alloys
 - Aluminum-based metals/alloys
 - Other metals
 - Other inorganic materials
- Organics
 - Cellulosics
 - Rubber
 - Plastics
- · Solidified Materials
 - Inorganic matrix
 - Organic matrix
- Soils
- Packaging Materials
 - Steel
 - Plastic
 - Lead

Definitions for these waste material parameters can be found in Chapter 5.

WIPP Contact Handled Waste Profiles

Final Waste Form:

<u>Site</u>

Retrievably Stored (m3)

Projected (m3)

Total (m3)

Total Volume

Material Parameters (Kg/m3)

Maximum

Average

<u>Minimum</u>

Inorganics

Iron Based

Aluminum Based

Other Metals

Other Inorganics

Organics

Cellulose

Rubber

Plastics

Solidified Materials

Inorganic

Organic

Soils

Figure 1 - 4. Blank WIPP Waste Profile Form

1 - 13

1.4 OBJECTIVES

The objectives of the WTWBIR are threefold:

- Establish a consistent DOE complex-wide methodology for grouping wastes of similar physical and chemical composition. A consistent methodology, in support of SPM/PA, for grouping TRU wastes of similar physical and chemical properties into "waste profiles" will provide a common frame of reference for discussion of TRU waste issues with regulatory organizations.
- 2. Define the anticipated disposal inventory of TRU wastes destined for WIPP. The anticipated inventory of CH-TRU and RH-TRU wastes is defined as the sum of the existing volumes of stored and currently projected waste streams at each of the TRU waste generator/storage sites. The design capacities of WIPP are calculated as follows:
 - Maximum CH-TRU capacity = 6.2 million cubic feet (~176,000 cubic meters) (Public Law 102-579, 1992),
 - RH-TRU design capacity = 7080 cubic meters ≈ 7955 canisters x 0.89 cubic meters/canister

Scaling of the CH-TRU and RH-TRU waste projected inventories is necessary to attain the WIPP design limit. There is a high level of uncertainty in and a current lack of data on waste produced by decontamination and decommissioning (D&D) and environmental restoration (ER) activities. Therefore, the projected inventory has been scaled to the WIPP capacity (disposal inventory). The scaling of the inventory in this and future revisions of the WTWBIR is derived from the best available data and assumptions.

3. Calculate the disposal inventory in terms of waste material parameters. Several waste material parameters (e.g., iron-based metals/alloys, rubber, plastics, etc.) have been identified by SNL/NM as being potentially significant in relation to the performance of the WiPP repository (see Table 1-1). Calculating the WIPP disposal inventory in terms of these parameters provides input for the SPM and PA calculations and sensitivity analyses needed to determine compliance with federal standards.

1.5 TRU SYSTEM-WIDE DATA ASSUMPTIONS

As stated earlier, the WTWBIR was developed using the best available information from the TRU waste generator/storage sites. Some sites used different assumptions and methodologies for reporting its waste stream data. Because of these differences, the WTWBIR team had to make assumptions and take specific steps to ensure consistency among the sites' reported data. This section addresses the system-wide assumptions and actions taken by the WTWBIR team in rolling up the waste stream data. For a description of site-specific assumptions, see Appendix A.

1.5.1 Waste Material Parameter Assumptions

The waste material parameter information reported by the sites must be summed and averaged to obtain data at the site-specific and WIPP waste profile levels. For some waste streams, however, not all of the waste parameter data were available from the sites. In order to calculate

material parameters from the waste stream data provided by the sites, the following assumptions were made by the WTWBIR team:

- If only the average waste material value was provided for a specific waste stream, the average value was assigned to the minimum and maximum values.
- If the maximum value was provided and the minimum value was zero, the average value was computed as half of the maximum value.
- If only the minimum value was provided, the minimum was assigned to both the maximum and average values.
- If only the final waste form group was provided, the average set of parameters was calculated by volume averaging the parameters from other waste streams of the same final waste form group.

Waste material parameter data contained in the body of this report are based on these assumptions, whereas, individual waste stream profiles included in Appendix A contain the original, unchanged data as reported by the generator/storage sites.

1.5.2 Inventory Volume Assumptions

Other assumptions had to be made by the WTWBIR team to ensure consistency in WIPP inventory volumes:

- The volume reported for the years 1992 and 1993 was supposed to be cumulative, whereas, the values for the remaining years were to be reported as generation volume per year. Since not all of the sites reported their inventory in this manner, the WTWBIR team had to recalculate the volumes provided to attain a cubic meter/year basis for some waste stream volumes;
- Many sites did not provide final waste form volumes. Final waste form volumes are used
 in determining the overall WIPP inventories. In those instances, the WTWBIR team
 assumed that the reported, current volume would be the same as the final waste form
 volume.

1.5.3 Packaging Material Assumptions

The TRU waste container data was not reported consistently. While most did, many of the sites did not provide data for final form in WIPP approved containers. Some reported their waste in current containers while others did not provide container information. Adjustments had to be made to the data to:

- Achieve consistency at the waste stream level in the presentation of data in the waste stream profiles (Appendix A)
- Produce the upper-level waste packaging rollups needed by SPM/PA as inputs to the modeling activities.

Waste Profile Assumptions

The WTWBIR team assigned the TRUCON and NMVP codes based on the best available information. Each waste stream profile in Appendix A was reviewed for consistency in reporting packaging configurations. In cases where incomplete information was submitted by the TRU

sites, clarifications were requested from the TRU waste generator/storage sites. In those cases where clarifications were not received from the TRU sites, the following assumptions were made, concerning the waste stream profiles:

- If the site provided final form containers, the final form containers (i.e., drums, standard waste boxes [SWB], or RH canisters) were used.
- In some cases where final waste form containers were not provided a 55-gallon drum was assumed.
- If a particular waste container was reported by the sites (but no further information was provided) or was assigned by the WTWBIR team (e.g., 55-gallon drum), "standard" values of the waste container properties (see Table 1-3) were added to the waste profile forms. An example of this process is listed below for a reported 55-gallon drum without any additional information:
 - Type of material used to fabricate the waste container (steel)
 - The internal volume of the container (0.208 m³)
 - Inclusion of a "standard" density for the container (131 kg/m³).
- If sites reported a "plastic" or "rigid" liner without any further definition of the liner then the values in Table 1-3 were used in the waste stream profiles;
 - A 90-mil high density polyethylene (HDPE) liner was assumed
 - The density for that type of liner was assumed (37 kg/m³).
- If the container fields called "Number Stored" and "Number Projects" are left blank, it is because of one of the following reasons:
 - There is a change from one type of waste container to another on the waste profile form page 2 (different internal container volumes) and therefore the number of containers stored and projected represent different volumes and a direct comparison is not possible.
 - There is an unresolved discrepancy between the number of containers and the volumes quoted on the waste stream profile. It has been assumed that the waste volumes are the most accurate information provided by the TRU waste sites.

For CH-TRU waste containers, the following assumptions were also made:

- If waste was reported in containers larger than drums, then the waste was divided into SWBs with standard plastic bag liners. The standard internal volume for SWBs (Table 1-3) and the reported waste stream volume were used to determine the number of SWBs.
- If the waste was reported in a liquid or sludge form (i.e., tanks), the WTWBIR team
 assumed that the waste will be placed in drums with rigid liners. No treatment volume
 expansion was included unless reported as such by the sites.

For RH-TRU waste, the following assumptions were made:

- · If the waste was reported in drums, the drums were assumed to be overpacked in RH canisters at three drums per canister.
- If the waste was not reported to be in drums, the waste was assumed to be direct loaded into RH canisters. The standard internal volume for RH canisters and the reported waste stream volume were used to determine the number of RH canisters.
- The lead in the RH canister (465 kg/m³) is assumed in the packaging rollups even if it is not stated on each RH waste stream profile.

rable 1-3. Packaging Material Assumptions						
Container Configuration	Steel (kg/m³)	Plastic (kg/m³)	Lead (kg/m ³)	Volume (m³)		
55-gallon drum	131	37	N/A	0.208		
SWB (direct load)	154	1.2	N/A	1.89		
SWB (overpack) (4 55-gallon drums)	210	16	N/A	1.89		
RH-TRU Canister	435	0	465	0.89		
RH-TRU Canister (overpack of 3 55-gallon drums)	527	26	465	0.89		

Table 1-3 Parkaging Material Assum

Assumptions to Produce Packaging Estimates on a System-Wide Basis

In order to add up the packaging materials for the waste as it would arrive at WIPP, the following standard container configuration was used for computing waste packaging materials from all sites. If the site provided final waste form containers, the final form containers (i.e., drums, standard waste boxes [SWB], or RH Canisters) were used, but standard liners were assumed. This was done because many sites did not provide liner information. The inclusion of standard liners produces a conservative estimate for PA and SPM calculations.

Radionuclide Information Assumptions

There are some waste streams from TRU waste sites which report for some waste streams incomplete radionuclide information (e.g., some show mixed fission products but no transuranic isotopes). These waste streams are expected to be demonstrated to be TRU upon completion of the radionuclide characterization.

The waste stream profiles provided in Appendix A contain waste stream specific radionuclide information, if provided by the TRU waste sites. Some sites provided only isotopic mixes, which are explained in Appendix H.

Comparison of IDB versus WTWBIR Waste Volumes 1.5.5

Differences occur between the waste volumes reported in the draft Revision 10 of the IDB (Appendix I) and those reported in Chapter 6 on a site level. Listed below is the currently-known logic for some of the differences:

- In the IDB, 40% of the INEL CH-TRU waste and 50% of the Hanford CH-TRU waste reported is assumed to be low-level waste by INEL and Hanford and is not included in the WTWBIR
- Some of the projected waste at ANL-E in the WTWBIR is accounted for in the Hanford projections. This is not the case for the IDB.
- The ANL-W waste reported for WTWBIR is included in the INEL IDB waste volumes.
- The totals for SRS CH-TRU and RH-TRU projected waste volumes in the draft Revision 10 IDB are in error. The corrected IDB total projected CH-TRU is 13,700 m³ and for RH-TRU, 35.9 m³.

These inconsistencies and others between the WTWBIR and IDB for TRU waste volumes is a main focus of the Revision 2 data update of the WTWBIR.

1.6 BASELINE INVENTORY UPDATES

The WTWBIR represents the best available TRU waste inventory information in support of the WIPP Project. It is anticipated that the WTWBIR will be updated periodically. This update cycle will be modified based on the availability of additional waste information or the data needs of the WIPP Project as determined by the DOE.

1.7 DOCUMENT ORGANIZATION

The WTWBIR is organized into chapters of text, figures, tables and supporting appendices. It flows from specific, detailed TRU waste information (provided by the TRU waste generator/storage sites) to the top level development and description of waste profiles and waste material parameters. The contents of remaining chapters in this document are summarized below:

- Chapter 2 discusses the methodology used to define the TRU waste disposal inventory.
- Chapter 3 outlines the methodology used to derive waste stream profiles, site-specific waste profiles, and WIPP waste profiles.
- Chapter 4 provides the WIPP disposal radionuclides inventory. The methodology used for deriving the inventories is also included.
- Chapter 5 rolls up the waste material parameter information assigned at the waste stream profile level in Chapter 3 to obtain parameter totals. These totals are presented as parameter weights per volume.
- Chapter 6 presents stored and projected CH-TRU and RH-TRU inventories by site and a system-wide rollup of CH-TRU and RH-TRU volumes.
- Chapter 7 contains a description of the WTWBID and a data dictionary.
- · Chapter 8 contains a glossary of important terms used in this document.
- Chapter 9 lists references cited in the WTWBIR.
- Several appendices also are provided to either present more detailed waste inventory information or to describe the methodology in more detail. The appendices are provided in Volumes 2 and 3 of this WTWBIR.

CHAPTER 2

Information Only

2. TRU WASTE DISPOSAL INVENTORY

2.1 INTRODUCTION

The TRU waste disposal inventory is derived from existing information on waste, which has been provided by the DOE TRU waste generator/storage sites and is predominately based on process knowledge. In addition to the general process knowledge of a waste stream for nonradionuclide parameters, the radionuclide inventories from the IDB TRU waste site submittals (DOE, 1994b) are derived from non-destructive assay, with some analytical analyses (to detect isotopes that do not lend themselves to non-destructive analyses or to evaluate waste streams that cannot be effectively analyzed through non-destructive methods), and on-site accountability and tracking records of special nuclear materials including any changes of isotopic ratios during processing. This chapter is designed to assist the reader by describing the existing waste information used to derive the inventory and the methodology used to correlate and combine the existing data into a WIPP disposal inventory.

2.2 SOURCE OF TRU WASTE INFORMATION

Transuranic waste information primarily exists in two forms within the DOE TRU waste system:

- On-site documentation developed by the TRU waste generator/storage sites during the history of their operations.
- Summary reports, usually prepared to support WIPP documentation requirements. These summary reports have either been generated by the DOE area office in charge of WIPP or at the DOE-Headquarters (HQ) level. The information contained in these reports is derived from the TRU waste generator/storage sites.

2.2.1 Site-Specific Waste Information

The TRU waste generator/storage sites use a variety of on-site documents and records in order to derive the information listed in the individual waste streams in Appendix A. The documents/records can include many different sources, some of which might be the following: procurement records, waste stream process manuals, operating procedures, on-site safety documentation, process diagrams, waste production records, storage records, on-site waste database management systems, interviews with existing and former workers, transportation records, waste container tracking records, on-site documentation prepared for local, state, or regional regulators. This list is not meant to be inclusive or representative of all records used at every site. It is intended to be used for example purposes only. The number and types of documents can vary greatly from site-to-site so it is impractical to list them as references in this document.

Each DOE TRU waste site was provided, by the WTWBIR team, WTWBIR Revision 0 data packages defining the characterization of each TRU waste stream at their site. The generator/storage sites reviewed, changed, and authorized the characterization as valid for use in developing the WIPP inventory.

2.2.2 Existing Summary Documents on TRU Waste Information

In support of various programs, the DOE has published a series of documents over the years in support of various programs which contain varying amounts of waste information. Listed below are those documents that have formed the foundation of summary TRU waste information prior to the publication of the WTWBIR.

Mixed Waste Inventory Report

The FFCAct required that the DOE, within 180 days of enactment of the FFCAct, submit to the EPA Administrator and the governor of each state in which the DOE stores or generates mixed wastes a report that contains:

- National inventory of all mixed wastes, regardless of the time they were generated, on a state-by-state basis and
- National inventory of mixed waste treatment capacities and technologies.

The FFCAct also stipulated specific reporting requirements for each of these inventories. The DOE submitted the six-volume set entitled: *U.S. Department of Energy Interim Mixed Waste Inventory Report: Waste Streams, Treatment Capacities and Technologies*, DOE/NBM-1100, dated April 1993 (DOE, 1993c), to fulfill these requirements. Since issuance of the "interim" report, DOE has requested additional information from the DOE TRU waste generator/storage sites and published two updated reports entitled:

- Release of Phase I Mixed Waste Inventory Report Data, dated April 1, 1994 (Phase I MWIR) (DOE, 1994c), which includes a data diskette (Version .97B) and the draft Mixed Waste Inventory Report Data Base System User's Guide.
- Distribute [Distribution] of the Phase II Mixed Waste Inventory Report Data, dated May 17, 1994 (Phase II MWIR) (DOE, 1994a), which includes a data diskette (Version 1.00) and the draft User's Guide for National Data Base System for the Final Mixed Waste Inventory Report (May 1994).

The Phase II MWIR was the basis of the mixed waste streams that were included in Revision 0 of the WTWBIR. The DOE waste generator/storage sites have reviewed the existing waste streams from Revision 0 of the WTWBIR and have updated the information. In a very few cases mixed waste streams from the Phase II MWIR have been deleted by the generating/storage sites from Revision 1 of the WTWBIR. Any waste stream that was published in the Phase II MWIR and has a waste stream profile in the WTWBIR contains an identification code in the "MWIR ID" and "WIPP ID" fields on the waste stream profile forms (see Figure 1-2). The identification codes are assigned using the following format:

- · DD-WXXX;
 - DD = Site Identification Code (from Figure 1-1)
 - XXX = Three digit numerical code assigned by DOE-HQ

Some sites have submitted "new" mixed waste streams with the Revision 1 WTWBIR datacall, which were not in the Phase II MWIR. Therefore, these waste streams have not been assigned DD-WXXX identification numbers by DOE-HQ. Those mixed TRU waste streams which have been reported for the first time in Revision 1 of the WTWBIR have been designated as:

 DD-MXXX (DD and XXX have same meaning as for the MWIR waste streams, except that the three digit numerical code was assigned by the WTWBIR team)

Waste streams that are nonmixed TRU waste do not appear in the Phase II MWIR. Nonmixed TRU waste streams that appear in the WTWBIR have been designated as follows:

 DD-TXXX (DD and XXX have the same meaning as for MWIR waste streams, except that the three digit numerical code was assigned by the WTWBIR team)

INEL included some nonmixed waste streams in the Phase I MWIR which had the MWIR characteristic DD-WXXX identification. These have been retained in the WTWBIR, but all other nonmixed TRU waste streams have used the DD-TXXX designation, including some "new" nonmixed waste streams from INEL.

Integrated Data Base

The IDB (DOE, 1994b) is published by Oak Ridge National Laboratory (ORNL) for the DOE. The ORNL assembles radioactive waste inventories provided by DOE TRU waste generator/storage sites. This database does not report by waste stream, but rather, by the total inventory at each DOE site. The IDB also contains the radionuclide isotopic distribution for the waste stored at each site. Because consistent reporting is not available at the waste stream level, the radionuclide information in the IDB is the basis for the Revision 1 WTWBIR inventory for radionuclides (see Chapter 4). Where sites provided radionuclide data, it is replicated in Appendix A. A WIPP disposal radionuclide inventory is provided in Table 4-2. This table is derived from unpublished IDB submittals from the TRU waste sites.

Other Sources of TRU Waste Information

There are three additional summary documents that have been produced which contain extensive information about TRU waste. The amount and form of the documentation varies between documents due to the initial purpose for including waste information. These include:

- TRUCON (DOE, 1992) The TRUPACT-II Content (TRUCON) Code document was developed to provide waste information to the Nuclear Regulatory Commission in support of the TRUPACT-II certification application. The TRUCON concentrated on those waste parameters that were important for safe transportation of TRU waste (e.g., thermal heat loading, criticality, free liquids, etc.)
- NMVP (DOE, 1990) The No-Migration Variance Petition (NMVP) was developed by DOE to obtain a variance from the land disposal restrictions for mixed waste as allowed under 40 CFR 268.6 (EPA, 1986). The NMVP waste information concentrated on defining the volumes of various known TRU and MTRU waste streams in the DOE system at that time, and identifying the hazardous constituents expected to be found in the MTRU waste streams. Text was provided in the NMVP on each known waste stream at that time which summarized the process knowledge and sampling and analysis information available (many WTWBIR waste streams were not defined at the time the NMVP was developed).
- WIPP RCRA Part B Permit Application (DOE, 1993b) This document which will be revised
 and submitted to obtain a Part B Permit for WIPP to the State of New Mexico. This
 document will represent in some parts an update of the NMVP and will incorporate much
 information from the WTWBIR.

TRU waste streams that are included in the TRUCON and the NMVP are cross correlated, if possible, to WTWBIR waste streams in Appendix F. The designation of each waste stream in the TRUCON and NMVP, if applicable, can be found on the waste stream profile (Figure 1-2). The WTWBIR should be considered the most current source of waste stream information when there is a discrepancy in information between the WTWBIR and the TRUCON or NMVP documents.

2.3 METHODOLOGY FOR DEVELOPMENT OF DISPOSAL INVENTORY

Development of the WIPP TRU waste disposal inventory is accomplished by a series of steps starting with the individual waste streams submitted by the TRU waste generator/storage sites that are identified in Appendix A. These waste stream profiles are grouped together, based on similar physical and chemical properties, into common "WIPP waste profiles," which should facilitate discussions concerning the disposal waste inventory with regulatory agencies and stakeholders. The waste profiles also contain information on waste material parameters that could affect the performance of the WIPP repository and that may be direct inputs to the SPM and PA models. A more detailed explanation of the waste profile methodology is found in Chapter 3.

Because the existing stored and currently projected CH-TRU waste streams do not contain sufficient volume to fill the maximum allowed (designed) capacity of WIPP, scaling of the projected inventories is necessary to attain the following WIPP design inventory:

 Maximum CH-TRU design inventory = 6.2 million cubic feet (~176,000 cubic meters) (Public Law 102-579, 1992)

The anticipated inventory (as defined in Section 1.3.1) consists of 11 overall CH-TRU WIPP waste profiles based on the physical and chemical properties of the waste streams. The CH-TRU scaling factor is computed as follows:

For CH waste:

design inventory - stored inventory = CH-TRU scaling factor

The RH-TRU anticipated inventory would be scaled using the same methodology. If the anticipated RH-TRU and CH-TRU inventories are less than the WIPP design limits, the projected inventory in future revisions of the WTWBIR will include volumes of waste anticipated from D&D and ER activities as these estimates are made available.

The disposal inventory is the total inventory to be used in SPM and PA calculations. To calculate the disposal inventory by WMCG for CH-TRU waste, the projected inventory is multiplied by the scaling factor, added to the stored inventory for each WMCG and summed together. See Section 3.3.2 for further details,

CHAPTER 3

Information Only

3. WASTE PROFILE METHODOLOGY

3.1 WASTE STREAM PROFILE METHODOLOGY

3.1.1 Introduction

The lowest tier of information in the WTWBIR is the waste stream profile, which documents specific information for each separate TRU waste stream identified by each DOE TRU waste generator/storage site. In this chapter the waste stream profile will be discussed along with the methodology for grouping waste streams into site-specific profiles and WIPP waste profiles.

3.1.2 Waste Stream Profile Description

Each DOE TRU waste generator/storage site was provided data packages that contained the waste material parameter characterization as defined in the WIPP disposal inventory (WTWBIR, Revision 0). Each DOE site was asked to review the data packages and update the information as necessary (see Appendix D for the WTWBIR Revision 1 Questionnaire). Additionally, the sites were required to generate data packages for waste streams that were not defined. This data submittal from the DOE generator/storage sites provided approximately 360 individual TRU waste streams that were used in developing the waste stream profiles (see Appendices A and J). These waste stream profiles were developed using information from the sources listed in Section 2.2. Figure 3-1 provides an example TRU waste stream profile for an INEL waste stream.

In addition to presenting the quantity of waste material parameters in each DOE waste stream, the waste stream profile also provides a cross-reference (top of the waste stream profile form) to the different waste stream nomenclature used in previously generated DOE documents (i.e., TRUCON, NMVP). Appendix F provides a cross correlation table for a WTWBIR waste stream with the NMVP and the TRUCON. The fields utilized on the waste stream profile, the sources of the information, and a short explanation of the data located in a particular field are described in Table 3-1. A complete set of the waste stream profiles is provided in Appendices A and J. Because the West Valley Demonstration Project (WVDP) is a commercial TRU waste site, it is not part of the WIPP inventory, but the WVDP waste stream profiles are provided in Appendix J for information purposes.

The sites were not requested to provide the EPA codes as this information was derived from the Phase II MWIR. EPA codes for mixed waste streams not defined in MWIR were provided by the generator/storage site. During development of the MWIR, DOE directed the TRU waste generator/storage sites to append their hazardous waste codes (EPA codes) to further define the waste in order to develop an appropriate treatment technology. These code designations and descriptions are presented in Appendix G. For example, D003 is defined by EPA as reactive. DOE further defined this code as D003A (reactive cyanide), D003B (reactive sulfides), D003C (explosives), D003D (water reactives), and D003E (other reactives).

3.1.3 Assignment of the Waste Matrix Code Group

The DOE TRU waste generator/storage sites have assigned an overall WMC to each waste stream based on the current form of the waste. The WIPP Project has developed the WIPP WAC (DOE, 1991) for any waste packages to be shipped to WIPP to ensure the safe handling and emplacement of the waste packages in the WIPP. In general, the waste forms acceptable for emplacement in WIPP are described in Table 1-2. Each waste stream has been assigned a WMC by the TRU waste generator/storage site that defines the general physical and chemical properties of the waste.

Information Only

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W169 WIPP ID IN-W169 Local ID ID-EGG-114T-330 MATRIX CODE SITE FINAL FORM IDC	STREAM NAME Predominantly Combustible Debris DESCRIPTION Combustibles (TRU): Dry paper and rags
plastics, surgical gloves, cloth o damp or moist. Limited amounts present.	y Flats Plant and primarily consists of line- and nonline-generated dry combustible materials such as paper, rags, overalls and bootles, cardboard, wood, wood litters frames, PE bottles, and laundry lint. Some combustibles may be sof noncombustibles such as glass, concrete, cement, lead glovebox gloves, batteries, and metal scrap may also be
NO MIGRATION VARIANCE PETITION ASSIGNMENT ID 11 FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste	X Rsearch and Devel, Waste X TSCA Asbestos Operations Waste X PCBs

Figure 3-1. Example of TRU Wsate Stream Profile From Idaho National Engineering Laboratory

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF IN-W169 CONTAINER: Drum Container Matt: steel Liner Type: Number Stored: 20822 Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Material Parameters Nuclide Activity Average Lower Limit **Upper Limit** Am241 Iron-based Metals/Alloys 3.79E-01 0.0 0.0 Curies/m3 **Projected Final Form** Pu52 Aluminum-Based Metals/Alloys 0.0 4.39E+00 Curies/m3 0.0 0.0 End of 1992: 4331.0 4331.0 m3 Other Metals 36.8 U235 2.59E-06 0.0 Curles/m3 233.0 End of 1993: 4331.0 4331.0 m3 U238 Other Inorganic Materials 27.2 8.48E-11 Curles/m3 0.0 196.0 1994: 0.0 0.0 m3/yr Cellulosics 135.0 6.6 817.0 1995: 0.0 0.0 m3/yr Rubber 57.2 0.0 330.0 1996: 0.0 0.0 m3/yr **Plastics** 188.0 14.8 887.0 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steet 131.0 D008A Packaging Material, Plastic 37.0 D008C Comments D022 10% of this waste stream volume is classified as RH-TRU without current shielding. It is anlicipated that the RH-TRU portion will be shipped as CH-TRU D029 with internal shielding. F001 F002 F003 F005 F005A

Figure 3-1. Example of TRU Wsate Stream Profile From Idaho National Engineering Laboratory (continued)

Information Only

TABLE 3-1. SOURCES OF INFORMATION USED IN WASTE STREAM PROFILES

Information Field	Source of Information	Explanation			
·	PAGE 1 OF WASTE STREAM PROFILE				
SITE NAME	TRU waste sites	Storage site for existing waste; Generating site for projected waste			
Waste Type	TRU waste sites	MTRU - mixed TRU - nonmixed			
Handling	TRU waste sites	CH – Contact-Handled RH – Remote-Handled			
Generator Site	TRU waste sites	TRU waste site that originally generated waste			
WASTE STREAM MWIR ID	DOE-HQ	MWIR identification code assigned			
WASTE STREAM WIPP ID	WTWBIR	MWIR ID used if available; new mixed WS "-MXXX"; nonmixed WS "-TXXX"			
WASTE STREAM Local ID	TRU waste sites	On-site ID used at TRU waste sites			
STREAM NAME	TRU waste sites	Usual name used to identify waste stream by TRU waste site			
DESCRIPTION	TRU waste sites	Short description of waste generating process			
MATRIX CODE	TRU waste sites	Physical/chemical waste matrix code assigned by each TRU waste site from MWIR (DOE, 1993a)			
Waste Matrix Code Group	TRU waste sites and/or WTWBIR	Grouping of wastes in 11 WIPP profiles (see Table 1-2)			
Site Matrix Description	TRU waste sites	Usually a description of the physical/chemical matrix of WS			
NO-MIGRATION VARIANCE PETITION ASSIGNMENT	TRU waste sites and/or WTWBIR	If applicable, what a waste stream is called in the NMVP			

Table 3-1. SOURCES OF INFORMATION USED IN WASTE STREAM PROFILES (continued)

	Source of	
Information Field	Information	Explanation
TRUCON CODE	TRU waste sites and/or WTWBIR	If applicable, what a waste stream is called in the TRUCON
CHECK OFF BOXES	TRU waste sites	Categorization fields for TRU waste stream
Comments	TRU waste sites	Lists comments/assumptions provided by TRU waste sites on the waste description.
Footnotes	WTWBIR	Explain data provided by the TRU waste generator/storage site and/or list assumptions made by WTWBIR.
	PAGE 2 OF WASTE ST	FREAM PROFILE
SITE NAME Waste Type Handling Generator Site	TRU waste sites	Same as Page 1 of form
CONTAINER	TRU waste sites	Type of waste container that information on page two is based on (e.g., Drum)
CONTAINER Container Matl	TRU waste sites	Type of material that a waste container is constructed from (e.g., steel)
CONTAINER Liner Type	TRU waste sites	Description of the liner, if used in the waste container (e.g., rigid, plastic liner bags)
CONTAINER Type/Size	TRU waste sites	Common designation for size (e.g., 55-gallon)
CONTAINER Int. Vol/Ctnr	TRU waste sites	Internal volume of empty waste container
CONTAINER Liner Material	TRU waste sites	Type of material that a liner is constructed from (e.g., HDPE)
CONTAINER Number Stored	TRU waste sites	Number of containers stored as of last data call (for Revision 1 = end of 1993)
CONTAINER Number Projected	TRU waste sites	Number of containers projected to be produced from 1994– 2022

Table 3-1. SOURCES OF INFORMATION USED IN WASTE STREAM PROFILES (continued)

Information Field	Source of Information	Explanation
MATERIAL PARAMETERS	TRU waste sites	Record the "Upper Limit"; "Lower Limit"; and "Average" in kg/m ³ for each waste material parameter, if known
STORED TRU WASTE AND ESTIMATED RATES OF WASTE GENERATION	TRU waste sites	Provides estimate of stored volumes of waste at the "End of 1992"; "End of 1993" and estimated projections for waste generation. Information is recorded for waste stream volumes as stored or generated and in terms of "final volume" for shipment to WIPP.
TYPICAL ISOTOPIC COMPOSITION	TRU waste sites	Provides estimate of "typical" radionuclide concentration expected in waste stream in a curies/m³ basis; if concentrations are unknown, only isotopes may be listed.
TYPICAL EPA CODES APPLICABLE	MWIR or TRU generator/storage site	Identifies the applicable EPA codes for waste for as it exists at sites;.
COMMENTS	TRU waste sites	Lists comments/assumptions on the container information provided by TRU waste sites.
<u>FOOTNOTES</u>	WTWBIR	Explain data provided by TRU waste generating/storage sites and/or list assumptions made by the WTWBIR.

The WMC is located on the first page of each waste stream profile. The assignment of the WMC is based on DOE guidance document (DOE, 1993a).

For the purpose of this document, TRU waste generator/storage sites were requested to provide WMCGs for final waste forms; that is, after the sites process, treat, or repackage the waste. The WMCG is indicated on page 1 of the waste stream profile. For most waste stream profiles, the TRU waste generator/storage sites have provided estimates of the waste material parameters (e.g., an INEL waste stream profile is used for illustrative purposes in Figure 3-1). However, in some cases the TRU waste generator/storage sites were unable to provide waste material parameter values for some waste streams. This resulted in two possible changes to the overall methodology presented in this chapter:

In many cases the TRU waste generator/storage site could categorize the waste stream
profile into one of the final 11 WIPP WMCGs (Table 1-2) but could not give any waste
material parameter information. In these cases, the WTWBIR assumes the same range and
average waste material parameters for the particular WIPP waste profile. For example, if
a salt waste stream did not contain any waste material parameter information, but has been

identified by a TRU waste generator/storage site as being a salt waste form, then the volume of that waste stream was added to the total volume of all other salt waste streams.

• In a few cases, TRU waste generator/storage sites were unable to categorize a TRU waste stream into one of the final WIPP WMCGs (Table 1-2). In these cases the waste stream profile is placed in the "unknown" category. The "unknown" waste streams are documented as part of the WIPP inventory, but are not used in any of the scaling of CH-TRU waste volumes necessary to fill WIPP to its design capacity. "Unknown" wastes will have to be characterized and may require treatment prior to emplacement in WIPP.

The TRU waste generator/storage sites have identified several waste streams that are regulated under the Toxic Substances Control Act (TSCA) (i.e., containing asbestos or polychlorinated biphenyls [PCBs]). Because the concentration of the asbestos and/or PCBs is unknown, it is assumed that these waste streams cannot be accepted at WiPP under the proposed draft WiPP RCRA Part B Permit Application. These waste streams are summarized in Table 3-2 and are not included in the WTWBIR.

3.2 SITE-SPECIFIC WASTE PROFILE METHODOLOGY

Waste streams at each TRU waste generator/storage site with similar WMCs can be grouped together into WMCGs (Table 1-2) for a site-specific waste profile. The methodology for grouping waste streams from two different generator/storage sites is shown in Figure 3-2. The grouping of individual waste stream profiles into a site-specific waste profile is based on the similar physical and chemical properties of the waste streams and how that information is used in the SPM and PA models. In the example in Figure 3-2, due to their similar mechanical properties, concrete waste, glass waste, firebrick waste, and ceramic waste mainly influence the estimation of porosity and permeability in the SPM/PA calculations. Therefore, the three waste streams at DOE TRU Waste Site #1 and the two at DOE TRU Waste Site #2 can be grouped together at each site based on similar physical and chemical properties and placed into the site-specific waste profile "inorganic non-metal" waste, with the WMCG defined in Table 1-2.

A site-specific waste profile is developed at each of the TRU waste generator/storage sits for each of the WMCGs that have individual waste streams at the site. These site-specific waste profiles provide a roll-up of the waste material parameter and volume information found in the waste stream profiles for each site. Since there are 11 WMCGs, there are a maximum of 11 possible CH-TRU and 11 possible RH-TRU site-specific waste profiles at any generator/storage site; however, most sites have fewer profiles due to differences in waste segregation practices. An example site-specific waste profile is provided in Figure 3-3. Table 3-3 lists the sources of information for site-specific waste profiles. All the site-specific waste profiles for TRU waste are provided in Appendix B.

3.3 WIPP WASTE PROFILE METHODOLOGY

3.3.1 Introduction and Methodology

The WIPP waste profiles are the highest tier of information in the WTWBIR. Site-specific waste profiles with the same WMCGs are combined across the TRU waste generator/storage sites into what is defined as an overall WIPP waste profile.

Information Only

TABLE 3-2. TOXIC SUBSTANCES CONTROL ACT (TSCA) TRU WASTE

WIPP ID	WASTE STREAM NAME	ASBESTOS	PCBs
IN-W309	Absorbed Organic Liquids	No	Yes
MD-W002	Absorbed Aqueous Liquids	No	Yes
LL-T005	HEPA filters	Yes	No
MD-M001	Asbestos Debris	Yes	No
MD-T013	Leaded gloves/aprons	No	Yes
MD-T008	Uncategorized plastics/rubber debris	No	Yes
MD-T012	Uncategorized heterogeneous debris	Yes	No
RL-M005	TRU Mixed Inorganic Homogeneous Solids with Mercury	No	Yes
RL-M021	TRU Mixed Inorganic Debris PCBs with Mercury	No	Yes
RL-M022	TRU Mixed Leaded Gloves/Aprons PCBs with Mercury	No	Yes
RL-M023	TRU Mixed Organic Debris PCBs with IGN, CORR, REAC	No	Yes
RL-M024	TRU Mixed Organic Labpacks with PCBs	No	Yes
RL-T030	Non-mixed Inorganic Debris with PCBs	No	Yes

As described in Sections 3.1 and 3.2, each waste stream from each TRU waste generator/storage site is defined in a waste stream profile, then grouped by site WMCGs into site-specific waste profiles. These site-specific waste profiles are then rolled-up into WIPP waste profiles by combining identical WMCGs from all the TRU waste generator/storage sites. For example, all site-specific waste profiles for "inorganic non-metal" waste are grouped together to generate the WIPP waste profile, "inorganic non-metal" waste. The WIPP waste profiles are presented in Figures 3-4 through 3-23 at the end of this chapter.

3.3.2 WIPP Waste Profile Roll-Ups

To illustrate the methodology for grouping similar site-specific waste profiles into WIPP waste profiles, the WIPP waste profile for "inorganic non-metal" waste (exemplified in Figure 3-2) is provided in Figure 3-8. As with site-specific waste profiles, there can be a maximum of 11 possible WIPP waste profiles for CH-TRU and 11 possible WIPP waste profiles for RH-TRU

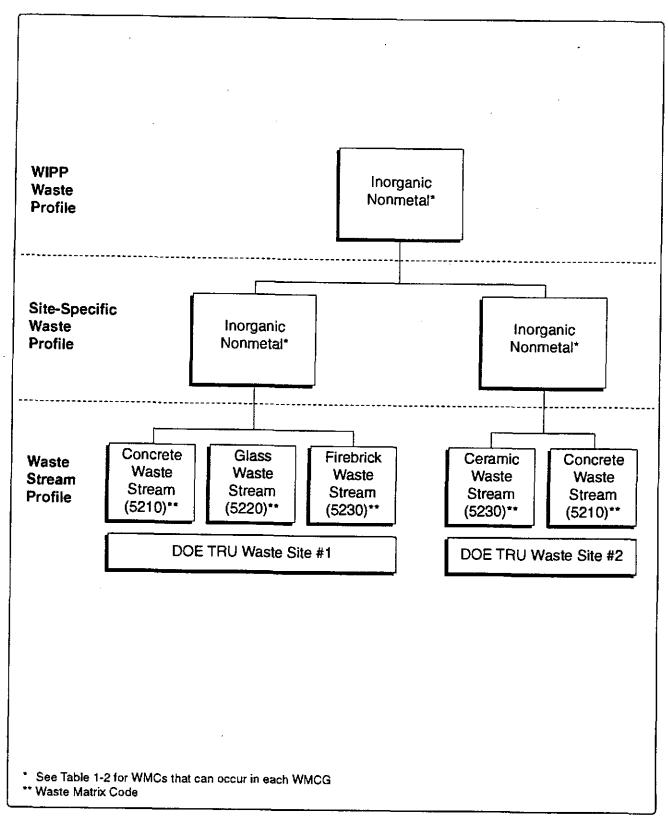


Figure 3-2. Schematic of Waste Stream Profile Methodology.

Site-Specific Contact Handled Waste Profiles

Site Name:	INEL	
Final Waste	Form:	Heterogeneous

Final Waste Form:	Heterogeneous		
Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	<u>Total per</u> <u>Stream (m3)</u>
IN-W169	4331	0	4331
IN-W170	0.44	1	1.44
IN-W171	3.6	0	3.6
IN-W172	165.57	0	165.57
IN-W186	2695.1	0	2695.1
IN-W189	8.2	0	8.2
IN-W197	632.7	0	632.7
IN-W203	71.9	0	71.9
IN-W204	3.2	0	3.2
IN-W225	6.1	0	6.1
IN-W259	58.8	0	58.8
IN-W265	47,8	0	47.8
IN-W269A	34.8	0	34.8
IN-W271	0.42	0	0.42
IN-W281	348	0	348
IN-W283	1	0	1
IN-W285	85	0	85
IN-W289	25,4	0	25.4
IN-W291	639	0	639
IN-W302	144.1	. 0	144.1
IN-W306.3	322.67	0	322.67
IN-W329	1.14	0	1.14
IN-W334	7.48	0	7.48

Figure 3-3; Example of Site Specific Waste Profile

3 - 10

Site-Specific Contact Handled Waste Profiles

Total Volume:	9649.5		9650.5
IN-W351	1.48	0	1.48
. IN-W345	14.6	0	14.6

<u>Material F</u>	Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1634.6	38.0	0.0
	Aluminum Based	38.2	1.2	0.0
	Other Metals	233.0	17.2	0.0
	Other Inorganics	1442.3	17.9	0.0
Organics	Cellulose	961.5	245.1	0.0
	Rubber	330.0	43.7	0.0
	Plastics	887,0	148.1	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils	•	144.2	0.2	0.0

Figure 3-3 (cont); Example of Site Specific Waste Profile
3-11

TABLE 3-3. SOURCES OF INFORMATION USED IN SITE-SPECIFIC WASTE PROFILES

Information Field	Source of Information	Explanation
DOE TRU Site	TRU Waste Sites	The code for the DOE site. Codes are as follows: AL - Ames Laboratory AE - Argonne National Laboratory - East AW - Argonne National Laboratory - West BC - Battelle Columbus BT - Bettis Atomic Power Laboratory ET - Energy Technology Engineering Center IN - Idaho National Engineering Laboratory IT - Inhalation Toxicology Research Institute KA - Knolls Atomic Power Laboratory - Schenectady LA - Los Alamos National Laboratory LB - Lawrence Berkeley Laboratory LL - Lawrence Livermore National Laboratory MD - Mound Plant MU - University of Missouri NT - Nevada Test Site OR - Oak Ridge National Laboratory PA - Paducah Gaseous Diffusion Plant PX - Pantex Plant RF - Rocky Flats Environmental Technology Site RL - Richland (Hanford) Site SA - Sandia National Laboratories/NM SR - Savannah River Site WV - West Valley Demonstration Project
WMCG	WTWBIR or TRU waste sites	Groups waste streams that have similar chemical and physical properties (see Table 1-2).
Waste Stream Volume	TRU waste sites	Provides estimates of retrievably stored, projected, and total volumes of TRU and mixed TRU wastes by waste stream.
Waste Material Parameters	TRU waste sites	Provides total density estimates of selected waste materials in a particular WMCG for the entire site.

waste. Table 3-4 lists the sources of information used for the WIPP waste profiles. Using volumes for all the TRU waste streams (including the mixed and non-mixed TRU waste volumes) in the WTWBID, a disposal inventory of TRU waste has been developed using the methodology described in this and the preceding sections. This inventory is presented in Table 3-5 (by WMCGs) and depicts both the anticipated and disposal inventory volumes.

TABLE 3-4.	SOURCES OF IN	FORMATION USED
11	WIPP WASTE PI	ROFILES

Information Field	Source of Information	Explanation	
Waste Matrix Code Group (WMCG)	WTWBIR or TRU waste sites	Groups waste streams that have similar chemical and physical properties (Table 1-2)	
DOE Site Volumes	TRU waste sites	Provides estimates of retrievably stored, projected, and total volumes of TRU and TRU mixed wastes by DOE site	
Waste Material Parameters	TRU waste sites	Provides weight estimates of selected waste materials in a particular WMCG for the DOE Complex	

The anticipated CH-TRU inventory volumes are the sum of the "stored" and "projected" volumes in Table 3-5. The procedure to scale to the disposal inventory is summarized below:

 The target design volume of CH-TRU waste beyond that identified by the generator/storage sites is decreased by the "unknown" waste volume (176,000 - 1700 = 176,000 [there is no significant increase due to rounding]).

The "unknown" volume of waste in Table 3-5 is subtracted from the stored inventory and from the projected inventory.

- The "unknown" waste will have to be added back into the total scaled inventory because it
 is assumed that this waste will be characterized and then shipped to WIPP.
- Applying a modified version of the formula given in Section 2.3:

$$\frac{1.76 \times 10^{5} - 7.13 \times 10^{4}}{\text{(modified design inventory)} - \text{(modified stored inventory)}} = 2.05 \text{ (scaling factor)}$$

- Multiply the CH-TRU waste projected inventory volumes by the scaling factor 2.05 for all the WMCGs, except for the "unknown" waste and add the stored volumes (which results in the numbers in the "Disposal Inventory" column of Table 3-5).
- Add the CH-TRU waste volumes in the fourth column, including the "unknown" waste, to attain the estimated WIPP disposal inventory volume).

The CH-TRU waste stream volume on a system-wide WMCG basis is increased by 42 percent to account for the difference between the anticipated inventory and the repository design limit.

Information Only

A similar methodology has been developed to scale the RH-TRU inventory. The anticipated RH-TRU inventory volumes are the sum of the "stored" and "projected" volumes in Table 3-5. The procedure to scale to the disposal inventory is summarized below:

 The target design volume of RH-TRU waste beyond that identified by the generator/storage sites is decreased by the "unknown" waste volume (7080 - 35 = 7045).

The "unknown" volume of waste in Table 3-5 is subtracted from the stored inventory and from the projected inventory.

- The "unknown" waste will have to be added back into the total scaled inventory because it
 is assumed that this waste will be characterized and then shipped to WIPP.
- Applying a modified version of the formula given in Section 2.3:

- Multiply the RH-TRU waste projected inventory volumes by the scaling factor 1.64 for all the WMCGs, except for the "unknown" waste and add the stored volumes (which results in the numbers in the "Disposal Inventory" column of Table 3-5).
- Add the RH-TRU waste volumes in the fourth column, including the "unknown" waste, to attain the estimated WIPP disposal inventory volume).

The RH-TRU waste stream volume on a system-wide WMCG basis is increased by 48 percent to account for the difference between the anticipated inventory and the repository design limit.

Table 3-5

TRANSURANIC WASTE DISPOSAL INVENTORY FOR WIPP

Contact Handled Waste

(Cubic Meters)

	(Cubic Metals)			
Waste Matrix Groups	Stored Volumes	Projected Volumes	Anticipated Volumes	WIPP Disposal Volumes
Combustible	7.1E+03	2.7E+04	3.4E+04	6.2E+04
Filter	4.3E+02	1.1E+03	1.5E+03	2.6E+03
Graphite	6.7E+02	4.3E+01	7.1E+02	7.6E+02
Heterogeneous	3.0E+04	4.6E+03	3.5E+04	3.9E+04
Inorganic Non-metal	1.2E+03	3.2E+02	1.5E+03	1.8E+03
Lead/Cadmium Metal Waste	5.6E+01	1.3E+02	1.8E+02	3.1E+02
Salt Waste	3.3E+01	6.0E+01	9.2E+01	1.5E+02
Soils	3.7E+02	4.5E+02	8.3E+02	1.3E+03
Solidified Inorganics	1.7E+04	8.0E+03	2.5E+04	3.4E+04
Solidified Organics	1.5E+03	3.0E+02	1.8E+03	2.1E+03
Uncategorized Metal	1.2E+04	8.6E+03	2.1E+04	3.0E+04
Unknown	1.7E+03	0.0E+00	1.7E+03	1.7E+03
Total CH Volumes	7.3E+04	5.1E+04	1.2E+05	1.8E+05
Remote Handled Waste				
Combustible	1.5E+01	3.2E+00	1.8E+01	2.0E+01
Filter	8.9E-01	2.1E+00	3.0E+00	4.3E+00
Heterogeneous	4.4E+02	3.3E+03	3.8E+03	5.9E+03
Lead/Cadmium Metal Waste	0.0E+00	6.0E+00	6.0E+00	9.8E+00
Salt Waste	0.0E+00	2.8E+00	2.8E+00	4.6E+00
Solidified Inorganics	6.1E+02	1.7E+02	7.9E+02	9.0E+02
Uncategorized Metal	8.8E+01	8.6E+01	1.7E+02	2.3E+02
Unknown	1.1E+01	2.4E+01	3.5E+01	2.5E+02 3.5E+01
Total RH Volumes	1.2E+03	3.6E+03	4.8E+03	7.1E+03
Total TRU Waste Volumes	7.4E+04	5.4E+04	1.3E+05	1.8E+05

Final Waste Form: Combustible

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	<u>Total (m3)</u>
INEL .	670.90	0.00	670.90
LANL	1768.33	2464.60	4232.93
MOUND	5.61	0.00	5.61
HANFORD	526.48	12269.03	12795.51
LLNL	48.88	372.32	421.20
SRS	4066.80	11962.50	16029.30
Total Volume	7087.00	27068.45	34155.45

				112/110/
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	1048.3	41.8	0.0
	Aluminum Based	1048.3	2.5	0.0
	Other Metals	474.5	3.0	0.0
	Other Inorganics	200.0	2.6	0.0
Organics	Cellulose	961.5	288,0	0.0
	Rubber	629.0	33.0	0.0
	Plastics	850.5	90.0	0.0
Solidified Ma	terials Inorganic	100.0	0.1	0.0
	Organic	100.0	0.1	0.0
Soils		192.7	2.1	0.0

Figure 3 - 4
WIPP CH-TRU Waste Profile for Final Waste Form Combustible

Final Waste Form: Filter

Total Volume	427.52	1087.59	1515.11
RFP	103.96	1087.59	1191.55
INEL	323.56	0.00	323.56
Site	Retrievably Stored (m3)	Projected (m3)	Total (m3)

				•
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	595.3	6.7	0.0
	Aluminum Based	440.7	11.9	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	500.0	72.9	0.0
Organics	Cellulose	496.1	15.9	0.0
	Rubber	11.3	0.6	0.0
	Plastics	596.6	21.2	0.0
Solidified Ma	terials Inorganic	427.6	42.6	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 5
WIPP CH-TRU Waste Profile for Final Waste Form Filter

Solidified Materials

Soils

Inorganic

Organic

0.0

0.0

0.0

WIPP Contact Handled Waste Profiles

Final Waste Form: Graphite

Total Volume	668.76	43.40	712.16
RFP	18.06	43.40	61.46
INEL .	650.70	0.00	650.70
Site	Retrievably Stored (m3)	Projected (m3)	Total (m3)

Material Parameters (Kg/m3) **Maximum Average** <u>Minimum</u> Inorganics Iron Based 17.3 0.0 Aluminum Based 0.0 0.0 0.0 Other Metals 0.3 0.0 0.0 Other Inorganics 468.0 237.1 16.9 **Organics** Cellulose 9.8 3.8 0.0 Rubber 0.0 0.0 0.0 **Plastics** 51.4 4.3 0.0

0.0

0.0

0.0

0.0

0.0

0.0

Figure 3 - 6
WIPP CH-TRU Waste Profile for Final Waste Form Graphite

Final Waste Form: Heterogeneous

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LBL	0.84	4.42	5.26
INEL	9649.50	1.00	9650.50
ORNL	672.98	263.90	936.88
HANFORD	8568.55	827.16	9395.71
NTS	619.50	0.00	619.50
KAPL	2.40	0.00	2.40
MOUND	0.42	0.00	0.42
BT	0.00	123.82	123,82
ETEC	1.66	5.20	6.86
PANTEX	0.62	0.00	0.86
RFP	312.86	804.58	
SRS	10132.20	2563.60	1117.44
SNL/NM	8.04	7.00	12695.80
ANL-W	0.00	3.36	15.04
MU	0.06	1.60	3.36
	0.00		1.66
Total Volume	29969.63	4605.64	34575.27

Figure 3 - 7
WIPP CH-TRU Waste Profile for Final Waste Form Heterogeneous

			eriai Parameters (Kg/m3	<u>1</u>
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	1716.4	168.4	0,0
	Aluminum Based	512.0	30.5	0.0
	Other Metals	850.0	5.0	0.0
	Other Inorganics	2100.0	16.9	0.0
Organics	Cellulose	961.5	301.7	0.0
	Rubber	681.8	39.7	0.0
	Plastics	887.0	123.6	0.0
Solidified Ma	terials Inorganic	177.0	2.9	0.0
	Organic	400.0	0.2	0.0
Soils		865,8	2.7	0.0

Figure 3 - 7
WIPP CH-TRU Waste Profile for Final Waste Form Heterogeneous

Final Waste Form: Inorganic Non-metal

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
INEL	1052.89	0.00	1052.89
RFP	110.68	318.68	429.36
Total Volume	1163.57	318.68	1482.25

				<u> </u>
		<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	23.8	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
•	Other Metals	13.1	0.2	0.0
	Other Inorganics	1250.0	214.3	0.0
Organics	Cellulose	850.0	41.9	0.0
	Rubber	8.7	0.4	0.0
	Plastics	69.9	13.6	0.0
Solidified Ma	terials Inorganic	69.9	3.7	0.0
	Organic	8.3	0.0	0.0
Soils		865.8	0.4	0.0

Figure 3 - 8
WIPP CH-TRU Waste Profile for Final Waste Form Inorganic Non-metal

Final Waste Form: Lead/Cadmium Metal Waste

Site	Retrievably Stored (m3)	Projected (m3)	Total (m3)
ANLE	1.10	0.00	1.10
ANLW	0.02	2.48	2.50
ETEC	0.21	0.00	0.21
RFP	51.87	124.18	176.05
HANFORD	3.13	0.29	3.42
Total Volume	56.33	126.95	183.28

			· · · · · · · · · · · · · · · · · · ·	•
		Maximum	Average	<u>Minimum</u>
Inorganics	Iron Based	256.1	0.6	0.0
	Aluminum Based	27.8	0.1	0.0
	Other Metals	1438.3	45.3	0.0
	Other Inorganics	370.1	166.3	0.0
Organics	Cellulose	264.0	7.8	0.0
	Rubber	217.3	98.5	0.0
	Plastics	86.7	15.4	0.0
Solidified Ma	terials Inorganic	237.0	2.5	0.0
	Organic	0.0	0.0	0.0
Soils		77.0	0.4	0.0

Figure 3 - 9
WIPP CH-TRU Waste Profile for Final Waste Form Lead/Cadmium Metal Waste

Final Waste Form: Salt Waste

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RFP	9.45	56.60	66.05
INEL	22.91	0.00	22.91
LLNL	0.62	2.91	3.54
Total Volume	32.98	59.51	92.50

Material	Parameters	(Kg/m3)

		-		
	•	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	100.0	20.1	0.0
	Aluminum Based	80.0	0.2	0.0
	Other Metals	212.0	8.4	0.0
	Other Inorganics	719.1	239.2	2.9
Organics	Cellulose	50.0	1.0	0.0
	Rubber	20.0	0.0	0.0
	Plastics	100.0	1.9	0.0
Solidified Ma	terials Inorganic	10.0	0.0	0.0
	Organic	10.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 10
WIPP CH-TRU Waste Profile for Final Waste Form Salt Waste

Final Waste Form: Soils

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
HANFORD	111.69	309.27	420.96
INEL	3.80	0.00	3.80
MOUND	146.88	0,00	146.88
LANL	109.37	144.60	253.97
Total Volume	371.74	453.87	825.61

		· · · · · · · · · · · · · · · · · · ·		
		<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	38.8	1.4	0.0
•	Aluminum Based	38.8	0.3	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	33.9	0.0	0.0
Organics	Cellulose	67.3	7.2	0.0
	Rubber	210.4	1.8	0.0
	Plastics	132.2	32.9	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
·	Organic	0.0	0.0	0.0
Soils		1600.0	644.4	17.8

Figure 3 - 11 WIPP CH-TRU Waste Profile for Final Waste Form Soils

Final Waste Form: Solidified Inorganics

C:4-	Retrievably		
<u>Site</u>	Stored (m3)	Projected (m3)	Total (m3)
SRS	0.04	0.00	0.04
ANL-E	23.05	1.12	24.17
RFP	228.63	2988.11	3216.74
PA	3.45	0.00	3.45
ORNL	110.00	0.00	110.00
LANL	4848.38	2059.03	6907.41
MOUND	7.28	0.00	7.28
HANFORD	1.46	2924.76	2926.22
INEL	12164.28	0.00	12164.28
LLNL	13.30	66,15	79.45
AMES LAB	0.00	0.10	0.10
Total Volume	17399.87	8039.27	25439.14

			Material Parameters	<u>Kg/m3)</u>
	•	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	153.9	9.5	0.0
	Aluminum Based	153.9	1.1	0.0
	Other Metals	20.0	0.4	0,0
	Other Inorganics	1122.0	106.4	0.0
Organics	Cellulose	100.0	0.9	0.0
	Rubber	20.0	0.8	0.0
	Plastics	100.0	3.4	0.0
Solidified Ma	terials Inorganic	2180.0	634.7	0.0
	Organic	1357.0	12.8	0.0
Soils		0.0	0.0	0.0

Figure 3 - 12
WIPP CH-TRU Waste Profile for Final Waste Form Solidified Inorganics

Final Waste Form: Solidified Organics

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RFP	132.80	48.82	181.62
INEL	912.60	0.00	912.60
ANL-E	0.03	0.00	0.03
SRS	404.85	240.70	645.55
HANFORD	2.17	15.25	17.42
Total Volume	1452.45	304.77	1757.21

			Material Parameters (<u>Kg/m3)</u>
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	728.3	340.8	0.0
Organics	Cellulose	42.9	0.2	0.0
	Rubber	0.0	0.0	0.0
	Plastics	121.1	3.1	0.0
Solidified Ma	terials Inorganic	528.8	34.4	. 0.0
	Organic	1072.0	398.4	0.0

0.0

Figure 3 - 13
WIPP CH-TRU Waste Profile for Final Waste Form Solidified Organics

0.0

0.0

Soils

Final Waste Form: Uncategorized Metal

<u>Site</u>	Retrievably Stored (m3)	Projected (m3)	Total (m3)
INEL	7564.09	0.00	7564.09
ANL-E	4.96	0.56	5.52
MOUND	102.28	0.00	102.28
RFP	164.82	429.50	594.32
LANL	4134.80	3006.17	7140.97
LLNL	144.33	247.00	391.33
HANFORD	103.35	4890.95	4994.30
Total Volume	12218.62	8574.18	20792.80

Material	Parameters	(Kg/m3)
7.7	* ar anicicis	1127/11/21

•				
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	2096.0	129.1	0.0
	Aluminum Based	915.3	12.7	0.0
	Other Metals	1057.7	146.5	0.0
	Other Inorganics	812.5	11.2	0.0
Organics	Cellulose	500.0	14.0	0.0
	Rubber	245.6	1.0	0.0
	Plastics	750.8	13.7	0.0
Solidified Ma	terials Inorganic	300.0	0.0	0.0
	Organic	300.0	0.0	0.0
Soils		48.7	0.2	0.0

Figure 3 - 14 WIPP CH-TRU Waste Profile for Final Waste Form Uncategorized Metal

Final Waste Form: Unknown

<u>Site</u> INEL	Retrievably Stored (m3) 1655.91	Projected (m3)	<u>Total (m3)</u> 1655.91
Total Volume	1655.91	0.00	1655.91

		The state of the s		
		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
Ai	luminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
01	ther Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materials	als Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 15
WIPP CH-TRU Waste Profile for Final Waste Form Unknown

WIPP Remote Handled Waste Profiles

Final Waste Form: Combustible

<u>Site</u> LANL	Retrievably Stored (m3) 14.84	Projected (m3) 3.16	<u>Total (m3)</u> 18.00
Total Volume	14.84	3.16	18.00

			Material Parameters	(Kg/m3)
	<u>Materials</u>	<u>Maximum</u>	<u> Ачегаде</u>	<u>Minimum</u>
Inorganics	Iron Based	265.2	257.7	254.0
	Aluminum Based	0.4	0.4	0.4
	Other Metals	89.7	18.8	18.8
	Other Inorganics	6.8	6.8	6,8
Organics	Cellulose	68.7	64.0	59.2
	Rubber	1.2	1.1	1.0
	Plastics	5.7	5.3	4.9
Solidified Mat	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 16
WIPP RH-TRU Waste Profile for Final Waste Form Combustible

3 - 29

Final Waste Form: Filter

<u>Site</u> ANL-W	Retrievably Stored (m3) 0.89	Projected (m3) 2.09	<u>Total (m3)</u> 2.98
Total Volume	0.89	2.09	2.98

		_	Material Parameters (Kg/	<u>m3)</u>
	<u>Materials</u>	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	241.2	232.5	214.9
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	8.8	8.8	8.8
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 17
WIPP RH-TRU Waste Profile for Final Waste Form Filter
3 - 30

Final Waste Form: Heterogeneous

<u>Site</u>	Retrievably	Decimated (m.2)	
INEL .	Stored (m3)	Projected (m3)	Total (m3)
INEL	13.63	2.80	16.43
ANL-W	0.59	0.08	0.67
BCLDP	0.00	71.00	71.00
BT	0.00	1.56	1.56
HANFORD	33.16	2973.71	3006.87
SRS	0.00	63.92	63.92
KAPL	11.23	25.23	36.46
ORNL	382,81	182.70	565.51
Total Volume	441.43	3321.00	3762.42

<u> Material</u>	<u>Parameter</u>	s (Kg/m3)

				<u> </u>
	<u>Materials</u>	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1716.4	108.5	0.0
	Aluminum Based	263.0	23.0	0.0
	Other Metals	500.0	0.2	0.0
	Other Inorganics	2000.0	38.6	0.0
Organics	Cellulose	961.5	34.3	0.0
	Rubber	163.5	5.9	0.0
	Plastics	550.0	30.7	0.0
Solidified Ma	terials Inorganic	15.0	0.1	0.0
	Organic	3.0	0.0	0.0
Soils		193.0	2.3	0.0

Figure 3 - 18 WIPP RH-TRU Waste Profile for Final Waste Form Heterogeneous

Final Waste Form: Lead/Cadmium Metal Waste

Total Volume	0.00	5.96	5.96
INEL	0.00	5.60	5.60
ANL-W	0.00	0.36	0.36
Site	Retrievably Stored (m3)	Projected (m3)	Total (m3)

			Material Parameters	(Kg/m3)
	Materials	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	256.1	12.0	0.0
	Aluminum Based	27.8	1.3	0.0
	Other Metals	109.6	43.6	0.0
	Other Inorganics	754.8	165.7	1.2
Organics	Cellulose	45.3	7.7	0.0
	Rubber	190.4	92.3	0.0
	Plastics	67.6	15.1	0.0
Solidified Mate	rials Inorganic	619.2	5.9	0.0
	Organic	0.0	0.0	0.0
Soils		1.2	0.4	0.0

Figure 3 - 19
WIPP RH-TRU Waste Profile for Final Waste Form Lead/Cadmium Metal Waste

Final Waste Form: Salt Waste

<u>Site</u> INEL	Retrievably Stored (m3) 0.00	Projected (m3) 2.80	Total (m3) 2.80
Total Volume	0.00	2.80	2.80

		_	Material Parameters (<u>Kg/m3)</u>
	<u>Materials</u>	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	28.6	20.1	3.7
	Aluminum Based	3.1	0.2	0.0
-	Other Metals	16.9	8.4	1.6
	Other Inorganics	591.1	239.2	106.3
Organics	Cellulose	3.8	1.0	0.0
	Rubber	0.8	0.0	0.0
	Plastics	5.2	1.9	1.1
Solidified Mar	terials Inorganic	0.4	0.0	0.0
	Organic	0.4	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 20
WIPP RH-TRU Waste Profile for Final Waste Form Salt Waste

Final Waste Form: Solidified Inorganics

Site INEL	Retrievably Stored (m3) 2.10	Projected (m3)	Total (m3) 2.10
ORNL	611.00	174.00	785.00
Total Volume	613.10	174.00	787.10

			Material Parameters	<u>(Kg/m3)</u>
	<u>Materials</u>	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
•	Other Metals	0.0	0.0	0.0
	Other Inorganics	528.8	1.1	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Ma	terials Inorganic	1057.7	792.2	173.1
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 2I
WIPP RH-TRU Waste Profile for Final Waste Form Solidified Inorganics
3 - 34

Final Waste Form: Uncategorized Metal

Site INEL	Retrievably Stored (m3) 4.11	Projected (m3) 5.60	Total (m3) 9.71
LANL	76.46	79.50	155.96
ANL-W	7.17	1.36	8.53
Total Volume	87.74	86.46	174.20

			Material Parameters	(Kg/m3)
	<u>Materials</u>	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	380.3	226.8	0.0
	Aluminum Based	141.4	2.2	0.0
	Other Metals	913.5	279.0	0.0
	Other Inorganics	34.6	7.7	0.0
Organics	Cellulose	68.7	1.8	0.0
	Rubber	18.0	0.1	0.0
	Plastics	82.1	1.6	0.0
Solidified Ma	terials Inorganic	3.7	0.0	0.0
	Organic	3.7	0.0	0.0
Soils		2.9	0.0	0.0

Figure 3 - 22
WIPP RH-TRU Waste Profile for Final Waste Form Uncategorized Metal

3 - 35

Final Waste Form: Unknown

<u>Site</u>	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
INEL	11.13	0.00	11.13
ANLW	0.00	23.74	23.74
Total Volume	11.13	23.74	34.87

			Material Parameters (Kg/m3	<u>)</u>
	Materials	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
•	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	. 0.0
Solidified Mat	erials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Figure 3 - 23 WIPP RH-TRU Waste Profile for Final Waste Form Unknown

CHAPTER 4

4. WIPP DISPOSAL RADIONUCLIDE INVENTORY

4.1 INTRODUCTION

The TRU waste generator/storage sites were requested in the Revision 1 data call to submit estimates of the radionuclide inventory on a waste stream basis. Most sites complied with the data request, but many waste streams submitted to the WTWBID did not contain this information. Due to the short timeframe given the TRU waste generator/storage sites for the Revision 1 datacall, sufficient time was not available to denve the data to support each waste stream. The radionuclide data provided on a waste stream basis in Appendix A of the WTWBIR is currently for information purposes only.

4.2 METHODOLOGY

Since the waste-stream specific radionuclide data is insufficient to derive a radionuclide inventory, the site-wide radionuclide inventories reported in the Integrated Data Base (IDB) were used. The most recent IDB (DOE, 1994b) will be used which contains unpublished radionuclide data by site for stored TRU wastes as of December 31, 1993 (Appendix I).

There are still some volume differences at a TRU waste generator/storage site level between the IDB and the WTWBIR (see Section 1.5.4). Closure between the two data sets should be achieved with the Revision 2 WTWBIR data call and publication of Revision 2 of the WTWBIR. Therefore, the volume data from the IDB database (DOE, 1994b) has been used to make the estimates of stored and projected volumes used in deriving the radionuclide information. By using the volume and radionuclide data from the IDB database, there exists one internally consistent set of data for estimating the radionuclide inventory.

IDB radionuclide data is only available for stored TRU waste. Therefore, this historical radionuclide data will also be used to make estimates of the projected radionuclide inventories and for any necessary scaling. Until estimates are available from the TRU waste generator/storage sites on projected radionuclide inventories, the IDB represents the only comprehensive database.

The WIPP radionuclide disposal inventory for CH-TRU waste has been calculated as follows:

- The stored and projected volumes from the IDB (DOE, 1994b) data have been used for the volume estimates and are included in Table 4–1.
- The radionuclide data included as part of the data submitted for the IDB (DOE, 1994b) represents the <u>stored waste only</u>. Appendix E provides the radionuclide inventory by TRU waste site for the stored inventories listed in Table 4–1. These numbers have been decayed to December 1993, using the Radioactive Decay and Accumulation Code (RADAC) System (DOE, 1994d).
- For a particular site and radionuclide, divide the reported inventory for that radionuclide from the IDB (Appendix E) by the volume of stored waste at that site from the IDB (Table 4–1).
 This results in a curies/m³ estimate for all reported radionuclides at each site.
- The projected volumes of waste are assumed to have the same radionuclide concentrations on a cubic meter basis as the stored waste at each site.

- Since Bettis Atomic Power Laboratory (BT) and Ames Laboratory (AL) reported no existing CH-TRU waste volume inventory, there is no radionuclide inventory for these sites in the IDB. The projected volumes from these two sites, BT (123.5 m³), and AL (0.09 m³) have been grouped with the INEL projected CH-TRU waste and assumed to have the same isotopic composition.
- The total volume of projected CH-TRU waste from the IDB in Table 4–1, if added to the stored waste volumes from the IDB, exceeds the capacity of WIPP (176,000 m³)
- To calculate the radionuclide inventory the total projected CH-TRU waste is adjusted as follows:
 - Maximum design capacity for CH-TRU = 176,000 m³
 - Stored CH-TRU volume = 104,000 m³
 - Allowable projected volume = $(176,000 104,000) \times 10^5 \text{ m}^3 = 72,000 \text{ m}^3$
 - Projected waste adjustment factor =

Allowable projected volume Projected volume reported by sites
$$= \frac{72,000 \text{ m}^3}{64,600 \text{ m}^3} = 1.11$$

• Therefore, the projected radionuclide inventory for each radionuclide at each site is calculated as follows:

The building of the WIPP radionuclide <u>disposal inventory for RH- TRU waste</u> has been calculated similar to the CH-TRU radionuclide inventory, with the exception of the following:

- Three RH-TRU waste streams that are projected waste streams only were submitted with no accompanying isotopic information: RL-M201, RL-T202, and SR-T001. THESE WASTE STREAMS, WHICH ACCOUNT FOR THE PROJECTED HANFORD AND SRS RH-TRU WASTE VOLUMES, HAVE BEEN OMITTED FROM THE RADIONUCLIDE INVENTORY CALCULATIONS due to the lack of radionuclide information. The RH-TRU projected volumes in the Draft Revision 10 IDB (Appendix I) include both the reported volumes in the two projected Hanford RH-TRU waste streams and the "suspect" volumes reported in the comment field of the two Hanford waste streams (RL-M201 and RL-T202 Appendix A).
- BT did not report stored RH-TRU inventories and the projected inventories have been omitted because no radionuclide information is available.
- The sum of the stored and projected volumes of RH-TRU waste from the TRU waste sites is less than the design capacity of WIPP (7080 m³) for RH-TRU waste.

- To calculate the radionuclide inventory the total projected RH-TRU waste is adjusted as follows:
 - Design capacity for RH-TRU = 7080 m³
 - Stored RH-TRU volume = 941 m³
 - Therefore the needed projected waste volume is:

$$7080 \text{ m}^3 - 941 \text{ m}^3 = 6139 \text{ m}^3$$

- The projected RH-TRU waste volume (excluding the 2 RL and SR waste streams) is 957 m³
- The projected waste volume must be increase by the following factor to "scale" to fill the RH-TRU design capacity:

$$6139 \text{ m}^3 = 6.4^\circ$$

• Therefore, the projected radionuclide inventory for each radionuclide at each site is calculated as follows:

Table 4-2 represents the <u>total</u> radionuclide inventory for CH-TRU and RH-TRU wastes as derived from the Revision 10 IDB database, including any adjustment needed to the projected volumes of waste in order to fill the WIPP to the maximum CH-TRU and RH-TRU design limit.

A comparison of the disposal radionuclide inventories in Revision 0 and in Revision 1 of the WTWBIR shows large changes. Listed below are the dominant reasons for these changes:

- The total radionuclide inventory for CH-TRU waste is much higher than that included in the Revision 0 of the WTWBIR. This is primarily due to two changes:
 - The SR has reported a large volume of CH-TRU projected waste in the IDB (≈62,000 m³), which was previously reported as "unknown." With the historically high Pu- 238 content, this considerably raises the total curies in the CH-TRU inventory.
 - During the calculations for the Revision 0 inventory, the "projected" part (1994–2022) of the CH-TRU radionuclide inventory was inadvertently left out of the totals reported, causing the inventory numbers to be low (~25%). This has been corrected in this inventory definition.

- The total radionuclide inventory for RH-TRU waste is also much higher than that included in the Revision 0 of the WTWBIR. During calculation of the RH-TRU inventory the volume defined by the sites included more waste than the repository could hold. During those calculations, a misunderstanding occurred about the fact that the IDB radionuclide numbers only covered the "stored" part of the inventory. This caused the Revision 0 WTWBIR reported RH-TRU inventory to be low by a factor of approximately 3 4. This has been corrected in this inventory definition.
- Oak Ridge National Laboratory (ORNL) has reported a very conservative inventory for U-235 in RH-TRU waste (≈367 curies before scaling). In order to provide a less conservative estimate of the U-235 inventory, an anticipated transportation requirement of the RH-TRU cask has been imposed.

The new estimate for U-235 in ORNL RH-TRU waste has been calculated from the anticipated initial transportation limit in the RH-TRU cask of 325 grams (DOE, 1991) of Pu-239 fissile gram equivalent (FGE). Assuming a 1:1 equivalence of U-235 FGE (as required by the TRUPACT-II SARP; Nuclear Packaging, 1991) to Pu-239, this provides a bounding limit of 325 grams of U-235/canister X 7955 canisters x 2.19x10⁻⁶ curies/gram = 5.66 curies of U-235 in RH-TRU waste inventory. This number has been substituted in Table 4-2 to replace the overly conservative data reported by ORNL.

Table 4-1. CH-TRU and RH-TRU IDB Waste Inventories

CH-TRU Site	Stored IDB-ORNL (m³)	Projected IDB-ORNL (m³)
AE	29.1	180.0
AL	0.0	0.06
BT	0.0	123.5
ET	1.9	10.4
∥ iN¹	64774.0	0.0
KA	0.0	0.0
LA	10810.9	14475.0
LB	0.9	2.7
LL	235.0	2442.3
∥ MD	11.9	0.0
MU	0.1	0.0
NT	607.1	0.0
OR	2015.2	654.7
PA	4.3	0.0
PX	0.6	0.0
RF	1040.0	3765.4
RL ²	15608.9	29198.0
SA	0.9	36.0
SR ⁴	8925.9	13700.0
Sum CH-TRU	104066.7	64588.06
RH-TRU Site	Stored IDB-ORNL (m ³)	Projected IDB-ORNL (m ³)
AE	1.7	45.9
BT	0.0	1.54
IN .	79.8	162.0
KA	2.4	25.0
LA	91.3	280.0
OR ·	563.9	442.3
RL	201.0	41232.0*
SA	0.9	7.0*
SR⁴	0.0	35.9*
Sum RH-TRU	941.0 ³	956.74

- * Excluded from the IDB-based RH-TRU radionuclide inventory rollups because no radionuclide information was submitted.
- 1. 40% of this stored inventory assumed to be low-level waste.
- 2. 50% of this stored inventory assumed to be low-level waste.
- 3. Does not include 5.3 m³ of RH-TRU at NTS which is anticipated to be CH-TRU after repackaging.
- 4. The IDB volumes for SRS projected CH-TRU and RH-TRU waste have been corrected since issuance of the Draft Revision 10 IDB (Appendix I).

Table 4-2. Disposal Radionuclide Inventory

Nuclide	Total CH	Total RH
AC-225	2.03E+00	3.28E-01
AC-227	6.55E-01	1.52E-02
AC-228	5.27E-01	4.08E-03
AG-109M	4.85E+01	NR
AG-110	5.61E-06	1.07E-05
AG-110M	4.21E-04	8.06E-04
AM-241	2.23E+05	5.30E+02
AM-242	4.93E-02	NR
AM-242M	4.96E-02	NR
AM-243	2.94E+01	1.22E-02
AM-245	9.07E-09	2.52E-14
AT-217	2.03E+00	3.28E-01
BA-137M	5.03E+03	3.10E+05
BI-210	1.01E+00	4.09E-11
BI-211	6.57E-01	1.46E-02
BI-212	2.77E+01	9.03E+00
BI-213	2.03E+00	3.28E-01
BI-214	5.84E+00	7.23E-10
BK-249	6.25E-04	1.74E-09
BK-250	2.35E-06	NR
C-14	1.83E+01	1.51E+02
CD-109	4.85E+01	NR
CD-113M	4.65E-05	2.36E-05
CE-144	8.22E+01	5.58E+02
CF-249	1.56E+00	8.11E-02
CF-250	3.54E-01	NR

Table 4-2. Disposal Radionuclide Inventory (continued)

Nuclide	Total CH	Total RH
CF-251	3.93E-03	NR
CF-252	1.85E+02	5.11E+01
CM-242	1.48E-02	NR
CM-243	1.33E+00	2.01E+03
CM-244	5.40E+03	1.07E+04
CM-245	5.16E+01	1.32E-05
CM-246	1.10E-01	NR
CM-247	2.98E-09	NR
CM-248	5.06E-02	2.34E-03
CO-58	5.50E-05	7.92E-07
CO-60	1.53E+02	1.08E+04
CR-51	NR	2.54E-31
CS-134	5.88E+00	2.15E+03
CS-135	7.90E-03	4.58E-03
CS-137	5.32E+03	3.28E+05
ES-254	2.35E-06	NR
EU-150	3.65E-05	NR
EU-152	7.41E+00	5.28E+04
EU-154	3.05E+01	2.76E+04
EU-155	4.14E+01	6.78E+03
FE-55	3.296E-05	1.44E+01
FE-59	1.96E-02	4.04E-19
FR-221	2.03E+00	3.28E-01
FR-223	9.04E-03	2.10E-04
H-3	9.64E-01	8.23E+01
I-129	1.28E-09	NR

Table 4-2. Disposal Radionuclide Inventory (continued)

KR-85 2.24E-01 9.58E+01 MN-54 1.12E-02 2.76E+00 NB-95 4.96E-01 9.90E+00 NB-95M 1.66E-03 3.41E-02 NI-59 3.38E-03 NR NI-63 4.19E-01 5.03E+01 NP-237 8.82E+01 1.18E-02 NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04 PM-147 1.26E+03 4.10E+03	Nuclide	Total CH	Total RH
NB-95 4.96E-01 9.90E+00 NB-95M 1.66E-03 3.41E-02 NI-59 3.38E-03 NR NI-63 4.19E-01 5.03E+01 NP-237 8.82E+01 1.18E-02 NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-231 4.08E-03 1.78E-01 PA-234 2.44E-02 1.70E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	KR-85	2.24E-01	9.58E+01
NB-95M 1.66E-03 3.41E-02 NI-59 3.38E-03 NR NI-63 4.19E-01 5.03E+01 NP-237 8.82E+01 1.18E-02 NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	MN-54	1.12E-02	2.76E+00
NI-59 3.38E-03 NR NI-63 4.19E-01 5.03E+01 NP-237 8.82E+01 1.18E-02 NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NB-95	4.96E-01	9.90E+00
NI-63	NB-95M	1.66E-03	3.41E-02
NP-237 8.82E+01 1.18E-02 NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NI-59	3.38E-03	NR
NP-238 2.48E-04 NR NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NI-63	4.19E-01	5.03E+01
NP-239 2.94E+01 1.22E-02 NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NP-237	8.82E+01	1.18E-02
NP-240 1.10E-09 1.78E-13 NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NP-238	2.48E-04	NR
NP-240M 1.00E-06 1.62E-10 PA-231 4.08E-03 1.78E-01 PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NP-239	2.94E+01	1.22E-02
PA-231	NP-240	1.10E-09	1.78É-13
PA-233 3.32E+01 1.18E-02 PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	NP-240M	1.00E-06	1.62E-10
PA-234 2.44E-02 1.70E-02 PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PA-231	4.08E-03	1.78E-01
PA-234M 1.88E+01 1.31E+01 PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PA-233	3.32E+01	1.18E-02
PB-209 2.03E+00 3.28E-01 PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PA-234	2.44E-02	1.70E-02
PB-210 1.01E+00 4.09E-11 PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PA-234M	1.88E+01	1.31E+01
PB-211 6.57E-01 1.46E-02 PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PB-209	2.03E+00	3.28E-01
PB-212 2.77E+01 9.03E+00 PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PB-210	1.01E+00	4.09E-11
PB-214 5.84E+00 7.23E-10 PD-107 1.17E-03 6.77E-04	PB-211	6.57E-01	1.46E-02
PD-107 1.17E-03 6.77E-04	PB-212	2.77E+01	9.03E+00
5117201	PB-214	5.84E+00	7.23E-10
PM-147 1.26E+03 4.10E+03	PD-107	1.17E-03	6.77E-04
	PM-147	1.26E+03	4.10E+03
PO-210 8.92E-01 3.05E-11	PO-210	8.92E-01	3.05E-11
PO-211 1.79E-03 3.98E-05	PO-211	1.79E-03	3.98E-05
PO-212 1.78E+01 5.78E+00	PO-212	1.78E+01	5.78E+00
PO-213 1.99E+00 3.21E-01	PO-213	1.99E+00	3.21E-01

Table 4-2. Disposal Radionuclide Inventory (continued)

Nuclide	Total CH	Total RH
PO-214	5.84E+00	7.23E-10
PO-215	6.57E-01	1.46E-02
PO-216	2.77E+01	9.03E+00
PO-218	5.84E+00	7.23E-10
PR-144	8.22E+01	5.58E+02
PU-236	1.69E-02	NR
PU-238	1.89E+06	3.53E+03
PU-239	3.85E+05	6.41E+03
PU-240	7.22E+04	1.74E+02
PU-241	1.01E+06	9.06E+02
PU-242	1.27E+03	1.48E-02
PU-243	2.98E-09	NR
PU-244	1.00E-06	1.62E-10
RA-223	6.57E-01	1.46E-02
RA-224	2.77E+01	9.03E+00
RA-225	2.04E+00	3.31E-01
RA-226	5.84E+00	7.23E-10
RA-228	5.27E-01	4.08E-03
RH-106	4.02E+01	8.42E+02
RN-219	6.57E-01	1.46E-02
RN-220	2.77E+01	9.03E+00
RN-222	5.84E+00	7.23E-10
RU-106	4.02E+01	8.42E+02
SB-125	1.58E+01	2.46E+03
SB-126	2.13E-03	1.23E-03
SB-126M .	1.52E-02	8.80E-03

Table 4-2. Disposal Radionuclide Inventory (continued)

Nuclide	Total CH	Total RH
SE-79	6.86E-03	3.97E-03
SM-151	2.50E+01	1.42E+01
SN-119M	6.80E-03	1.37E-02
SN-121M	4.82E-01	2.69E-01
SN-126	1.52E-02	8.80E-03
SR-90	4.07E+03	6.68E+05
TA-182	NR	1.72E-04
TC-99	2.46E+01	2.28E-01
TE-125M	6.55E-04	1.01E+03
TE-127	3.07E-02	1.13E-01
TE-127M	3.15E-02	1.15E-01
TH-227	6.56E-01	1.48E-02
TH-228	2.77E+01	9.04E+00
TH-229	2.05E+00	3.36E-01
TH-230	4.90E-02	8.79E-07
TH-231	2.88E+00	2.21E+03
TH-232	6.07E-01	7.09E-03
TH-234	1.88E+01	1.31E+01
TL-207	6.56E-01	1.45E-02
TL-208	9.96E+00	3.24E+00
TL-209	4.39E-02	7.08E-03
TL-210	1.23E-03	1.52E-13
U-232	2.63E+01	1.16E+01
U-233	1.38E+03	8.57E+02
U-234	2.50E+02	4.18E-02
U-235	2.88E+00	5.66E+00

Table 4-2. Disposal Radionuclide Inventory (continued)

Nuclide	Total CH	Total RH
U-236	1.34E-01	4.11E-05
U-237	2.47E+01	2.22E-02
U-238	1.88E+01	1.31E+01
U-240	1.00E-06	1.62E-10
Y-90	4.07E+03	6.68E+05
ZN-65	1.21E-08	NR
ZR-93	8.87E-02	5.14E-02
ZR-95	2.24E-01	4.60E+00
Total	3.60E+06	2.11E+06

CHAPTER 5

5. WASTE MATERIAL PARAMETERS

5.1 INTRODUCTION

Some waste materials that occur in TRU waste may degrade over the 10,000-year regulatory period and estimates of masses/volume are needed for performance modeling (Table 1-1). Some of these waste materials may produce gas by either chemical, microbial, or radiolytic processes (WIPP PA, 1993). These types of processes need to be evaluated as part of the WIPP SPM and PA modeling effort to analyze their impact on repository behavior.

5.2 PARAMETER DESCRIPTION

This chapter identifies and defines the waste material parameters to be evaluated in performance assessment calculations. The same methodology used for defining waste stream profiles and combining them into site-specific and WIPP waste profiles is used to develop a disposal inventory for WIPP by waste material parameters (see Figure 3-2). Waste material parameter information is provided for each waste stream profile by the TRU waste generator/storage sites (Figure 1-2). In those cases where waste material parameter information could not be provided by the TRU waste generator/storage sites, an alternative methodology was adopted as described in Section 3.1.3. This waste material parameter information is used to estimate the anticipated WIPP inventory, which is then scaled to obtain the repository design limit (disposal inventory), if needed. This inventory is presented as a weighted average with a maximum and minimum expected weight/volume for each waste material parameter.

The waste material parameter information, which is provided by the TRU waste generator/storage sites, consists of 10 waste material parameters and additional packaging materials that are direct inputs into the SPM and PA models. These are presented below.

<u>Inorganics</u>

- Iron-based metals/alloys This designation is meant to include iron and steel alloys in the
 waste and does not include the waste container materials.
- <u>Aluminum-based metals/alloys</u> Aluminum or aluminum-based alloys in the waste materials.
- Other Metals All other metals found in the waste materials (e.g., copper, lead, zirconium, tantalium, etc.). The lead portion of lead rubber gloves/aprons is also included in this category.
- Other Inorganic Materials Include inorganic non-metal waste materials such as concrete, glass, firebrick, ceramics, sand, and inorganic sorbents.

Organics

- <u>Cellulosics</u> Includes those materials generally derived from high polymer plant carbohydrates. Examples are paper, cardboard, kimwipes, wood, cellophane, cloth, etc.
- <u>Rubber</u> Includes natural or manmade elastic latex materials. Examples are Hypalon[®], neoprene, surgeons' gloves, leaded-rubber gloves (rubber part only), etc.

<u>Plastics</u> – Includes generally manmade materials, often derived from petroleum feedstock.
 Examples are polyethylene, polyvinylchloride, Lucite, Teflon, etc.

Solidified Materials

- Inorganic Matrix This includes any homogenous materials consisting of sludge or aqueous-based liquids that are solidified with cement, Envirostone[®], or other solidification agents. Examples are wastewater treatment sludge, cemented aqueous liquids, and inorganic particulates, etc.
- Organic Matrix This includes cemented organic resins, solidified organic liquids, and sludges.

Soils 8 4

 Generally consists of naturally occurring soils that have been contaminated with inorganic waste materials.

Packaging Materials

The TRU waste generator/storage sites have been asked to define waste streams in each waste stream profile expressed as final waste form and volumes in containers that are currently approved for shipment. Listed below are the currently approved CH-TRU packaging configurations for TRUPACT-II (DOE, 1991) and anticipated approved RH-TRU packaging configurations (DOE, 1991):

- TRUPACT-II
 - 55-gallon drum
 - Standard Waste Box (SWB)
 - 55-gallon drums overpacked in SWB.
- RH-TRU cask (anticipated acceptable packaging configurations for the RH-TRU cask)
 - RH-TRU canister
 - three 55-gallon or 30-gallon drums overpacked in a RH-TRU canister.

In cases where the sites defined a type of waste container, but not the weight/volume of the packaging, assumptions were made about the weight of the containers in order to include these estimates as part of the overall inventory destined or WIPP. If overpacking a waste container was necessary for transport in a shipping cask, overpacking was assumed. The densities assumed are included as part of the "TRU system—wide data assumptions" included in Section 1.5.

- <u>Steel</u> The weight of the steel part of the packaging from container information provided by the TRU waste generator/storage sites. Any necessary overpacking is included in the weight.
- <u>Plastics</u> The weight of any plastic packaging submitted by the TRU sites. When weight
 of a rigid liner is not given a 90-mil HDPE liner is assumed.

 <u>Lead</u> – The weight of the Pb shielding in a RH canister is assumed if not provided by the TRU waste sites. The weight is included in the "Packaging Material Assumptions" in Chapter 1.5.3.

5.3 METHODOLOGY

The rollups of waste material parameters by WMCGs or by site use the volumes from the WTWBID. The roll ups by WMCGs or by site require combining data from several WTWBID waste streams. The averages for the material parameters are calculated from the average densities provided by the TRU waste generator/storage sites modified by the WTWBID volume fractions and summed as follows:

where i is an index representing individual waste streams of the same WMCG

The minimum density is chosen as the smallest minimum density of a particular waste material parameter in the WTWBID waste streams in a particular site-specific rollup. The maximum density is chosen in a similar manner, except that the largest maximum density was chosen.

In many cases, the TRU waste generator/storage sites did not have data for minimum and maximum percentages, even though average percentages are provided. In these cases, for rollup purposes only, the minimum is assumed to be zero and the maximum is assumed to be equal to the average. This ensures that the calculated and rolled up maximum densities are greater than the average densities. However, the maximum density may not be a true maximum but the maximum average density (see Chapter 7 for further WTWBID information).

5.4 WIPP WASTE MATERIAL PARAMETER ROLLUPS

The waste material parameters that are inputs into the SPM process and PA models are presented in Table 5-1 for CH-TRU waste and Table 5-2 for RH-TRU waste. These tables represent the WIPP disposal inventory of waste material parameters. These waste material parameters are the final rollups of the WIPP waste profiles in Figures 3-4 to 3-23.

5.5 UTILIZATION OF WASTE MATERIAL PARAMETER DATA IN APPLICATIONS

The waste material parameter data presented in Tables 5–1 and 5–2 must be used with certain limitations. If the "average" weight/volume (density) composition of CH-TRU and RH-TRU wastes in terms of the waste material parameters is needed then the middle column of Tables 5–1 and 5–2 labelled "Average" should be used in the calculations. If the task requires a distribution of values then the "Maximum" and "Minimum" columns should be used in conjunction with the "Average" column with the following limitations:

Table 5-1

WIPP CH-TRU Waste Material Parameter Disposal Inventory

			(Kg/m3)	
	<u>Materials</u>	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	2.1E+03	8.3E+01	0.0E+00
•	Aluminum Based	1.0E+03	1.2E+01	0.0E+00
	Other Metals	1.4E+03	2.7E+01	0.0E+00
•	Other Inorganics	2.1E+03	3.9E+01	0.0E+00
Organics	Cellulose	9.6E+02	1.7E+02	0.0E+00
	Rubber	6.8E+02	2.1E+01	0.0E+00
	Plastics	8.9E+02	6.3E+01	0.0E+00
Solidified Mater	rials Inorganic	2.2E+03	1.3E+02	0.0E+00
	Organic	1.4E+03	8.4E+00	0.0E+00
Soils		1.6E+03	5.7E+00	0.0E+00

Container Materials

Steel 137

Plastic/ Liners 33

Table 5-2

WIPP RH-TRU Waste Material Parameter Disposal Inventory

	-	(Kg/m3)		
	<u>Materials</u>	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	1.7E+03	9.4E+01	0.0E+00
	Aluminum Based	2.6E+02	_1.8E+01	0.0E+00
	Other Metals	9.1E+02	1.0E+01	0.0E+00
	Other Inorganics	2.0E+03	3.1E+01	0.0E+00
Organics	Cellulose	9.6E+02	2.7E+01	0.0E+00
	Rubber	1.9E+02	4.8E+00	0.0E+00
•	Plastics	5.5E+02	2.4E+01	0.0E+00
Solidified Ma	terials Inorganic	1.1E+03	1.3E+02	0.0E+00
	Organic	3.7E+00	1.7E-03	0.0E+00
Soils		1.9E+02	1.8E+00	0.0E+00
Container M	faterials			
	Steel		447	
	Plastic/Liners	÷	3.2	
	Lead	•	465	
	Steel Plug		2145	

- The sum of all the waste material parameters in the "average" column represents the "average" weight of a cubic meter of CH-TRU or RH-TRU expected at WIPP. For instance, the "average" cubic meter of CH-TRU waste expected at WIPP is (see Table 5-1):
 - 559.5 kg/m³ CH-TRU waste + 173 kg/m³ of packaging = 732.5 kg/m^3
- The weight of packaging is not expected to vary, so if any "sampling" of distributions of densities is required, the sampling should only be on the waste part of the above equation.
- If sampling of the waste material parameters is needed, the sum of the densities of all waste material parameters sampled for any iteration SHOULD NOT EXCEED THE AVERAGE DENSITY OF THE WASTE AS DEFINED IN THE "AVERAGE" COLUMN SUMMATION. That is, one cannot sample on the upper range for all waste material parameters or sample all waste material parameters at the lower end of the range. By default, if some waste material parameters are sampled at higher values than the average some will have to be sampled at lower values than average so that the density of the waste always remains the same (sum of the "average" column).

The same sampling methodology, if needed, should be used for the RH-TRU waste as reported in Table 5-2.

TO OBTAIN THE TOTAL WASTE MATERIAL PARAMETER WEIGHTS FOR THE DISPOSAL INVENTORY, USERS OF THE DATA SHOULD MULTIPLE THE AVERAGE DENSITIES OF THE WASTE MATERIAL PARAMETERS FOR CH-TRU (TABLE 5–1) AND RH-TRU (TABLE 5–2) BY THE DESIGN BASIS VOLUME.

For example:

The expected (average) CH-TRU inventory of combustibles for WIPP is (Table 5-1):

 $170 \text{ kg/m}^3 \times 176,000 \text{ m}^3 \text{ (design basis)} = 29,900,000 \text{ kg combustibles}$

For steel in CH-TRU waste:

83 kg/m³(waste) + 140 kg/m³(container) = 223 kg/m³ 223 kg/m³ x 176,000 m³ = 3,900,000 kg steel

6. STORED AND PROJECTED CH-TRU AND RH-TRU INVENTORIES BY SITE

As described in Chapter 3, each waste stream from each waste generating/storage site is characterized in a waste stream profile (Appendix A). These waste stream profiles are rolled up by WMCGs for each generator/storage site. Summary tables of contact-handled and remote-handled waste volumes are provided in Tables 6-1 and 6-2. Summary profiles of waste volumes by WMCG for each site are provided in Tables 6-3 through 6-22.

TRANSURANIC WASTE DISPOSAL INVENTORY BY SITE

Contact Handled Waste

(Cubic Meters)

Storage/Generator Site	Stored Volumes*	Projected Volumes	Anticipated Volumes
AMES LAB	0.0E+00	1.0E-01	1.0E-01
ANL-E	2.9E+01	1.7E+00	3.1E+01
ANL-W	2.0E-02	5.8E+00	5.9E+00
BT	0.0E+00	1.2E+02	1.2E+02
ETEC	1.9E+00	5.2E+00	7.1E+00
HANFORD	9.3E+03	2.1E+04	3.1E+04
INEL	3.5E+04	1.0E+00	3.5E+04
KAPL	2.4E+00	0.0E+00	2.4E+00
LANL	1.1E+04	7.7E+03	1.9E+04
LBL	8.4E-01	4.4E+00	5.3E+00
LINL	2.1E+02	6.9E+02	9.0E+02
MOUND	2.6E+02	0.0E+00	2.6E+02
MU	6.0E-02	1.6E+00	1.7E+00
NTS	6.2E+02	0.0E+00	6.2E+02
DRNL	7.8E+02	2.6E+02	1.0E+03
PA .	3.5E+00	0.0E+00	3.5E+00
ANTEX	6.2E-01	0.0E+00	6.2E-01
JFP	1.1E+03	5.9E+03	7.0E+03
NL/NM	8.0E+00	7.0E+00	1.5E+01
RS	1.5E+04	1.5E+04	2.9E+04
otal CH Volumes	7.3E+04	5.1E+04	1.2E+05

^{*} A small amount of Hanford stored CH waste (2.0E+02 cubic meters) is expected to be retrieved and packaged as RH waste

Table 6-1: Contact Handled Transuranic Waste Disposal Inventory by Site 6-2

TRANSURANIC WASTE DISPOSAL INVENTORY BY SITE

			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Remote Handled Waste		(Cubic Meters)	
Storage/Generator Site	Stored Volumes	Projected Volumes	Anticipated Volumes
ANL-W	8.7E+00	2,8E+01	3.6E+01
BCLDP	0.0E+00	7.1E+01	7.1E+01
BT	0.0E+00	1.6E+00	1.6E+00
HANFORD	3.3E+01	3.0E+03	3.0E+03
INEL	3.1E+01	1.7E+01	4.8E+01
KAPL	1.1E+01	2.5E+01	3.6E+01
LANL	9.1E+01	8.3E+01	1.7E+02
ORNL	9.9E+02	3.6E+02	1.4E+03
SRS	0.0E+00	6.4E+01	6.4E+01
Total RH Volumes	1.2E+03	3.6E+03	4.8E+03

Table 6-2: Remote Handled Transuranic Waste Disposal Inventory by Site

6 - 3

Site Name: AMES LAB

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Solidified Inorganics	0	0.1	0.1
Total CH Volumes	0.00	0.10	0.10

Site Name: ANL-E

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Lead/Cadmium Metal Waste	1.1	0	1.1
Solidified Inorganics	23.045	1.12	24.165
Solidified Organics	0.025	0	0,025
Uncategorized Metal	4.96	0.56	5.52
Total CH Volumes	29.13	1,68	30.81

Table 6 - 4; ANL-E Final Waste Form Volumes

Site Name: ANL-W

(Cubic Meters)

	(Cable Meles)		<u> </u>	
Final Waste Form	Retrievably Stored	Projected	Total	
Contact Handled Waste				
Heterogeneous	0	3.36	3.36	
Lead/Cadmium Metal Waste	0.02	2.48	2.5	
Total CH Volumes	0.02	5.84	5.86	
Remote Handled Waste				
Filter	0.89	2.09	2.98	
Ieterogeneous	0.59	0.08	0.67	
ead/Cadmium Metal Waste	0	0.36	0.36	
Incategorized Metal	7.172	1.36	8.532	
Jnknown	0	23.736	23.736	
otal RH Volumes	8.65	27.63	36,28	

Table 6 - 5; ANL-W Final Waste Form Volumes

CHAPTER 6

Site Name: BCLDP

(Cubic Meters)

		Cubic Meters)	
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Total CH Volumes			
Remote Handled Waste			
Heterogeneous	0	71	71
Total RH Volumes	0.00	71.00	71.00

Table 6 - 6; BCLDP Final Waste Form Volumes

Site Name: BT

1

(Cubic Meters)

		CHOIC 1-10(CIS)	·
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	0	123.816	123.816
Total CH Volumes	0.00	123,82	123.82
Remote Handled Waste			
Heterogeneous	0	1.557	1.557
Total RH Volumes	0.00	1.56	1.56

Table 6 - 7; BT Final Waste Form Volumes
6 - 8

Site Name: ETEC

(Cubic Meters)

Final Waste Form	D		
rmai waste rorm	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	1.66	5.2	6.86
Lead/Cadmium Metal Waste	0.21	0	0.21
Total CH Volumes	1.87	5.20	7.07

Site Name: HANFORD

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Combustible	526.48	12269.027	12795.507
Heterogeneous	8568.55	827.157	9395.707
Lead/Cadmium Metal Waste	3.13	0.29	3.42
Soils	111.69	309.27	420.96
Solidified Inorganics	1.46	2924.759	2926,219
Solidified Organics	2.17	15,248	17.418
Uncategorized Metal	103.35	4890.948	4994.298
Total CH Volumes	9316.83	21236.70	30553,53
Remote Handled Waste			
Heterogeneous	33.163	2973.71	3006.873
Total RH Volumes	33.16	2973.71	3006.87

Site Name: INEL

(Cubic Meters)

		Cubic Meters)	<u> </u>
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Combustible	670.9	0	670.9
Filter	323.56	0	323.56
Graphite	650.7	0	650,7
Heterogeneous	9649.5	1	9650,5
Inorganic Non-metal	1052.89	0	1052.89
Salt Waste	22.91	0	22.91
Soils	3.8	0	3,8
Solidified Inorganics	12164,28	0	12164.28
Solidified Organics	912.6	0	912.6
Uncategorized Metal	7564.09	0	7564.09
Unknown	1655.91	0	1655,91
otal CH Volumes	34671.14	1.00	34672.14
emote Handled Waste			
eterogeneous	13.634	2.8	16.434
ead/Cadmium Metal Waste	0	5.6	5.6
alt Waste	0	2.8	2.8
olidified Inorganics	2.1	Ö	2.1
ncategorized Metal	4.11	5.6	9.71
iknown	11.13	0	11.13
tal RH Volumes	30.97	16.80	47.77

Table 6 - 10; INEL Final Waste Form Volumes

6 - 11

Site Name: KAPL

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	2.4	0	2.4
Total CH Volumes	2.40	0.00	2.40
Remote Handled Waste			
Heterogeneous	11.23	25.23	36.46
Total RH Volumes	11.23	25.23	36.46

Site Name: LANL

(Cubic Meters)

			·
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Combustible	1768,33	2464.6	4232.93
Soils	109,37	144.6	253,97
Solidified Inorganics	4848.38	2059.03	6907.41
Uncategorized Metal	4134.8	3006.17	7140,97
Total CH Volumes	10860.88	7674.40	18535.28
Remote Handled Waste			
Combustible	14.84	3.16	18
Incategorized Metal	76.46	79.5	155.96
Total RH Volumes	91.30	82,66	173.96

Table 6 - 12; LANL Final Waste Form Volumes

Site Name: LBL

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	0.84	4.42	5.26
Total CH Volumes	0.84	4.42	5.26

Table 6 - 13; LBL Final Waste Form Volumes

Information Only

Site Name: LLNL

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Combustible	48.882	372.32	421.202
Salt Waste	0.624	2.912	3.536
Solidified Inorganics	13.303	66.148	79.451
Uncategorized Metal	144.326	247	391.326
Total CH Volumes	207.14	688.38	895.52

Table 6 - 14; LLNL Final Waste Form Volumes 6 - 15

Site Name: MOUND

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Combustible	5.61	0	5.61
Heterogeneous	0.416	0	0.416
Soils	146.88	0	146,88
Solidified Inorganics	7.28	0	7,28
Uncategorized Metal	102.276	0	102,276
Total CH Volumes	262,46	0.00	262.46

Table 6 - 15; MOUND Final Waste Form Volumes

Site Name: MU

(Cubic Meters)

		(0 0010 1:101010)	•
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	0.06	1.604	1.664
Total CH Volumes	0.06	1.60	1.66

Table 6 - 16; MU Final Waste Form Volumes

Site Name: NTS

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	619.5	0	619.5
Total CH Volumes	619.50	0.00	619.50

Table 6 - 17; NTS Final Waste Form Volumes 6 - 18

Site Name: ORNL

		(5-516 1/16/613)	
Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste	\$		
Heterogeneous	672.98	263.9	936.88
Solidified Inorganics	110	0	110
Total CH Volumes	782.98	263,90	1046.88
Remote Handled Waste			
Heterogeneous	382.81	182.7	565.51
Solidified Inorganics	611	174	785
Total RH Volumes	993.81	356,70	1350.51

Table 6 - 18; ORNL Final Waste Form Volumes

Site Name: PA

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Solidified Inorganics	3.45	0	3.45
Total CH Volumes	3.45	0.00	3.45

Site Name: PANTEX

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	0.624	0	0.624
Total CH Volumes	0.62	0.00	0.62

Site Name: RFP

(Cubic Meters)

	·				
Final Waste Form	Retrievably Stored	Projected	Total		
Contact Handled Waste					
Filter	103.96	1087.59	1191.55		
Graphite	18.06	43.4	61.46		
Heterogeneous	312.86	804.58	1117.44		
Inorganic Non-metal	110.68	318.68	429.36		
Lead/Cadmium Metal Waste	51.87	124.18	176.05		
Salt Waste	9.45	56.6	66.05		
Solidified Inorganics	228.63	2988.11	3216.74		
Solidified Organics	132.8	48.82	181.62		
Uncategorized Metal	164.82	429.5	594.32		
Total CH Volumes	1133.13	5901.46	7034,59		

Table 6 - 21; RFP Final Waste Form Volumes

Site Name: SNL/NM

(Cubic Meters)

Final Waste Form	Retrievably Stored	Projected	Total
Contact Handled Waste			
Heterogeneous	8.04	7	15.04
Total CH Volumes	8.04	7.00	15.04

Table 6 - 22; SNL/NM Final Waste Form Volumes

Site Name: SRS

(Cubic Meters)

			•	
Final Waste Form	Retrievably Stored	Projected	Total	
Contact Handled Waste				
Combustible	4066.8	11962.5	16029,3	
Heterogeneous	10132.2	2563.6	12695.8	
Solidified Inorganics	0.04	0	0.04	
Solidified Organics	404.85	240.7	645.55	
Total CH Volumes	14603.89	14766.80	29370.69	
Remote Handled Waste				
Heterogeneous	0	63.92	63.92	
Total RH Volumes	0.00	63.92	63.92	

Table 6 - 23; SRS Final Waste Form Volumes 6 - 24

CHAPTER 7

Information Only

7. WIPP TRANSURANIC WASTE BASELINE INVENTORY DATABASE

A WIPP Transuranic Waste Baseline Inventory Database (WTWBID) has been developed to support the Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report (WTWBIR). This database was used to roll up the waste data and print out the various tables and reports used in the WTWBIR. The database is operated in the Microsoft Access Vs. 2.0 system.

7.1 DATABASE DESCRIPTION

The database actually consists of two databases with essentially the same primary data tables. The first database is WTWBIR.MDB. This database contains the original data submitted by the sites or agreed with the sites through discussions with WTWBIR personnel. This database is used to produce the forms in Appendix A. The second database is called REPORTS.MDB and is used to produce the tables and figures in the rest of the report. There are two databases because the basic data in WTWBIR.MDB must be manipulated to produce rational roll ups of the data for the reports and figures. These manipulations are described in this section of the report.

Each record in the database represents one waste stream as defined by a unique waste stream ID (WIPP_ID). In the case where the WTWBIR waste stream is the same as a waste stream reported in phase 2 of the MWIR, the WIPP_ID is the same as the MWIR ID (UNIQUE_WS). Some streams, primarily non mixed and a few mixed waste streams, were not reported in the MWIR. In these cases, if the site did not assign a proper ID, a WIPP_ID was assigned by the WTWBIR team.

The reports and tables produced for the WTWBIR are produced from different data sorts based on the WTWBIR-ID, Site_Name, Handling and Final_Waste_Form fields. The Site_Name refers to the sites as defined in the field WS_SITE. The Site_Name specifies the site which reported and is typically storing the waste. The generator site may differ from the storage site. The Handling field defines whether the waste is categorized as CH or RH waste. The Final_Waste_Form defines a general grouping based on the physical and chemical properties in the waste stream. These are broader waste matrix code groupings (WMCG) (Table 1-2) based generally on the MWIR treatability groups which are described in the MWIR form instructions. In Revision 0 of the WTWBIR, these Final_Waste_Forms were referred to as Matrix_Names.

The volumes are rolled up from the cumulative stored volumes and projected volumes provided by the sites. The stored volumes are based on the cumulative end of 1993 volumes in the database. Some sites provided stored volumes for 1992 and projected volumes for 1993 while other sites provided stored volumes for 1993. In order to be consistent, the stored volumes for sites that based their stored volumes on 1992 were calculated by adding the 1992 volume to the 1993 projected volume. Projected volumes were calculated by adding the volumes for 1994 through 2022.

In Table 3-5, a column was calculated to match the maximum design capacity of WIPP for CH waste. This was done by increasing all the Final_Waste_Form projected volumes proportionately, except Unknown, so that the total CH volume would equal the maximum WIPP capacity. Additional waste volume was calculated for each waste stream proportionate to the projected volumes for each stream such that the sum of the scaled volumes for contact handled waste equaled 175,600 cubic meters. Enough waste is already identified to fill the WIPP to capacity for remote handled waste.

The other fields used to develop roll ups for the tables in the reports are the waste material parameters. The sites were asked to estimate an average, minimum and maximum concentration of materials in each waste stream. For example, weights of metals such as brass, copper, tantalum and materials simply described as metals were rolled up under the field OM_xxx (where xxx is min, max, or avg) which stands for "Other Metals" (see the data dictionary; Table 7-1). Note that because some materials are described only as metals, aluminum and iron can be in the OM_xxx field as well as in the IB_xxx or AB_xxx fields.

Two categories of sludges and solidified materials are represented by fields. These are solidified inorganic solids (SIM_xxx) and solidified organic solids (SOM_xxx). The particular category into which a sludge or solidified material is placed is determined by the overall matrix of the resulting material after any solidification or stabilization steps. For example, a small amount of organic liquids/sludges solidified in cement would be placed in the solidified inorganics category and a drum of organic based resin beads solidified would be placed in the solidified organics category.

The rest of the fields are reasonably self explanatory, but additional discussion on Cel_xxx, Rub_xxx, and Plas_xxx, may be helpful. Cel_xxx includes all cellulose base materials and will typically include paper, cloth, wood, kimwipes and other materials derived from plant based materials. It is assumed that cloth is plant derived material such as cotton and not plastic based such as rayon or nylon. Rub_xxx consists of rubber based materials. Included in this category are Hypalon®, neoprene, and surgeons gloves. Plas_xxx represents plastics such as Lucite®, polyethylene, Tyvek®, teflon and polyvinyl chloride. Plastic bags are used extensively in packaging the waste and would be included in this category. The plastic drum or container liners were not included in this category and were requested separately.

The parameter information is manipulated so that the waste material parameters can be added up and averaged at WIPP, site and Final Waste Form levels. Waste streams for which no waste parameters are provided or for which average, minimum and maximum parameters are not all provided cannot be rationally averaged and summed. Therefore, in order to calculate averaged parameters from the waste stream data provided, certain manipulations on the data are necessary. These manipulations are summarized below. If the parameters for a particular waste material were incomplete, the following assumptions were used to adjust the data so that rational averages and sums could be accomplished:

- If no minimum was provided, but a maximum was provided, the minimum was assumed to be zero.
- If a maximum was provided, but no average, the average was assumed to be one half the sum of the maximum and minimum.
- If an average was provided but no minimum or maximum, the average was assigned to the minimum and maximum.
- If only a minimum was provided, the minimum was assigned to both the maximum and the average.

For those waste streams that did not have any waste parameter information provided, but which could be assigned to a final waste form, an average set of parameters was calculated and used. This average set of parameters was calculated by volume averaging the parameters provided for other waste streams with the same final waste form.

The data that is printed out on all the tables in the report is based on these calculations and assumptions. The individual stream data printed out in Appendix A is the original unmanipulated data submitted by the generator/storage sites or agreed to by the sites through discussions and questions with the WTWBIR team.

The roll ups of these material parameters for tables in the report by Final_Waste_Form or by site were performed using a volume weighted averaging procedure. The averages for the material parameters for a Final_Waste_Forms (FWF) are calculated as follows:

where i is an index representing individual waste streams of the same FWF.

The minimum density is chosen as the smallest minimum density of a particular material parameter in the WTWBIR streams in a particular Final_Waste_Form. The maximum density is chosen in a similar manner except that the largest maximum density was chosen. Note that the maximum and minimum densities apply to individual containers and cannot be used to directly calculate a maximum and minimum density of particular material parameters for the entire WIPP inventory. Also note, that it is possible, that the maximum density may not be a true maximum but a maximum average density, if a site provided only averages and no maximums and these averages are higher than other sites' maximums.

The amount of and type of materials in the containers and liners was requested separately in the waste stream profiles. Many of the sites did not provide data for final form WIPP approved containers. Some sites provided current containers, some did not provide containers and some provided final form containers. In order to add up packaging materials for the waste as it would arrive at WIPP, standard container configurations were assumed for waste from all sites.

If the site provided final form containers, the final form containers (drums, SWBs, or RH Canisters) were used, but standard liners were assumed. This was done because many sites did not provide liner information and assuming standard liners will generally maximize the amount of liner material.

For CH waste containers, the following assumptions were used:

- · If the type of container was unclear, it was assumed to be drums. (This was rare.)
- If drums were reported they are assumed to be WIPP approved drums with rigid liners.
 Many sites have a mixture of liner types in a stream or are unsure of liners.
- If waste was reported in containers larger than drums, then the waste was divided into (Standard Waste Boxes) SWBs with standard plastic bag liners; using the standard internal volume for SWBs and the reported waste stream volumes to determine the number of SWBs.
- If the waste was reported in a liquid or sludge form (i.e. tanks), it was assumed to be placed
 in drums with rigid liners. No treatment volume expansion was included unless provided by
 the site.

For RH waste, the following assumptions were used:

- If the waste was reported in drums, the drums were assumed to be overpacked in RH canisters at 3 drums per canister.
- If the waste was not reported to be in drums, the waste was assumed to be direct loaded into RH canisters; using the standard internal volume for RH canisters and the reported waste stream volumes to determine the number of RH canisters.

Packaging material weights used in the WTWBIR report are shown in the table below:

Table 7-1. Table of Materials for CH and RH Waste Containers (Weights in kg per container, Volume in m³ per container)

(vergine in kg per container, volume in in per container)					
CH Waste					
Container Characteristic	Drum		SWB		SWB Overpack ¹
Steel Weight Liner Type Liner Material Liner Weight Volume (Capacity) Payload Volume ²	27.3 Rigid Drum Liner 90 mil HDPE 7.7 0.208 0.208		290.9 Bag Plastic 2.2 1.89 1.89	90 33 1.8	
		RH V	Vaste		
Container Characteristics		RH Canister			RH Canister Overpack ³
Steel Weight Lead Weight Steel Plug Weight Liner Type Liner Material Liner Weight Volume (Capacity) Payload Volume ²	ead Weight eel Plug Weight ner Type ner Material ner Weight lume (Capacity)		37.3 13.6 09.1 one I/A I/A .89		469.2 (3 drums) 413.6 1909.1 Rigid Liner in Drums 90 mil HDPE 23.1 0.89 0.624 (3 drums)

¹ Four drums overpacked in an SWB

³ Three drums overpacked in an RH Canister

The tables and reports for the WTWBIR were produced using the facilities provided by the Microsoft Access Vs 2.0 database system. These tables and reports consist primarily of various sorts based on waste streams, final waste forms, sites, etc. and summations of volumes and material parameter weights.

² Payload volume is the actual volume of waste which can be placed in the container.

7.2 DATA DICTIONARY

Table 7-2. WTWBID Data Dictionary

Field/Table Name	Notes	Description
Table: Container_Data WIPP_ID	Key Field Index Relating from Page_1 data table	The unique waste stream identification number as assigned by the WTWBIR Team
MWIR_ID		The unique waste stream identification number as listed in the Mixed Waste Inventory Report
Cont	Key Field to relate to Nuclides data table	Container (SWB, Stnd Drum, or RH Canister)
Counter		Access 2.0-generated record identifier
MWIR_Cont		The type of container as listed in the MWIR
Type/Size		type and/or size of container
Param		Parameter Information Reported?
RAD		Yes - isotopes listed; No - None Listed; Quan - Concentrations listed
Container Material		Material of which the waste container is made
Ext_Volume		cubic meters per container
Liner_type		Nomenclature identifying the type and size of liner.
Liner_material		composition of liner
Nbr_Stored		number of this type of container stored.
Nbr_Projected		Total number of this container for this waste stream projected through the life of the WIPP
IB_avg		Iron-based constituents, Average, in kg/m3
IB_min		Iron-based constituents, Minimum, in kg/m3
IB_max		Iron-based constituents, Maximum, in kg/m3
AB_avg		Aluminum-based constituents, Average, in kg/m3
AB_min		Aluminum-based constituents, Minimum, in kg/m3
AB_max		Aluminum-based constituents, Maximum, in kg/m3
OM_avg		Other metals constituents, Average, in kg/m3
OM_min		Other metals constituents, Minimum, in kg/m3
OM_max		Other metals constituents, Maximum, in kg/m3
Ol_avg		Other inorganics constituents, Average, in kg/m3

Table 7-2. WTWBID Data Dictionary (continued)

Field/Table Name	Notes	Description
Ol_Min		Other inorganics constituents, Minimum, in kg/m3
OI_max		Other inorganics constituents, Maximum, in kg/m3
Cel_avg	<u> </u>	Cellulosics constituents, Average, in kg/m3
Cel_min		Cellulosics constituents, Minimum, in kg/m3
Cel_max		Cellulosics constituents, Maximum, in kg/m3
Rub_avg		Rubber constituents, Average, in kg/m3
Rub_min		Rubber constituents, Minimum, in kg/m3
Rub_max		Rubber constituents, Maximum, in kg/m3
Plas_avg		Plastic constituents, Average, in kg/m3
Plas_min		Plastic constituents, Minimum, in kg/m3
Plas_max		Plastic constituents, Maximum, in kg/m3
SIM_avg		Solidified Inorganic Materials constituents, Average, in kg/m3
SIM-min		Solidified Inorganic Materials constituents, Minimum, in kg/m3
SIM_max		Solidified Inorganic Materials constituents, Maximum, in kg/m3
SOM_avg		Solidified Organic Materials constituents, Average, in kg/m3
SOM_min		Solidified Organic Materials constituents, Minimum, in kg/m3
SOM_max		Solidified Organic Materials constituents, Maximum, in kg/m3
SL_avg		Soils, Average, kg/m3
SL_min		Soils, Minimum, kg/m3
SL_max		Soils, Maximum, kg/m3
PM_Steel		Packaging materials, steel, kg/m3
PM_Plastic		Packaging materials, plastic, kg/m3
End_of_92		Volume of this waste stream as of the end of 1992
Projected_end_of_92		Projected volume of this waste stream as of the end of 1992
FF_End_of_92		The Volume of this waste stream on hand at end of 1992 in it's estimated final waste form to ship to the WIPP
FF_Projected_end_of _92		Not used.
End_of_93		The cumulative waste volume at the end of the year.

Table 7-2. WTWBID Data Dictionary (continued)

Field/Table Name	Notes	Description
FF_End_of_93		The cumulative waste volume of the waste on hand at end of year in its estimated final form for shipment to the WIPP.
End_of_94		The new waste volume at the end of the year; the increment added during the year
FF_End_of_94		The new waste volume of the waste on hand at end of year in its estimated final form for shipment to the WIPP, the increment added during the year
End_of_95		The new waste volume at the end of the year; the increment added during the year
FF_End_of_95	·	The new waste volume of the waste on hand at end of year in its estimated final form for shipment to the WIPP, the increment added during the year
End_of_96		The waste volume at the end of the year; the increment added during the year
FF_End_of_96		The new waste volume of the waste on hand at end of year in its estimated final form for shipment to the WIPP, the increment added during the year
End_of_97		The waste volume at the end of the year; the increment added during the year
FF_End_of_97		The new waste volume of the waste on hand at end of year in its estimated final form for shipment to the WIPP, the increment added during the year
98-2002		The waste volume added per year during the period.
FF_98-2002		The waste volume added per year during the period in its estimated final form for shipment to the WIPP.
03-2022		The waste volume added per year during the period.
FF_03-2022		The waste volume added per year during the period in its estimated final form for shipment to the WIPP.
Comments		Miscellaneous comments applicable to page 2 of the data form
Container Footnotes		Footnotes applicable to a specific container type in a waste stream.
Table: Page_1 Site_Name		Name of site, text spelled out as specified in a look-up table (ANL-E, Hanford, INEL, AMES, etc.).
MWIR_ID		Unique Waste Stream Number derived from the Mixed Waste Inventory Report.
WIPP_ID	Key field to relate to container_data and EPACodes data tables	WIPP specific identification number assigned by WTWBIR Team.

Table 7-2. WTWBID Data Dictionary (continued)

Field/Table Name	Notes	Description
LOCAL_ID		Locally assigned ID number for the waste stream
Gen_Site		The name of the site that generated the waste, regardless of the actual storage site.
Waste_Type		MTRU or TRU
Handling		CH or RH
Stream_Name		Abbreviation Description/Name of the Stream
Stream_description		Memo field to describe the type of stream
MWIR_matrix_code		Matrix Code, from MWIR if applicable and relevant
Assigned_matrix_code		Matrix Code assigned by WTWBIR analysts to be left blank by sites
Final_Waste_Form		This is the code of the final (to WIPP) form of the waste stream
Matrix_Description		Description and comments for the waste matrix in its final form for the WIPP
TRUCON		Assigned TRUCON Code
NoMigrationAssign	7.77	Code assigned for purposes of the WIPP No Migration Variance Petition.
IDC_from_Site Final_Form		IDC supplied by Site for this stream.
IDC_Assigned_Final_ Form	,	Equivalent IDC assigned by WTWBIR analysts based on their judgement
Waste_Ownership		Defense, non-defense, commercial, or unknown
Waste_mixed_type		Mixed, non-mixed, suspect mixed, or unknown
Waste_source		R&D, Operational, Residues, ER and D&D, ER, D&D, or Unknown

Table 7-2. WTWBID Data Dictionary (continued)

Field/Table Name	Notes	Description
TSCA_data		Asbestos, PCBs, Asbestos & PCBs, Other (describe in comment), No, N/A, or Unknown
Storage_data		Retrievably stored, Buried, Building Storage, or Bermed Storage
Page 1_Footnotes		Footnotes applicable to the whole waste stream.
Table: epacodes UNIQUE_WS	Key Field, related to Page_1, WIPP_ID	Unique waste stream identifier number.
EPA_CODE		EPA code associated with a specific waste stream.
Table: Nuclides Cont_Counter	Key Field related to Container_Data, Counter	Relation to Container data counter, lock the record to a specific container/stream record in Container_Data.
Nuclide		Nuclide designation in form Element Abbreviation, Atomic Weight, and excitation indicator if applicable (Ba137M).
Activity		Scientific notation of activity in Pu239 equivalents in Curies/m3,

7.3 DATABASE OPERATING INSTRUCTIONS

The WIPP Transuranic (TRU) Waste Baseline Inventory Report (WTWBIR), Revision 1, database is a Microsoft Access 2.0 database. It requires the user to possess a copy of Access 2.0 and be running under the Windows 3.1 operating system. Access, unlike most other databases, provides a single structure that contains objects such as queries, reports, program segments, macros, indexes, relations, and multiple data tables. This means there is only one file to work with, one with the suffix, .MDB. A second file normally accompanies the database file, one with the suffix .LDB and having the same name. It is not normally used except for certain file maintenance operations.

Two databases are provided as part of the compressed file on the distribution disk. The first database is WTWBIR_1, which contains the original data by waste streams from all generator/storage sites. This is the database used to print out the individual stream data in

Appendix A. The second database is called REPORTS. This is the database used to produce the other tables and figures in Volume 1 and Appendix B of the report. The databases are separate because the roll ups of data require some changes to the data to produce rational numbers in the tables and figures. These changes were described in section 7.2.

INSTALLATION: The two databases are compressed into a file on the distribution disk called WTWBIR.EXE. Approximately 6 megabytes of hard disc space should be available to install the database. To install the WTWBIR Rev. 1 database, copy WTWBIR.EXE to a convenient directory on your hard disk, go to the directory containing WTWBIR.EXE, type WTWBIR and press the enter key. The database should be expanded into the directory. The directory should now contain WTWBIR.EXE, WTWBIR1.MDB, WTWBIR1.LDB, WTWBIR.HLP, REPORTS.MDB, and REPORTS.LDB. WTWBIR.HLP contains the data field descriptions. This procedure can be performed either in DOS, a DOS prompt in Windows or from File Manager in Windows. Enter Windows and start Access, and open the WTWBIR_1 or REPORTS database. See the Access User's Manual in case of difficulty.

WTWBIR_1 INSTRUCTIONS: The WTWBIR Rev. 1 database has a built-in program (a macro called "autoexec") which takes control immediately upon opening the database file. It brings up a screen from which the user can view, edit, and locate various waste streams using the normal Access 2.0 tool bar features. In addition, a large printer icon button appear midway down the left side of the screen. This button affords the user the opportunity of printing the waste stream being viewed, waste streams for a specific site, or waste streams for all sites in the database. Scroll bars are provided to scroll between waste streams at the bottom left of the screen. For a given waste stream, the gray section contains waste container data for the various containers used to store this stream, and a scroll bar is provided in the bottom left to scroll among the types of containers for that waste stream. For a given type of container, the typical nuclides for that type of container are listed in a white area inset into the gray and a scroll bar provided.

Mirroring the contraction of the view screen, the WTWBIR data table set consists of the main table, Page_1, which contains site and stream data applicable to all container types used for the stream. Using the waste stream identification code (WIPP_ID) as a key, container-specific data in the Container_Data data table is related to the Page_1 table. Where radionuclides exist in a waste stream, they are listed in the Nuclides table and related to the Container_Data using record counters. For mixed streams, another data table, EPACodes, is related from Page_1's MWIR_ID field to EPACodes' UNIQUE_WS field. This structure affords a considerable savings in database size and is implemented in Access in such a way that they effectively function as one large, compact table.

Descriptions of the data fields can be viewed by opening the desired data table in Access's Table Mode, Design View. If the WTWBIR_1.HLP file was copied into the directory occupied by the WTWBIR database files, limited descriptions of the data fields in the WTWBIR database are available when you place the cursor in a data box and then press the F1 function key.

Reports Instructions:

Open the database REPORTS.MDB. An "autoexec" macro executes when the database opens. This macro presents a form, titled "Figure and Table Viewer", listing the reports available for viewing.

The reports and tables available for review are listed with a number on the left side. There should be eleven entries. If all entries cannot be seen, the scrolling arrows on the right side of the form can be used to scroll the entries. On the bottom of the form is a series of buttons numbered 1 to 11. Each form can be viewed (in report preview mode) by clicking on the command button with the same number as the number to the left of the list of figures and tables.

When the table appears on screen, the size of the window for viewing the table can be adjusted by clicking on the upper right corner up or down arrow in the report window. The report preview window also permits moving between pages of multi-page sets of figures and tables by using the arrows on the lower left comer.

The table or figure can be printed from the report preview window. The tales and figures were originally printed from and formatted for a Laserjet III. When printing the tables and figures, make sure the margins are set so that the entire table or figure is contained on one page, other wise blank pages may be printed.

The first 8 tables and figures are the same as the tables and figures printed in volume 1 and Appendix B of this report. The figure and table numbers listed are the same as the figure and table numbers in the report. Figures number 9 and 10 show the average material parameters by site for contact handled and remote handled waste. These figures were not used in the report. The last table shows the estimated WIPP packaging material parameters. These numbers are also presented on Tables 5-1 and 5-2 in this viewer and in Volume 1 of the report.

7.4 WTWBID QUALITY CONTROL

To ensure that proper controls and documentation were in place during development and population of the WTWBID, several quality control activities were implemented by the WTWBIR Team. Project quality control objectives were to:

- Define a method for receiving, tracking, reviewing, updating, and documenting data received from the waste generator/storage sites.
- · Identify and document the contents of each project baseline.
- Establish and implement a process for releasing and maintaining the WTWBID.
- Create a master library for WTWBID software and documentation.
- Ensure that WTWBID-generated reports and database copies are produced from released database revisions.

The activities performed to meet these objectives are described in the Waste Isolation Pilot Plant Baseline Inventory Report Database Management Procedure (DOE, 1995). The procedure identifies the responsible individuals and required actions for developing, populating, and maintaining the WTWBID, and for managing the data used to produce the WTWBIR and other summary documents.

CHAPTER 8

Information Only

8. GLOSSARY

40 CFR Part 191, Protection of Environment. EPA: Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and TRU Radioactive Wastes – The EPA's environmental standards for the storage (Subpart A) and disposal (Subpart B) of spent nuclear fuel, and high-level and TRU radioactive wastes. This is the primary post-closure standard that applies to WIPP. It limits annual radiation doses to the public from waste management storage and disposal facilities.

40 CFR Part 268, Protection of Environment. EPA: Land Disposal Restrictions – Restricts the land disposal of all hazardous wastes and specifies strict treatment standards that must be met before these wastes can be land-disposed.

Americium (Am) – A TRU radionuclide having an atomic number of 95, containing 95 electrons and 95 protons. Am-241 (half-life 432.7 y) results from the decay of Pu-241 (half-life 14.4 y). Waste initially rich in Pu-241 will therefore "grow" in Am-241 for several decades as the Pu decays. Am-241 exists in finite amounts in TRU waste at some DOE sites.

Anticipated Inventory - The sum of the stored and projected inventories, as defined in this document.

Buried Waste - TRU waste buried in shallow trenches prior to the 1970 Atomic Energy Commission policy that required TRU waste to be retrievably stored.

Californium (Cf) – A TRU element having an atomic number 98 (the number of protons in the nucleus). An alpha emitter (half-life 2.64 y), Cf-252 also spontaneously fissions, thus making it desirable as a neutron source. Cf-252 is created by neutron bombardment of Cm-244 targets. OR is the only production agency for Cf. As a result, the OR inventory is the only TRU waste inventory showing finite quantities of this element.

Code of Federal Regulations (CFR) – (1) A codification of the general and permanent rules published in the Federal Register by the department and agencies of the federal government. The CFR is divided into 50 titles that represent broad areas subject to federal regulation. It is issued quarterly and revised annually. (2) All federal regulations in force are published annually in codified form in the CFR.

Contact-Handled (CH) TRU Waste – Packaged TRU wastes with an external surface dose rate of 200 mrem or less per hour.

Curie – A quantitative measure of radioactivity equal to 3.7×10^{10} disintegrations per second.

Curium (Cm) – A TRU element having an atomic number of 96 (the number of protons in the nucleus). An alpha emitter (half-life 18.1 y), Cm-244 is used for neutron bombardment of targets for the production of Cf-252 at OR. In spite of its half-life being less than 20 years, OR considers and handles Cm-244 as a TRU nuclide. Some TRU waste at both OR and SR contains Cm-244.

Information Only

Decontamination and Decommissioning (D&D) – The process through which DOE facilities which are no longer operational are cleared of contamination and removed from service. In particular, a reference to D&D waste is a reference to the waste materials that are generated during D&D activities.

Defense Waste – (1) Radioactive waste from any activity performed in whole or in part in support of DOE atomic energy defense activities; excludes waste under purview of the Nuclear Regulatory Commission or generated by the commercial nuclear power industry. (2) Nuclear waste derived mostly from the manufacture of nuclear weapons, weapons-related research programs, the operation of naval reactors, and the decontamination of production facilities.

Department of Energy Site – A DOE-owned or -controlled tract used for DOE operations. Either a tract owned by DOE or a tract leased or otherwise made available to the federal government under terms that afford to DOE rights of access and control substantially equal to those that DOE would possess if it were the holder of the fee (or pertinent interest therein) as agent of and on behalf of the government. One or more DOE operations/program activities are carried out within the boundaries of the described tract.

Design Capacity - The planned waste capacity of the Waste Isolation Pilot Plant.

Disposal – Emplacement of waste in a manner that assures isolation from the biosphere for the foreseeable future with no intent of retrieval and that requires deliberate action to regain access to the waste. For example, disposal of wastes in a mined geologic repository occurs when all of the shafts to the repository area are backfilled and sealed.

Disposal Inventory – The total inventory defined for WIPP emplacement (after scaling) to be used for SPM and PA calculations.

Environmental Restoration (ER) – Those activities associated with the remediation of sites contaminated with hazardous and/or radioactive materials. In particular, a reference to remediation activities conducted under the auspices of the DOE Office of Environmental Restoration and Waste Management, Office of Environmental Restoration, EM-40.

Federal Facility Compliance Act (FFCAct) - Public law 102-386, 1992.

Gas Production – Three gas generation processes are expected to be a factor in the degradation of TRU wastes in the WIPP repository. The generation of gaseous species is expected to occur through chemical (i.e., corrosion), microbial, and radiolytic processes.

Generator/Storage Sites - See Waste Generator/Storage Sites.

Hazardous Waste – Those wastes that are designated hazardous by EPA (or state) regulations through the RCRA.

Integrated Data Base (IDB) – The latest version of the IDB, the Integrated Data Base for [CY]: U.S. Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics (DOE, 1994b)

Mixed TRU Waste – TRU waste that contains both radioactive and hazardous components as defined by the Atomic Energy Act and the RCRA as codified in 40 CFR Parts 263, 265, 268, and 270 (EPA, 1980a; 1980b; 1986; and 1983).

Mixed Waste Inventory Report (MWIR) – The latest release of information from the MWIR database that supports requirements under the FFCA of 1992 (Public Law 102-386). The latest version of the MWIR documentation/files is *Distribute of Phase II Mixed Waste Inventory Report Data*, dated May 17, 1994 (DOE, 1994a). This information replaces the Phase I MWIR release (DOE, 1994c).

Newly Generated Wastes - See Projected Inventory.

No-Migration Variance Petition (NMVP) — Section 3004 of RCRA allows EPA to grant a variance from the land disposal restrictions when a determination can be made that, to a reasonable degree of certainty, there will be no migration of hazardous constituents from the disposal unit for as long as the waste remains hazardous. Specific requirements for making this demonstration are found in 40 CFR 268.6, and EPA has published a draft guidance document to assist petitioners in preparing a variance request.

Non-Mixed TRU Waste - Transuranic waste that does not contain hazardous constituents or exhibit hazardous characteristics, as identified in 40 CFR 261, Subparts C and D.

Performance Assessment (PA) – (1) A systematic analysis of the potential risks posed by waste management systems to the public and environment and a comparison of those risks to established performance objectives. (2) An analysis that (a) identifies the processes and events that might affect the disposal system, (b) examines the effects of these processes and events on the performance of the disposal system, and (c) estimates the cumulative releases of radionuclides, considering the associated uncertainties, caused by all significant processes and events. These estimates shall be incorporated into an overall probability distribution of cumulative release to the extent practicable. (3) A term used to denote all activities (qualitative and quantitative) carried out to (a) determine the long-term ability of a site/facility to effectively isolate the waste and ensure the long-term health and safety of the public and (b) provide the basis for demonstrating regulatory compliance.

Plutonium (Pu) – A radionuclide having an atomic number of 94. Pu isotopes exist in some TRU waste at all the major DOE storage facilities. The significant isotopes that may exist in measurable quantities at these facilities are Pu-238 through Pu-242. Each isotope is an alpha emitter; the respective half-lives in years are: 238=87.7, 239=24,000, 240=6,563, 241=14.4, 242=376,000. Because of its high activity, Pu-238 can contribute significantly to the thermal loading on some TRU waste. Pu-241 decays, primarily by beta emission, to Am-241.

Process Knowledge – A qualitative evaluation of the contents of a waste container through the study of existing records of production history of the waste.

Projected inventory – That part of the inventory that has not been generated but is estimated to be generated at some time in the future by the TRU waste generator/storage sites. The estimated timeframe may vary, but is usually between 20 and 30 years. "Newly generated waste" also is sometimes used as a synonym for the projected inventory.

Information Only

138

Radioactive - The emission of radiation from unstable atomic nuclei.

Radionuclide – (1) A species of atom having an unstable nucleus, that is subject to spontaneous decay or disintegration and usually accompanied by the emission of ionizing radiation. (2) Any nuclide that emits radiation. A nuclide is a species of atom characterized by the constitution of its nucleus and hence by the number of protons, the number of neutron, and the energy content.

Remote-Handled (RH) TRU Waste – Packaged TRU wastes with an external surface dose rate exceeding 200 mrem per hour.

Repository - Designated location for disposal of transuranic wastes; the Waste Isolation Pilot Plant.

Resource Conservation and Recovery Act (RCRA) – (1) Establishes a system for controlling hazardous waste from generation to disposal. (2) A Federal law passed in 1976, and amended under the HSWA of 1984, that established a structure to track and regulate hazardous wastes from the time of generation to disposal. The law requires safe and secure procedures to be used in treating, handling, transporting, storing, and disposing of hazardous substances. RCRA is designed to prevent new uncontrolled hazardous waste sites. The law also regulates the disposal of solid waste that may not be considered hazardous. (3) Specifically, Subtitle D of RCRA governs the management of solid waste. (Note: 40 CFR Parts 260-281 are the regulations for complying with RCRA with respect to hazardous waste and hazardous waste treatment, storage, and disposal facilities.)

Retrievable Storage – Designated storage location for transuranic wastes that is designed, operated, and maintained in such a manner that the wastes remain accessible for subsequent retrievable operations.

Scaling - The process for adjusting the anticipated inventory to the design limit (disposal inventory) of the WIPP repository.

Site-Specific Waste Profile - Represents a WMCG at a particular DOE TRU waste generator/storage site. That is, one or more waste stream profiles, at a particular DOE TRU waste site, that have been placed in the same WMCG are summarized in the site-specific waste profile.

Stakeholders – Those persons and/or groups of people and organizations who are affected or perceive they are affected by the DOE waste management program. Stakeholders include DOE management, employees, and contractors (internal); and executive, legislative, and regulatory groups, public representatives, the general public, intervenor groups, special interest groups, contractors, suppliers, and universities (external).

Stored Inventory – That part of the TRU inventory currently in retrievable storage as of the time of the last data call for inventory information. Retrievably stored waste includes waste stored in buildings or in berms with earthen cover since 1970 and does not include any waste that was buried prior to 1970.

System Prioritization Methodology (SPM) – The SPM is a process formulated to identify a set of activities (required experiments, modeling, engineering design, and waste acceptance criteria) that will lead to regulatory compliance. The process is formulated such that it also: (1) addresses stakeholder and regulator concerns early and throughout the regulatory process and (2) leads to a fully defensible performance assessment to be used in demonstrating regulatory compliance. Ultimate products and associated customers are:

- A decision matrix containing the most likely sets of activities that will lead to compliance as a function of time and budget to be delivered to the WIPP program manager,
- (2) A performance assessment built on assumptions and data that are defensible in the eyes of the stakeholders and the regulators to be delivered to the regulatory compliance branch of Carlsbad Area Office/WIPP through the Westinghouse Waste Isolation Division and ultimately to the EPA, and
- (3) A set of regulatory issues and their current status that result from the SPM process and are to be included in compliance packages by the Westinghouse Waste Isolation Division.

Thorium (Th) – A radionuclide having an atomic number of 90. Although not TRU, Th-232 is an alpha emitter (half-life 14 billion years) and exists in finite amounts in some TRU waste at HA, IN, and OR. [Note: Thorium is naturally occurring and contributes to background radiation at some sites (e.g., IN)]

Transuranic – Pertaining to elements that have atomic numbers greater than 92, including neptunium, plutonium, americium, and curium; all are radioactive, are products of artificial nuclear changes, and are members of the actinide group.

Transuranic (TRU) Waste - (1) Waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations of TRU isotopes greater than 100 nanocuries per gram of waste. This core definition appears in modified form in various relevant documents as follows: (a) For purposes of management, DOE Order 5820.2A: (i) considers TRU waste, as defined above, "without regard to source or form" (The proposed revision to the Order [DOE Order 5820.2A Major Issues for Revision, May 6, 1992] contemplates removing this clause); (ii) allows head of field elements to determine that wastes containing other alpha-emitting radionuclides must be managed as TRU waste; and (iii) adds "at time of assay," implying both that the classification of a waste as TRU waste is to be made based on an assay, and that such classification can be superseded only by another assay. (b) For purposes of setting standards for management and disposal, 40 CFR 191.02(i) adds "except for: (i) high-level wastes; (ii) wastes that the DOE has determined, with the concurrence of the EPA Administrator, do not need the degree of isolation required by this part; or (iii) wastes that the Nuclear Regulatory Commission has approved for disposal on a case-by-case basis in accordance with 10 CFR 61. (2) Waste materials contaminated with U-233 (and its daughter products), with certain isotopes of plutonium, or with other nuclides with atomic numbers greater than 92. In order to be classified as TRU waste, the long-lived alpha activity from subject isotopes must exceed 100 nanocuries per gram of waste material and from the use of plutonium in the fabrication of nuclear weapons. (3) Wastes that are contaminated with radioactive elements heavier than uranium, thus the name trans-(or beyond) uranic.

TRUCON - See TRUPACT-II Content Code.

Information Only

TRUPACT-II Content Codes (TRUCON) – The document containing a description of the waste stream, waste form, and package configuration for each waste content code authorized for shipment in TRUPACT-II containers.

Unknown Waste Stream - Those waste streams for which there is insufficient process knowledge to assign a specific WMC.

Uranium (U) – A naturally radioactive element with the atomic number of 92 (number of protons in the nucleus) and an atomic weight of approximately 238. The two principal naturally occurring isotopes are the fissionable U-235 (0.7 percent of natural uranium) and the fertile U-238 (99.3 percent of natural uranium). (Note: An alpha emitter [half-life 159,000 y], U-233 also spontaneously fissions; it is present in finite quantities in some TRU waste inventories at INEL and ORNL.)

Waste Acceptance Criteria (WAC) - The criteria used to determine if waste packages are acceptable.

Waste Form - The physical form of the waste such as sludges, combustibles, metals, etc.

Waste Generator/Storage Sites - The 10 largest DOE facilities and several smaller sites throughout the U.S. that produce and store TRU waste.

Waste Isolation Pilot Plant (WIPP) – (1) The project authorized under Section 213 of the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164; 93 Stat. 1259, 1265) to demonstrate the safe, and environmentally sound, disposal of radioactive waste materials generated by atomic energy defense activities. (2) A research and development facility, located near Carlsbad, New Mexico, to be used for demonstrating a practical, long-term solution to a complex problem: the safe disposal in deep geologic repositories of TRU waste resulting from DOE activities. (3) The WIPP has two primary objectives. First, the WIPP is investigating the behavior of salt rock and interactions between the salt rock and radioactive wastes in a variety of forms. Second, the WIPP seeks to demonstrate the safe and efficient handling, transportation, and disposal of TRU waste in an actual facility.

Waste Material Parameter – A waste material that occurs in TRU waste that is an input parameter into one or more current SPM or PA models, an SPM or PA model under development, a potential future model, or is required to adequately describe the waste form.

Waste Matrix Code (WMC) – A DOE-developed coding system for organizing waste streams by their physical and chemical properties. A WMC is assigned to each waste stream by the DOE TRU waste generator/storage site. The WMC for each waste stream can be found in the Mixed Waste Inventory Report (DOE, 1994a). This coding system allows waste streams within the DOE TRU waste system that have similar physical and chemical waste form properties to be categorized together. WMCs also have been called "waste treatability codes" in other DOE documents. Appendix C contains the DOE guidance document to help categorize individual waste streams. An example of a WMC for "heterogeneous waste" would be 5400.

Waste Matrix Code Group (WMCG) - Consists of a series of WMCs that for SPM or PA purposes has similar physical and chemical properties.

Waste Stream - Individually, those stored or projected wastes that are defined by a unique identifier in the MWIR.

Waste Stream Name - A site-specific, unique descriptive identifier for a TRU waste stream.

Waste Stream Profile – A description of a CH-TRU or RH-TRU waste stream destined for shipment to and disposal in WIPP, if authorized under permits and certifications by appropriate regulatory agencies for disposal in the WIPP repository. The waste stream profile is presented in tabular format and is intended to provide a summary of the important information about a particular waste stream.

Waste Stream Site ID - A site-specific alphanumeric identification code which provides a unique identifier for an individual TRU waste stream.

WIPP Waste Profile - Represents a summary of TRU waste at all DOE TRU waste generator/storage sites that have an identical WMCG.

CHAPTER 9

Information Only

9. REFERENCES

DOE - See U.S. Department of Energy.

EG&G Rocky Flats, 1994, Conceptual Design Report for Residue Elimination at Rocky Flats, RES-005-001, Volume IV.

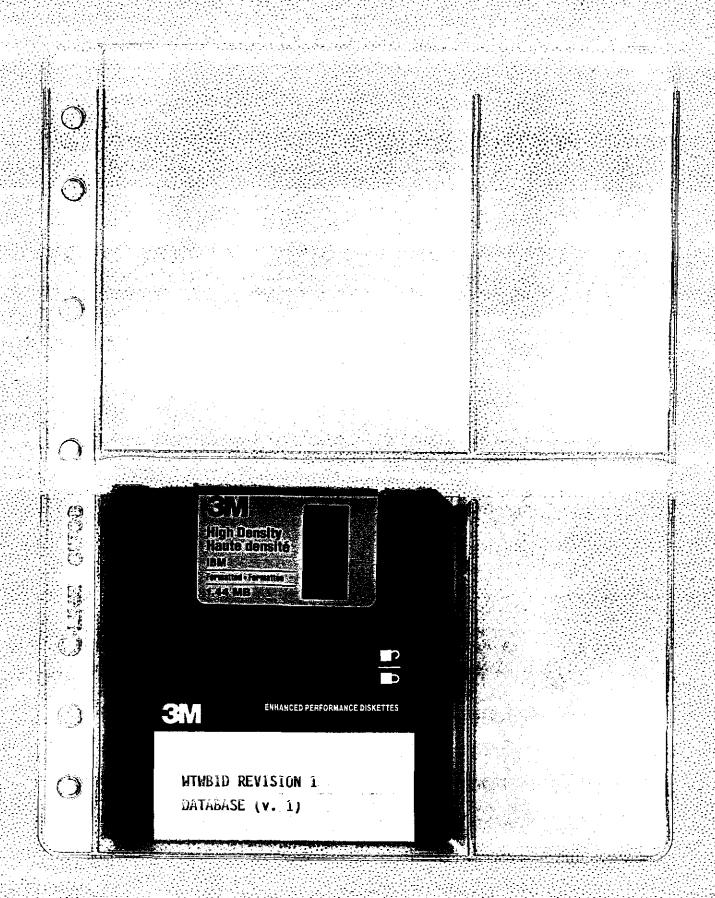
EPA - See U.S. Environmental Protection Agency.

Nuclear Packaging, Inc., 1991, Safety Analysis Report for the TRUPACT-II Shipping Package, Revision 11, June 1991.

Public Law 102-386, 1992, Federal Facility Compliance Act of 1992.

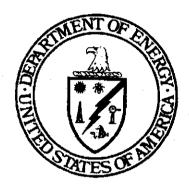
Public Law 102-579, 1992, Waste Isolation Pilot Plant Land Withdrawal Act.

Sanchez, Larry, 1995, Personal Communication, SNL/NM.


- U.S. Department of Energy, 1995, NTPO Branch Procedure, Waste Isolation Pilot Plant Baseline Inventory Report Database Management," February 14, 1995.
- U.S. Department of Energy, 1994a, Distribute of the Phase II Mixed Waste Inventory Report Data, memo from Patty Bubar to Distribution dated May 17, 1994, Washington, D.C. (includes data diskette [Version 1.00] the draft User's Guide for National Data Base System for the Final Mixed Waste Inventory Report [May, 1994] and Mixed Waste Inventory Report Data Base System User's Guide).
- U.S. DOE, 1994b, Draft Integrated Data Base for 1994 (draft): U.S. Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Revision 10, December 22, 1994.
- U.S. Department of Energy, 1994c, Release of Phase I Mixed Waste Inventory Report Data, memo from Patty Bubar to Distribution, dated April 1, 1994, Washington, D.C. (includes data diskette [Version .97B] and Mixed Waste Inventory Report Data Base System User's Guide).
- U.S. DOE, 1994d, Integrated Data Base for 1993: U.S. Spent Fuel and Radioactive Waste Inventories, Projections and Characterization, Revision 9, April 1994.
- U.S. Department of Energy, 1993a, Request for Collecting Data in Support of the Mixed Waste Inventory Report, Memorandum from Joseph A. Coleman, October 21, 1993, Exhibit A-6 [DOE Waste Treatability Group Guidance].
- U.S. Department of Energy, 1993b, draft Resource Conservation and Recovery Act Part B Permit Application, Waste Analysis Plan, Revision 3, DOE/WIPP 91-005.
- U.S. Department of Energy, 1993c, U.S. Department of Energy Interim Mixed Waste Inventory Report: Waste Streams, Treatment Capacities and Technologies, 6 volumes, DOE/NBM-1100, April 1993.

Information Only

- U.S. Department of Energy, 1992, TRUPACT-II Content Codes (TRUCON), DOE/WIPP 89-004, Revision 6.
- U.S. Department of Energy, 1991, TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant, WIPP-DOE-069, Revision 4, December 1991.
- U.S. Department of Energy, 1990, *No-Migration Variance Petition*, Volumes I through VIII, DOE/WIPP 89-011, Revision 1, Carlsbad, New Mexico.
- U.S. Department of Energy, 1988, *Radioactive Waste Management*, DOE 5820.2A, U.S. Department of Energy, Washington, D.C.
- U.S. Environmental Protection Agency, 1995, Criteria for Certification of Compliance with Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Wastes, 40 CFR 194, notice of proposed rulemaking, Federal Register, Vol. 58, Page 792, January 30, 1995.
- U.S. Environmental Protection Agency, 1993, Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, final rule, Federal Register, Vol. 58, Page 66398, December 20, 1993.
- U.S. Environmental Protection Agency, 1986, *Land Disposal Restrictions*, 40 Code of Federal Regulations, Part 268.
- U.S. Environmental Protection Agency, 1983, *EPA Administered Permit Programs: The Hazardous Waste Permit Program*, 40 Code of Federal Regulations, Part 270.
- U.S. Environmental Protection Agency, 1980a, Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage and Disposal Facilities, 40 Code of Federal Regulations, Part 265.
- U.S. Environmental Protection Agency, 1980b, Standards for Owners and Operators of Hazardous Waste Treatment, Storage and Disposal Facilities, 40 Code of Federal Regulations, Part 264.
- WIPP Performance Assessment Division, 1993, Preliminary Performance Assessment for the Waste Isolation Pilot Plant, Volume 5: Uncertainty and Sensitivity Analyses of Gas and Brine Migration for Undisturbed Performance, SAND92-0700/5, Sandia National Laboratories, Albuquerque, New Mexico, August 1993.

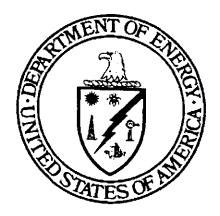

SANDIA NATIONAL Laboratories Technical Library

CAO-94-1005 Revision 1

SANDIA NATIONAL LABORATORIES NWMP LIBRARY 6352 P. O. BOX 5800 ALBUQUERQUE, NM 87185-1330

Cy.a

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report


February 1995

Volume 2

11/7

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report

February 1995

Prepared by WIPP Technical Assistance Contractor for U.S. Department of Energy under Contract No. DE-AC04-93AL-96904

Volume 2

Information Only

148

APPENDIX A

Information Only

ノリタ

Ames Laboratory

Information Only

APPENDIX A WASTE STREAM PROFILES

AMES LABORATORY (AL) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the AL waste stream profiles:

- AL Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by AL.
- A data entry error was made on the original form for the number of containers stored at AL.
 This error was corrected.
- The projected volumes reported by AL were not distributed to individual years. Based on the footnotes provided by AL, these volumes were distributed by the WTWBIR team for both current and final form volumes for the years 2003-2022.
- The volume of the final waste form assumes a 2.5 volume expansion factor for solidification.

SITE NAME AL			WAST	TE TYPE MTRU	HANDLING C		GENERATOR :	SITE AL	
WIPI Loca MATRIX CODE SITE FINAL FORM IDC	AL-W005 PID AL-W005 II ID Glovebox			Aqueous Liquids/S Mixed Transuranic		/ebox			
Waste Matrix Code Grou Site Matrix Descriptio	This waste s glovebox con determined v 233, U-235, Uranium con	stream will be generate ntinues to be used for i what volume will be MT U-236, and U-238. Co centrations range from	TRU and what will be procentrations of the	oe TRU. Isotopes the TRU components r	at are known to ange from 1 pph	ebox will be in the g	ecome MTRU v	waste. It has not ye	et been
PINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	ste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Operations Waste Residues Decon and Decomore Environmental Restormation Treatment of Maintenance	nissioning oration	 -	Asbestos PCBs Other N/A Unknown	×	

AL-W005 - 1

AL - 1

R.

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

NAME AL			WASTE TYPE MTRU HANDLING CH GENERATOR SITE AL	
AL-W005 CONTAINER: Type/Size: TYPICAL WASTE DENSITI		NAL WASTE	Container Mati: Steel Liner Type: Number Store Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projecte FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COM	ed: 1
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments Assumptions:		0.0 0.0 0.0 173.1 0.0 0.0 173.1 0.0 0.0	Nuclide Activity Np237 4.00E-03 Cu	ries/m3 ries/m3 ries/m3 ries/m3
Transuranic waste will be gen isotopes are currently housed in 2. TRU waste will only be generally when the filters are replaced. Thuntil CY2004 at the earliest. Ames Laboratory plans to utiliwaste pending the opening of Wi	glovebox with the distribution of the state of the storage the storage of the sto	Ih the appropria research projec will be no TRU	te HEPA filters. It is complete or waste generation D007A D008A	

AL-W005 - 2

AL - 2

Argonne National Laboratory - East

Information Only

154

ARGONNE NATIONAL LABORATORY-EAST (AE) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the AE waste stream profiles:

- AE Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by AE.
- The volumes for the year 1993 were changed from an annual rate of generation (m³/year) to a cumulative value (m³).
- A data entry error was made on the original form for the number of containers stored at AE.
 This error was corrected.

Information Only

155

SITE NAME AE	WASTE TYPE TRU HANDLING CH GENERATOR SITE AE
WASTE STREAM MWIR ID WIPP ID AE-T001 Local ID Not reported MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics	DESCRIPTION Non-mixed TRU derived from IDB
Site Matrix Description NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos X Operations Waste PCBs

AE-T001 - 1

AE - 1

157

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

SITE NAME AE			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE AE	<u> </u>
AE-T001 CONTAINER Type/Size TYPICAL WASTE DENSIT	55-gallon	INAL WASTE	Int.	<u> </u>	- -J	Liner Type: iner Material: E-ESTIMATED		Number S	
Material Parameters	Average	Lower Limit		RATES C		GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	Upper Limit 0.0		Decimated	F11 F	Am241	2.13E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 17.4	Final Form	Am243	4.00E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	18.0	17.4 m3 18.0 m3	Np237	6.43E-03	Curies/m3
Other Inorganic Materials	101.0	101.0	101.0	1994:	0.6		Pu238	4.07E-06	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.6 m3/yr	Pu239	1.17E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr 0.0 m3/yr	Pu241	6.10E-01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U233	1.20E-09	Curies/m3
Solidified, Inorganic matrix	216.3	168.3	259.6	1998-2002:	0.0	0.0 m3/yr	U235	2.50E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U238	2.24E-05	Curies/m3
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0			TYPICAL	L EPA CODE	S APPLICABLE			
Packaring Majorial Dinetic									

Comments

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to Hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

SITE NAME AE			WAS	TE TYPE TRU	HANDLING CH	GENER	ATOR SITE AE		
	Group Uncategorized	i	TREAM NAMI	Non-mixed TRU deri	ved from IDB.				
NO MIGRATION VARI		SIGNMENT			TRUCON CO	DDE			
Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	sle J Waste X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. V Operations Waste Residues Decon and Decommis Environmental Restor From Treatment of Waster	ssioning ration	TSCA Asbe PCBs Other N/A Unkn		X	

AE-T003 - 1

AE - 3

TE NAME AE			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR S	SITE AE	
AE-T003 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	<u> </u>	08 m3 L	Liner Type: iner Material: E-ESTIMATED		Number S Number Pro	jected: 3
Material Parameters	Average			RATES	OF WASTE	GENERATION	Nuclide Nuclide		OMPOSITION
Iron-based Metals/Alloys		Lower Limit	Upper Limit				Am241	Activity	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form		2.13E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1992:	4.4	4.4 m3	Am243	4.00E-02	Curies/m3
	302.9	76.9	913.5	End of 1993:	5.0	5.0 m3	Np237	6.43E-03	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.6	0.6 m3/yr	Pu238	4.07E-06	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu239	1.17E+00	Curles/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu241	6.10E-01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0		U233	1.20E-09	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry	U235	2.50E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	U238	2.24E-05	Curies/m3
Soils	0.0	0.0	0.0		3.0	0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0					***************************************			
Cammanta									

Comments

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to Hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

SITE NAME AE	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE
WASTE STREAM WIPP ID AE-W038 WIPP ID AE-W038 Local ID Not reported 6120 SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics Site Matrix Description This waste stream comprises three	STREAM NAME Aqueous Lab Packs DESCRIPTION MTRU Acidic Wastewater The ee waste sources: 1) Lab packs of acidic wastes from research and development projects site-wide, 2) Acidic master (CAT) District acidic wastes from research and development projects site-wide, 2) Acidic
wastewater from Chemical Techr Laboratory (NBL). NO MIGRATION VARIANCE PETITION ASSIGNMENT	nology (CMT) Division - Building 205, and 3) Acidic wastewater from the analysis of plutonium at the New Brunswick TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Wixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

ENAME AE	_		WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE							
AE-W038 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.		08 m3 L	Liner Type: ner Material:		Number S Number Pro			
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>		
iron-based Metals/Alloys	0.0	0.0	0.0		Drainated	Fig. 1 Camp	Am241	2.13E+00	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 4.1	Final Form 4.1 m3	Am243	4.00E-02	Curies/m3		
Other Metals	0.0	0.0	0.0	End of 1993:	4.7	4.7 m3	Np237	6.43E-03	Curies/m3		
Other Inorganic Materials	101.0	101.0	101.0	1994:	0.6		Pu238	4.07E-06	Curies/m3		
Cellulosics	0.0	0.0	0.0	1996:	0.0	0.6 m3/yr	Pu239	1.17E+00	Curies/m3		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr 0.0 m3/yr	Pu241	6.10E-01	Curies/m3		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U233	1,20E-09	Curies/m3		
Solidified, Inorganic matrix	216.3	168.3	259.6	1998-2002:	0.0	0.0 m3/yr	U235	2.50E-05	Curies/m3		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U238	2.24E-05	Curies/m3		
Soils	0.0	0.0	0.0								
Packaging Materials, Steel	131.0	 _		TYPICA	L EPA CODE	S APPLICABLE					
Packaging Material, Plastic	0.0				D002B						
Comments					D004A						
Hanford, WA site data includes A	NL-E waste	forecast data for	vears 1995 thro	uah	D006A						

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to Hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

AE-W038 - 2

AE - 6

SITE NAME AE	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE
WASTE STREAM WIPP ID AE-W039 Local ID Not reported 3212 SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description Resins used in the radiochemical and stream in the radiochemical	STREAM NAME Organic Resins DESCRIPTION MTRU Organic Resins analysis.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Research and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

AE-W039 - 1

SITE NAME AE			WAS	STE TYPE MTR	U HAND	LING CH GE	ERATOR S	ITE AE	
AE-W039 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	fnt.	<u> </u>	08m3 L	Liner Type: iner Material: E-ESTIMATED		Number S Number Pro	jected: 0
Material Parameters	_			RATES	OF WASTE	GENERATION			OMPOSITION
	Average	Lower Limit	Upper Limit				<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	<u>Fi</u> nal Form	Am241	2.13E+00	Curies/m3
Aluminum-Based Metals/Alloys	0,0	0.0	0.0	End of 1992:	0.025	0.025 m3	Am243	4.00E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.025	0.025 m3	Np237	6.43E-03	Curles/m3
Other Inorganic Materials	351.0	28.8	548.1	1994:	0,000	0.000 m3/yr	Pu238	4.07E-06	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.000	0.000 m3/yr	Pu239	1.17E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.000	0.000 m3/yr	Pu241	6.10E-01	Curies/m3
Plastics	0.0	0.0	0.0	1997;	0.000	0.000 m3/ry	U233	1.20E-09	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.000		U235	2.50E-05	Curies/m3
Solidified, Organic matrix	346.2	101.0	726.0	2003-2022:	0.000	0.000 m3/yr	U238	2.24E-05	Curies/m3
Soils	0.0	0.0	0.0	2000-2022.	0.000	0.000 m3/yr			
Packaging Materials, Steel	131.0		0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0				D006A				

Comments

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

AE-W039 - 2

AE - 8

WASTE STREAM MWIR ID AE-WO40 Local ID Not reported STREAM NAME Waste Matrix Code Group Site Matrix Description Wire ID AE-Wo40 Local ID Not reported MTRU Evaporator, Concentrator Studges MTRU Evaporator, Concentrator Studges Waste Matrix Description MTRU siudge from evaporator used to concentrate aqueous liquids. Studges may contain cadmium, chromium and/or mercury. NO MIGRATION VARIANCE PETITION ASSIGNMENT TRUCON CODE FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Non-Defense TRU Waste Unknown Mixed TRU Unknown Unknown Unknown STREAM NAME Wastewater Treatment Sludges DESCRIPTION MTRU Evaporator, Concentrator Sludges TRUCON CODE FINAL Waste FORM DESCRIPTORS: Defense TRU Waste Non-Mixed TRU Unknown									
MATRIX CODE SITE FINAL FORM II	WIPP ID AE-W040 Local ID Not repor 3121 DC	led		<u></u>	-	ludges			
Site Matrix Des	cription MTRU slud	ge from evaporator used to	concentrate a	aqueous liquids. Slud	ges may contair	n cadmium,	chromium and	d/or mercury.	
		ASSIGNMENT			TRUCON	CODE			
Defense TRU W Non-Defense TR Commercial TR	Vaste X	Non-Mixed TRU Suspect Mixed TRU	X	Operations Waste Residues Decon and Decomm	nissioning oration	TSCA	PCBs Other N/A	X	·

9

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

									
AE-W040 CONTAINER:	Drum		Contair	ier Matt: Steel		Liner Type:		Number S	Stored:
Type/Size:	55-gallon		Int. V	ol/Ctnr: 0.2	08 m3 L	iner Material:		Number Pro	
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/m	3) STOREC		E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	2.13E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.4 m3	Am243	4.00E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		0,4 m3	Np237	6.43E-03	Curies/m3
Other Inorganic Materials	394.2	173.1	528.8	1994:	0.0	0.0 m3/yr	Pu238	4.07E-06	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu239	1.17E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu241	6.10E-01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U233	1.20E-09	Curies/m3
Solidified, Inorganic matrix	399.0	173.1	528.8	1998-2002:	0.0	0.0 m3/yr	U235	2.50E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U238	2.24E-05	Curies/m3
Soils	0.0	0.0	0.0			<u> </u>			
Packaging Materials, Steel	131.0			TYPICA		ES APPLICABLE			
Packaging Material, Plastic	0.0				D006A				
Comments					D007A				
Hanford, WA site data includes A	NL-F waste f	orecast data for	veare 1005 throi	unh	D009A				
2022. ANL-E has included the re	quested data	in its forecast to	o Hanford and	^{29"}					
reporting this data separately wor	uld result in d	ouble counting o	of waste volumes						
ANL-E plans to ship this waste to	Hanford prov	vided projects a	re funded,						
Storage/Disposal Approval Requactually generated, regulations at	ests are appr	oved, estimated	i waste volumes :	are					

AE-W040 - 2

AE - 10

SITE NAME AE				WAST	E TYPE MTRU	HANDLING C	Н	GENERATOR SIT	re AE	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	<u>)C</u>	AE-W041 Not reported 7210			Non-Activated Lea					
Waste Matrix Code Site Matrix Desc No MIGRATION VAF	cription Le	ad bricks from	Building 212 glov	e boxes. The lead	bricks contain pluto					
FINAL WASTE FORM Defense TRU W Non-Defense TR Commercial TRU Unknown	M DESCRIF daste RU Waste	PTORS: Mi	xed TRU on-Mixed TRU ispect Mixed TRU iknown		Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning storation		Asbestos PCBs Other N/A Unknown	X	

SITE NAME AE			WAS	TE TYPE MTR	HAND	LING CH GEN	ERATOR S	ITE AE	
AE-W041 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals	55-gallon	0.0 0.0	FORM (kg/m Upper Limit 0.0 0.0	STORED RATES (TRU WASTE DF WASTE Projected 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 0.0 m3		Number S Number Pro	L
Other Inorganic Materials Cellulosics	0.0	76.9 0.0 0.0	913.5 0.0 0.0	End of 1993; 1994; 1995;	0.7 0.0 0.0	0.7 m3 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239	4.07E-06 1.17E+00	Curies/m3 Curies/m3
Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1996: 1997: 1998-2002:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/ry 0.0 m3/yr	Pu241 U233 U235 U238	6.10E-01 1.20E-09 2.50E-05 2.24E-05	Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 131.0 0.0	0.0	0.0	2003-2022; <u>TYPICA</u>	0.0 L EPA CODE D008C	ES APPLICABLE			osii. Siii jo

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to Hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

SITE NAME AE	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE
WASTE STREAM WWR ID AE-W042 WIPP ID AE-W042 Local ID Not reported MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Lead/Cadmium Metal Waste	STREAM NAME Cadmium containing metal debris DESCRIPTION MTRU Cadmium Waste
NO MIGRATION VARIANCE PETITION ASSIGNMENT	vaste from IFR research and development projects. The waste contains plutonium and uranium.
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

AE-W042 - 1

AE - 13

ITE NAME AE			WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR S	ITE AE	
TYPICAL WASTE DENSITI	55-gallon ES FOR F	Lower Limit	Int. FORM (kg/n <u>Upper Limit</u>	n3) STORED	22 m3 L	Liner Type: iner Material: E-ESTIMATED GENERATION		Activity	jected: 0
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	256.1 27.8	256.1	256.1	*	Projected	Final Form	Am241 Am243	2.13E+00 4.00E-02	Curies/m3 Curies/m3
Other Metals		27.8	27.8	End of 1992:		0.4 m3	Np237	6.43E-03	Curies/m3
	24.7	24.7	24.7	End of 1993:	<u> </u>	0.4 m3	Pu238	4.07E-06	
Other Inorganic Materials	29.3	2.3	29.3	1994:	0.0	0.0 m3/yr	Pu239		Curies/m3
Cellulosics	7.4	0.0	45.3	1995:	0.0	0.0 m3/yr		1.17E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu241	6.10E-01	Curies/m3
Plastics	15.1	0.0	67.6	1997;	0.0	0.0 m3/ry	U233	1.20E-09	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	U235	2.50E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U238	2.24E-05	Curies/m3
Soils	0.0	0.0	0.0		-				
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0				D006A				

Comments

Hanford, WA site data includes ANL-E waste forecast data for years 1995 through 2022. ANL-E has included the requested data in its forecast to Hanford and reporting this data separately would result in double counting of waste volumes. ANL-E plans to ship this waste to Hanford provided projects are funded, Storage/Disposal Approval Requests are approved, estimated waste volumes are actually generated, regulations allow shipment, etc., during that time period.

Argonne National Laboratory - West

ARGONNE NATIONAL LABORATORY-WEST (AW) WASTE STREAM PROFILES

The following assumptions were made by the WTWBIR team in developing the AW waste stream profiles.

An AW RH Canister (without any shielding) has been assumed for the 0.112 m³ RH container.

SITE NAME AW			WAS	TE TYPE MTRU HANDL	ING CH	GENERATOR SI	ITE AW	
WASTE STREAM MATRIX CODE	MWIR ID WIPP ID AW-M001 Local ID CH-ANL-5 5400		TREAM NAMI	ALHC Upgrade Decon Debr	is			
SITE FINAL FORM IC	oc							
Site Matrix Des		aged for WPP containing: on, and bags of lead-lined	radioactive ca gloves were pl	dmium debris from CH-ANL-2- aced in the solidified Co2 drum	42T, solidified ns to fill the voi	to meet WIPP-WAC d space.	requirement for partic	ulate
NO MIGRATION VAL		SSIGNMENT		TRUC	CON CODE			
PINAL WASTE FORM Defense TRU WASTE TRU WASTE TRUE Commercial TRUE Unknown	/aste RU Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSC	Asbestos PCBs Other N/A Unknown	х	

AW-M001 - 1

AW-1

NAME AW			WAS	TE TYPE MTRU	HAND	LING CH GEN	ERATOR S	ITE AW
AW-M001 CONTAINER: Type/Size:			Int. \	L	9m3 L	Liner Type: iner Material:		Number Stored: 0 Number Projected: 1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED		E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	F WASIE	GENERATION	Nuclide	<u>Activity</u>
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3		
Other Metals	145.0	145.0	145.0	End of 1993:	0.0	0.0 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	1.2	1.9 m3/yr		
Cellulosics	264.0	264.0	264.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	13.0	13.0	13.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	237.0	237.0	237.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022: [0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICAL	FPA CODE	ES APPLICABLE		
Packaging Materials, Steel	154.0				D006	LO AL TEIGABLE		
Packaging Material, Plastic	0.0							
Comments					D007			
Leaded gloves are 22% of volume Mops are 40% of volume Plastics are 2% of volume Solidified process residues are 36		•			D008			

SITE NAME AW			WAST	E TYPE MTRU	HANDLING CH	GEN	ERATOR SIT	TE AW	
	MWIR ID WIPP ID AW-M002		STREAM NAME	Lead/Cadmium M	etal Waste				
MATRIX CODE SITE FINAL FORM IDO	Local ID CH-ANL-1 5311	42T	DESCRIPTION	This waste is typic	ally lead lined glo	ves replaced	at the Experim	nental Fuel Laborator	y Glove Box.
Waste Matrix Code (Site Matrix Descr	` 	m Metal Waste typically lead lined glo	ves replaced at th	e Experimental Fu	el Laboratory Glov	е Вох.			
NO MIGRATION VARI	IANCE PETITION A	SSIGNMENT			TRUCON C	ODE			
FINAL WASTE FORM	DESCRIPTORS:								
Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	J Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Developerations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	nmissioning storation	O N	CBs ther	X	

125

SITE NAME AW			W	ASTE TYPEMTR	U HANDI	ING CH GEN	IERATOR S	ITE AW
AW-M002 CONTAINER: Type/Size:	55-gallon		fr		21 m3 LI	Liner Type: ner Material:		Number Stored: 0 Number Projected: 3
TYPICAL WASTE DENSITI			FORM (kg	<u>(/m3)</u> <u>STORED</u> RATES (TRU WASTE	-ESTIMATED GENERATION		ISOTOPIC COMPOSITION
Material Parameters	Average	<u>Lower Limit</u>	<u>Upper Lin</u>	<u>ilt</u>		CLILLIOTION	<u>Nuclide</u>	<u>Activity</u>
Iron-based Metals/Alloys					Projected	Final Form		
Aluminum-Based Metals/Alloys		<u> </u>		End of 1992;				
Other Metals		 		End of 1993:		0.00 m3		
Other Inorganic Materials		 	<u> </u>			0.02 m3		
Cellulosics		 		1994:	0.02	0.02 m3/yr		
Rubber			<u> </u>	1995:	0.02	0.02 m3/yr		
· · · · · ·				1996:	0.02	0.02 m3/yr		
Plastics		L		1997:	0.02	0.02 m3/ry		
Solidified, Inorganic matrix				1998-2002:	0.02	0.02 m3/yr		
Solidified, Organic matrix				2003-2022:	0.02	0.02 m3/yr		
Soils		<u>├</u> ──		4.55	0.02	0.02 1113/91		
Packaging Materials, Steel	131.0	L	L	TYPICA	L EPA CODE	S APPLICABLE		
Packaging Material, Plastic					D008			

SITE NAME AW			WAS	STE TYPE MTRU	HANDLING RI	Н С	ENERATOR \$	ITE AW]
W MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gr	• 1	503T	DESCRIPTION	E TRU waste used p Spent Metal and W voi changed to 0 and	food Prefilters. W and added .91 to 1	993.			
NO MIGRATION VARIA	from the dec	onsists of metal or wood h efficiency filtering media ontamination of the analy SSIGNMENT	a the concern	u duoris or radioisoton	2'x .5'. HEPA files and RCRA to	xic metals v	x 2' x 1'. Both (vary in each filte	lypes of filters have er. These filters wo	screen mesh ere generated
FINAL WASTE FORM D Defense TRU Waste Non-Defense TRU W Commercial TRU W Unknown	e Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of Maintenance	. Waste X nissioning oration	TSCA	Asbestos PCBs Other N/A Unknown	X	

AW-M003 - 1

AW - 5

ENAME AW			WASTE TYPE MTRU HANDLING RH GENERATOR SITE AW
AW-M003 CONTAINER Type/Size TYPICAL WASTE DENSITI	RH Canniste	ır	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992: 0.0 0.0 m3
Other Metals	0.0	0.0	0.0 End of 1993: 0.9 0.9 m3
Other Inorganic Materials	232.5	214.9	241.2 1994; 0.1 0.1 m3/yr
Cellulosics	0.0	0,0	0.0 1995: 0.0 0.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr
Plastics	8.8	8.8	8.8 1997: 0.0 0.0 m3/ry
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.0 0.0 m3/yr
Solidified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.1 0.1 m3/yr
Soils	0,0	0.0	0.0
Packaging Materials, Steel	435.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	0.0		
Footnotes			
Includes 465 kg/m3 of lead shield	ling.		

SITE NAME AW	WASTE TYPE TRU HANDLING CH GENERATOR SITE AW
WASTE STREAM MWIR ID WIPP ID AW-T001 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description	STREAM NAME ANL-W CH TRU Waste DESCRIPTION CH-TRU waste generated by FCF pyroprocessing demonstration (not yet generated). Estimated 2 drums/year.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X Operations Waste X Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

AW-T001 - 1

AW-7

AW-T001 CONTAINER: Type/Size:			Container Matt: Steel Liner Type: 80 mil Liner HD Number Stored: Int. Vol/Ctnr: 0.208 m3 Liner Material: plastic Number Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form
Aluminum-Based Metals/Alloys	0,0	0.0	0.0 End of 1992: 0.0 0.0 m3
Other Metals	0.0	0.0	0.0 End of 1993: 0.0 0.0 m3
Other Inorganic Materials	0.0	0.0	0.0 1994: 0.0 0.0 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 0.4 0.4 m3/yr
Rubber	0.0	0.0	0.0 1998; 0.4 0.4 m3/yr
Plastics	0.0	0.0	0.0 1997: 0.4 0.4 m3/ry
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.4 0.4 m3/yr
Solidified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Soils	0.0	0.0	0.0
Packaging Materials, Steel	131.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	0.0		
Comments			

SITE NAME AW	WASTE TYPE TRU HANDLING RH GENERATOR SITE AW
WASTE STREAM MWIR ID WIPP ID AW-T002 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description	STREAM NAME Projected RH canisters. DESCRIPTION RH-TRU waste generated from FCF pyroprocessing.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Defense TRU Waste X Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

AW-T002 - 1

AW - 9

181

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

ENAME AW			WAS	WASTE TYPE TRU HANDLING RH GENERATOR SITE AW						
AW-T002 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	ANL-WRH	Canister	Int.		12m3 Li	Liner Type: ner Material: ESTIMATED		Number Stored: Number Projected:		
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	ISOTOPIC COMPOSITION Activity		
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form				
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0 m3				
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3				
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0.3	0.3 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.9	0.9 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.9	0.9 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.9	0.9 m3/yr				
Soils	0.0	0.0	0.0							
Packaging Materials, Steel	0.0			TYPICA	<u>L EPA CODE</u>	S APPLICABLE				
Packaging Material, Plastic	0.0									
Comments		÷								
No constituent data provided.				\neg						

AW-T002 - 2

AW - 10

SITE NAME AW			WAS	TE TYPE MTRU	HANDLING F	RH (GENERATOR S	SITE AW	
WI Lo MATRIX CODE SITE FINAL FORM IDC	VIR ID AW-W016 PP ID AW-W016 cal ID CH-ANL-245 3190	T <u>DI</u>		Electrorefiner Strip					
	tion This waste stre ANL-Fuel Cycle	am consists of cadmium Facility.	dispersed in	a copper alloy matri	ix. This waste st	ream will b	e generated from	m the Electrorefiner st	ation in the
NO MIGRATION VARIANT		IGNMENT			TRUCON	CODE			
Defense TRU Waste Non-Defense TRU V Commercial TRU Wa Unknown	Vaste X N	fixed TRU Ion-Mixed TRU uspect Mixed TRU nknown	×	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning toration	TSCA	Asbestos PCBs Other N/A Unknown	X	

AW-W016 - 1

SITE NAME AW			WAS	TE TYPE MTR	J HANDI	ING RH GEN	ERATOR S	ITE AW
	ANL-WRH (anister	Int.	<u> </u>		Liner Type: iner Material:		Number Stored: 0 Number Projected: 2
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	JF WASTE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	256.1	256.1	256.1		<u>Projected</u>	Final Form		
Aluminum-Based Metals/Alloys	27.8	27.8	27.8	End of 1992;		0.00 m3		
Other Metals	24.7	24.7	24.7	End of 1993:	0.00	0.00 m3		
Other Inorganic Materials	29.3	2.3	29.3	1994:	0.00	0.00 m3/yr		
Cellulosics	7.4	0.0	45.3	1995:	0.02	0.02 m3/yr		•
Rubber	0.0	0.0	0.0	1996:	0.02	0.02 m3/yr		
Plastics	15,1	0.0	67.6	1997:	0.02	0.02 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.04	0.04 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.00	0.00 m3/yr		
Soils	0.0	0.0	0.0	7000				
Packaging Materials, Steel	0.0			IYPICA		S APPLICABLE		
Packaging Material, Plastic	0,0				D006A			

SITE NAME AW			WAS	STE TYPE MTRU	HANDLING RE	d GI	ENERATOR SIT	re aw	
WIPI	R ID AW-W018 P ID AW-W018 II ID CH-ANL-18 6200 II Uncategorized	ОТ		N Sodium-TRU		;			
Site Matrix Description NO MIGRATION VARIANCE	operational act maintenance a	tivities. The sodium ty	1 AAG2(E LACIULA	t for the EBR-II Reactor. (RSWF). Waste at RS aste metal equipment, e	vvr is remote-h experiments and	nandled. The	ie waala ie assa.		_
FINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	SCRIPTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devei, V Operations Waste Residues Decon and Decommis Environmental Restor From Treatment of Wa Maintenance	x x x x x x x x x x x x x x x x x x x	TSCA ,	Asbestos PCBs Other N/A Unknown	X	

AW-W018 - 1

ENAME AW			WASTE TYPE MTRU HANDLING RH GENERATOR SITE AW
AW-W018 CONTAINER: Type/Size	Steel		Container Matt: Steel Liner Type: Number Stored: Int. Vol/Ctnr: 0.112 m3 Liner Material: Number Projected:
TYPICAL WASTE DENSITE Material Parameters	Average	INAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity TYPICAL ISOTOPIC COMPOSITION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solis Packaging Materials, Steel Packaging Material, Plastic	256.1 27.8 24.7 29.3 7.4 0.0 15.1 0.0 0.0 0.0 0.0	256.1 27.8 24.7 2.3 0.0 0.0 0.0 0.0 0.0	256.1 Projected Final Form
Comments CH-ANL-180T will be treated to relate the WIPP WAC (no reactives). T	emove sodiu	n contamination	D003D

metal TRU waste material (no sodium contamination).

AW-W018 - 2

AW - 14

SITE NAME AW		WAST	TE TYPE MTRU HAND	LING RH	GENERATOR S	ITE AW	
WIPI	R ID AW-W019 P ID AW-W019 I ID CH-ANL-182T 6200		Sodium Potassium-(NaK) - Sodium Potassium - NaK -				
Site Matrix Descriptio	n Sodium potassium alloy (NaK) transuranic wastes stored at it stainless steel capsules or tub is then stored in RSWF storag waste is in canisters with TRL	ping and placed inside care liners (carbon steel so	arbon steel waste canny thic oil storage vaults). The NaK nd rods from reactor experim	SVVE). The remo th are then placed (is generated dur	ote-handled NaK w	aste at RSWF is conta	ined in
FINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Was Commercial TRU Wast Unknown	Mixed TRU ste X Non-Mixed TRU	TRU	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance	Tsc.	A Asbestos PCBs Other N/A Unknown	X	

AW-W019 - 1

AW-15

SITE NAME AW		<u> </u>		STE TYPE MTR		LING RH GEN			
			****	- 10 TT E 101 TT	- naithi	CING KH GEN	ERATOR	SITE AW	
AW-W019 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	ANL-WRH	Canister	lnt.	iner Mati: Steel/ Vol/Ctnr: 0.1	12m3 Li	Liner Type: Metal in iner Material: Carbon	steel	Number Stored: Number Projected:	1 0
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	SENERATION	TYPICAI Nuclide	L ISOTOPIC COMPOSITION Activity	<u> </u>
Iron-based Metals/Alloys	256.1	256.1	256.1		Projected	Final Form		— ——	
Aluminum-Based Metals/Alloys	27.6	27.8	27.8	End of 1992:	0.112	0.112 m3			
Other Metals	24.7	24.7	24.7	End of 1993;	0.112	0.112 m3			
Other Inorganic Materials	29,3	2.3	29.3	1994:	0.000	0.000 m3/yr			
Cellulosics	7.4	0.0	45.3	1995:	0.000	0.000 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.000	0.000 m3/yr			
Plastics	15.1	0.0	57.6	1997:	0.000	0.000 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.000	0.000 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.000	0.000 m3/yr			
Soils	0.0	0.0	0.0	,					
Packaging Materials, Steel	0.0			TYPICA	L EPA CODE	S APPLICABLE			

D001C

D003D

Packaging Material, Plastic

SITE NAME AW			WAs	TE TYPE MTRU H	ANDLING RE	GENERATOR S	SITE AW]
w	WIR ID AW-W020 IIPP ID AW-W020 ocal ID CH-ANL-24			TRU-CD-Hot Cell Was				•
SITE FINAL FORM IDC		<u></u>						
Waste Matrix Code Gi Site Matrix Descrip	tion This waste st	ream consists of metallic and fission products as a	cadiumum, so well as with pi	IIs, and associated clea utonium. This waste str	nup materials eam is genera	(paper towels and cloth r ated for Fuel Cycle Facilit	ags). The waste is conta y demonstration support	ıminaled
NO MIGRATION VARIA	NCE PETITION AS	SIGNMENT			TRUCON C	ODE		
FINAL WASTE FORM D Defense TRU Wast Non-Defense TRU Commercial TRU W Unknown	Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. W Operations Waste Residues Decon and Decommiss Environmental Restora From Treatment of Wa Maintenance	sioning lition	TSCA Asbestos PCBs Other N/A Unknown	X	

AW-W020 - 1

AW - 17

SITE NAME AW			WAS	TE TYPE MTRI	U HANDI	LING RH GEN	IERATOR S	SITE AW
	ANL-W RH	Canister	int.	ner Mati: Steel/ Vol/Ctnr: 0.1	12m3 L	Liner Type: iner Material:		Number Stored: 5 Number Projected: 1
TYPICAL WASTE DENSITI	ES FUR F	INAL WASTE	FORM (kg/m		TRU WASTI	E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	KATES I	DE WASIE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	0.000	0.200 m3		
Other Metals	0.0	0.0	0.0	End of 1993:		0.590 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.010	0.010 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0.010	0.010 m3/yr		•
Rubber	0.0	0.0	0.0	1996:	0.010	0.010 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.010	0.010 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.008	0.008 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.000	0.000 m3/yr		
Soils	0.0	0.0	0.0			<u> </u>		
Packaging Materials, Steel	0.0		<u> </u>	TYPICA	-	S APPLICABLE		
Packaging Material, Plastic	0.0				D006A			

SITE NAME AW			WAS	TE TYPE MTRU	HANDLING R	GENE	RATOR SITE	AW
	MWIR ID AW-W021 WIPP ID AW-W02		STREAM NAME	Metal Debris		<u></u>	· · · · · · · · · · · · · · · · · · ·	
MATRIX CODE SITE FINAL FORM IDO	Local ID CH-ANL-2 5100	243T	DESCRIPTION	ELEMENT HARD	WARE FCF WAS	STE		
Waste Matrix Code (Group Uncategoriz	ed Metal		1				
NO MIGRATION VAR			п.	- Ins			m the "Element	Chopper" station in the ANL-
	·				TRUCON	ODE		
FINAL WASTE FORM	DESCRIPTORS:							
Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	J Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	mmissioning storation	TSCA Asbe PCB Othe N/A Unkr	s r	X

SITE NAME AW			WA	STE TYPE MTRI	HANDL	ING RH GEN	ERATOR S	ITE AW
AW-W021 CONTAINER: Type/Size:	ANL-WRH C			ainer Mati: Steel . Vol/Ctnr: 0.1	2 m3 Li	Liner Type: ner Material:		Number Stored: 0 Number Projected: 7
TYPICAL WASTE DENSITI				RATES		ESTIMATED GENERATION	<u>TYPICAL</u> Nuclide	ISOTOPIC COMPOSITION Activity
Material Parameters	Average	Lower Limit	Upper Limit	Ī				
Iron-based Metals/Alloys	256.1	256.1	256.1		<u>Projected</u>	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.000	0.600 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.000	0.000 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.000	0.000 m3/yr		•
Cellulosics	7.4	0.0	45.3	1995;	0.150	0.150 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.150	0.150 m3/yr		
Plastics	15.1	0.0	67.6	1997:	0.150	0.150 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.006	0.006 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.000	0.000 m3/yr		
Soils	0.0	0.0	0.0					
Packaging Materials, Steel	0.0		<u></u>	TYPICA		S APPLICABLE		
Packaging Material, Plastic	0.0				D005A			
5 5 1 1 1 1 1 1 1 1 1 1					D006A			

SITE NAME AW			WAST	TE TYPE MTRU HANDLI	ING RH	GENERATOR S	TE AW	
WII Loc MATRIX CODE SITE FINAL FORM IDC	PP ID AW-W022 PP ID AW-W022 PAID CH-ANL-2 3150	46T		Electro Refiner Insoluables v				
Waste Matrix Code Gro Site Matrix Descripti	ion This waste s process). The	tream consists of cadr		ner heavy metals and "mable" ne electrorefiner station in the ates.	metals (that is ANL-W Fuel C	, they are not react ycle Facility Integra	ive in the FCF electro al Fast Reactor demo	refining nstration.
NO MIGRATION VARIAN		SSIGNMENT		TRUC	CON CODE			
Defense TRU Waste Non-Defense TRU W Commercial TRU Wa Unknown	/aste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSC.	A Asbestos PCBs Other N/A Unknown	X	

AW-W022 - 1

AW - 21

SITE NAME AW			WA	STE TYPE MTRI	HANDL	ING RH GEN	ERATOR S	ITE AW
	ANL-WRH	Canister	Int.	iner Matt: Steel/ Vol/Ctnr: 0.1		Liner Type: ner Material:		Number Stored: 0 Number Projected: 1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/i			ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
<u>Material Parameters</u>	Average	Lower Limit	Upper Limit	KA IES I	JE WASIE	GENERATION	<u>Nuclide</u>	<u>Activity</u>
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.000	0.072 m3		
Olher Metals	0.0	0.0	0.0	End of 1993:	0.000	0.000 m3		
Other Inorganic Materials	489.0	28.8	754.8	1994:	0,000	0.000 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0.020	0.020 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.020	0.020 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0,020	0,020 m3/ry		
Solidified, Inorganic matrix	206.9	101.0	619.2	1998-2002;	0.008	0.008 m3/yr		
Solldified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.000	0.000 m3/yr		
Soils	0.0	0,0	0.0	TYDICA	L EDA CODE	S APPLICABLE		
Packaging Materials, Steel	0.0			TIFICA		O MEPLICABLE		
Packaging Material, Plastic	0.0				D006A			

Battelle Columbus Laboratories

Information Only

BATTELLE COLUMBUS LABORATORY (BC) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the BC waste stream profiles:

- BC Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by BC.
- The WTWBIR ID "RHTRU" submitted by BC was changed to BC-T001 to be consistent with the ID's used in the WTWBIR database.
- The containers for RH-TRU waste streams were reported as drums by the site. The drums were changed to RH canisters, with three drums overpacked in each canister.
- The volumes for the years 1998-2002 were reported by the site as total volumes for each five-year period. The WTWBIR team converted the values to volume/year.

Information Only

195

SITE NAME BC			WA	STE TYPE TRU	HANDLING R		SENERATOR S	ITE BC	
WASTE STREAM	MWIR ID WIPP ID BC-TOO Local ID RHTRU			ME RH/TRU RUBBLE					
MATRIX CODE SITE FINAL FORM I	5400		DESCRIPTIO	ON RUBBLE/DEBRIS	WITH TRU				
	e Group Heterogene scription Heterogene						-		
NO MIGRATION VA		ASSIGNMENT			TRUCON C	ODE			
Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel Operations Waste Residues Decom and Decomm Environmental Resi From Treatment of \ Maintenance	nissioning X		Asbestos PCBs Other N/A Unknown	X	

BC-T001 - 1

BC - 1

BC-T001 CONTAINER:	RH Canister		Contai	ner Mati: steel/	lead	Liner Type:		Number S	itored:
Type/Size:	<u></u>		Int.	Vol/Ctnr: 0.	89 m3 L	ner Material:		Number Pro	ected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ІЅОТОРІС С	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Kr85	6.00E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0 m3	Sr90	3.50E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	0,0	0.0 m3	Zr95	3.00E+00	Curies/m3
Other Inorganic Materials	2000.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Nb95	4.70E+00	Curies/m3
Celtulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Ru106	4.80E+00	Curles/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	1129	2,40E-07	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs134	5.80E-01	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	14.2	14.2 m3/yr	Cs137	6.20E-01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Ce144	4.70E+00	Curies/m3
Soils	0.0	0.0	0.0	7 1/71 + 1			Co60	3.00E+01	Curies/m3
Packaging Materials, Steel	527.0	ļ	<u> </u>	TYPICA	L EPA CODI	S APPLICABLE	U235	2.40E-07	Curies/m3
Packaging Material, Plastic	26.0						U238	1.70E-05	Curies/m3
2							Pu238	2.90E-03	Curies/m3
Comments							Pu239	3.70E-04	Curies/m3
BC has no mixed TRU waste.							Pu240	4.80E-04	Curies/m3

Bettis Atomic Power Laboratory

Information Only

198

BETTIS ATOMIC POWER LABORATORY (BT) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the BT waste stream profiles:

The two digit site identification code used in the MWIR (BT) has been substituted for "BE."

SITE NAME BT	WAST	TE TYPE TRU HANDLING RH GENERATOR SITE BT
WASTE STREAM MWIR ID WIPP ID BT-T001 Local ID BT-T001 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	DESCRIPTION	Irradiated TRU material waste Specimen processing fines, material, and debris resulting from operations involving destructive evaluations of irradiated fuel specimens.
NO MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS:		TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

BT-T001 - 1

TENAME BT			WAS	STE TYPE TRU	HAND	ING RH GEN	ERATOR S	ITE BT	
BT-T001 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	Ļ		Liner Type: n/a		Number S Number Pro	jected: 7
	<u>Lo i OR F</u>	MAL WASIL	PORIVI (Kg/II			-ESTIMATED GENERATION			OMPOSITION
Material Parameters	Average	Lower Limit	<u>Upper Limit</u>			-citato (ilott	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Ba137m	1.00E+03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0 m3	Cs137	1.05E+03	Curles/m3
Other Metals	425,0	350.0	500.0	End of 1993:	0.0	0.0 m3	Y90	1.05E+03	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Sr90	1.05E+03	Curies/m3
Cellulosics	10.0	0.0	20.0	1995;	0.3	0.3 m3/yr	Co60	5.00E+01	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.2	0.2 m3/yr	Cs134	5.00E+01	Curies/m3
Plastics	450.0	350.0	550.0	1997:	0.3	0.3 m3/ry	Eu154	5.00E+01	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.1	0.1 m3/yr	Fe55	5.00E+01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Kr85	5.00E+01	Curies/m3
Soils	0.0	0.0	0.0			0.0 1113/91	Ni63	1.50E+02	Curies/m3
Packaging Materials, Steel	875.0		<u></u>	TYPICA	L EPA CODE	S APPLICABLE	Pm147	3.50E+02	Curies/m3
Packaging Material, Plastic	0.0						Eu152	5.00E+01	Curies/m3
- • · · · · · · · · · · · · · · · · · ·							Pu238	5.00E+01	Curies/m3

SITE NAME BT			WAS	TE TYPE TRU HANDLI	ис СН	GENERATOR SIT	re BT	
	MWIR ID WIPP ID BT-T002 Local ID BT-T002 CC Group Heterogenee	pus		E Contaminated Piping System Piping, pumps, tanks, other m		debris.		
NO MIGRATION VA		ASSIGNMENT		TRUC	CON CODE			
Defense TRU V Non-Defense TI Commercial TR Unknown	Vasle RU Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X	·

BT-T002 - 1

BT-3

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) Material Parameters Average Lower Limit Vol/Ctnr: 1.89 m3 Liner Material: Number I TYPICAL WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity Nuclide Activity Projected Final Form Aluminum-Based Metals/Alloys 35.0 28.0 40.0 End of 1992: 0.0 0.0 m3 Other Metals Other Metals Other Metals Int. Vol/Ctnr: 1.89 m3 Liner Material: Number I TYPICAL ISOTOPIC Nuclide Activity Ba137m 1.10E+0 Cs137 1.10E+0 Y90 1.10E+0	
Iron-based Metals/Alloys	
Other Inorganic Materials 1.0 0.0 5.0 1994: 0.0 0.0 m3/yr Co60 1.0E+0 Cellulosics 0.0 0.0 1.0 1995: 0.0 0.0 m3/yr Co60 1.00E-0 Rubber 7.0 6.0 10.0 1996: 0.0 0.0 m3/yr Cs134 1.00E-0 Plastics 35.0 30.0 40.0 1997: 0.0 0.0 m3/yr Eu154 1.00E-0 Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 2.3 2.3 m3/yr Kr85 1.00E-0 Solids 1.0 0.0 0.0 2003-2022: 0.2 0.2 m3/yr Ni63 2.00E-0 Packaging Materials, Steel 208.0 TYPICAL EPA CODES APPLICABLE Pm147 4.00E-0 Pu238 1.00E-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Curies/m3

SITE NAME BT			WAS1	TE TYPE TRU HA	ANDLING CH	GENERATOR SI	TE BT	
MATRIX CODE SITE FINAL FORM ID	MWIR ID WIPP ID BT-T003 Local ID BT-T003 DC Group Heterogene			Unirradiated Alpha Col Steel gloveboxes, cera ventilation ducts, and h	amic and steel furn		teel grinding machines, ste	eel
	cription Refer to "de	scription" above.			TRUCON CODE			
PINAL WASTE FOR Defense TRU W Non-Defense TF Commercial TRU Unknown	/aste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Wa Operations Waste Residues Decon and Decommiss Environmental Restorat From Treatment of Was Maintenance	aste T	SCA Asbestos PCBs Other N/A Unknown	X	

TITE NAME BT			WA	STE TYPE TRU	HAND		ERATOR S	ITE BT	
BT-T003 CONTAINER: Type/Size			Int.	<u> </u>	39m3 Li	Liner Type: N/A iner Material:		Number : Number Pro	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED	TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC O	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES ()F WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	285.0	200,0	700.0		<u>Projected</u>	Final Form	U232	2.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3	U233	9.70E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	0.0	0.0 m3	Th228	2.00E-03	Curies/m3
Other Inorganic Materials	16.0	11.0	40.0	1994:	0.0	0.0 m3/yr	Ra224	2.00E-03	Curies/m3
Cellulosics	8.0	5.0	20.0	1995:	0.0	0.0 m3/yr	Rn220	2.00E-03	Curies/m3
Rubber	0.0	0.0	0.0	1996;	26.6	26.6 m3/yr	Po216	2.00E-03	Curies/m3
Plastics	0.0	0.0	0.0	1997:	17.1	17.1 m3/ry	Pb212	2.00E-03	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	12.9	12.9 m3/yr	Bi212	2.00E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Po212	2.00E-03	Curies/m3
Soils	0,0	0.0	0.0	L					
Packaging Materials, Steel	0.0			TYPICAL	<u>. EPA CODE</u>	S APPLICABLE			
Packaging Material, Plastic	8.0								

206

SITE NAME BT			WAS	TE TYPE TRU HANDLI	NG CH	GENERATOR SI	ITE BT	
WASTE STREAM	MWIR ID WIPP ID BT-T004 Local ID BT-T004		STREAM NAM	E Source				
MATRIX CODE SITE FINAL FORM ID	DC			- The total of 240 out ce				
	e Group Heterogene cription Refer to "de	scription" above.						
FINAL WASTE FOR		1939GIANICIA I		TRUC	CON CODE			
Defense TRU W Non-Defense TF Commercial TRI Unknown	RU Wasle X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X	

ENAME BT			WASTE TYPE TRU HANDLING CH GENERATOR SITE BT
BT-T004 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	RATES OF WASTE GENERATION
Material Parameters	Average	Lower Limit	Upper Limit
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form Am243 3.20E+00 Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992: 0.00000 0.00000 m3 Np239 3.20E+00 Curies/m3
Other Metals	0.0	0.0	0.0 End of 1993: 0.00000 0.00000 m3
Other Inorganic Materials	0.0	0.0	0.0 1994: 0.00000 0.00000 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 0.00025 0.20800 m3/yr
Rubber	0.0	0.0	0.0 1998; 0.00000 0.00000 m3/yr
Plastics	0.0	0.0	0.0 1997: 0.00000 0.00000 m3/ry
Solidified, Inorganic matrix	4.8	0.0	0.0 1998-2002: 0.00000 0.00000 m3/yr
Solidifled, Organic matrix	0.0	0.0	0.0 2003-2022: 0.00000 0.00000 m3/yr
Soils	0.0	0.0	0.0
Packaging Materials, Steel	500.0	<u> </u>	TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	0.0		
Comments			
Single source with packaging mal	erial. Lower	and upper limits	not applicable.

BT-T004 - 2

BT - 8

SITE NAME BT	WASTE TYPE TRU HANDLING CH GENERATOR SITE BT
WASTE STREAM MWIR ID WIPP ID BT-T005 Local ID BT-T005 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Source DESCRIPTION Californium-252 Source
Site Matrix Description Refer to "description" above. NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos X Operations Waste PCBs

BT-T005 - 1

BT-T005 CONTAINER: Type/Size:	55-gallon		Int.	<u> </u>	31 m3 L	Liner Type: N/A iner Material:		Number \$ Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED	TRU WASTI	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upp <u>er Limit</u>	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Cf249	3.50E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0000000	0.0000000 m3	Cf250	5.60E+00	Curies/m3
Other Melals	0.0	0.0	0.0	End of 1993:		0.0000000 m3	Cf251	9.00E-02	Curies/m3
Other Inorganic Materials	15.4	0.0	0.0	1994:	0.0000000	0.0000000 m3/yr	Cf252	1.00E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0000036	0.2080000 m3/yr	Cm246	4.30E-02	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0000000	0.0000000 m3/yr	MFP	6.30E-01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0000000	0.0000000 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0000000	0.0000000 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0000000	0.0000000 m3/yr			
Soits	0.0	0.0	0.0						
Packaging Materials, Steel	500.0	— ——	L	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

BT-T005 - 2

BT - 10

Energy Technology Engineering Center

Information Only

ENERGY TECHNOLOGY ENGINEERING CENTER (ET) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the ET waste stream profiles:

- Final Waste Form Groups were not provided by ET. In order to permit roll-ups of the data, the WTWBIR team assigned Final Waste Form Groups based on the descriptions and parameters provided by ET.
- The WTWBIR team had to assign identification numbers (IDs) to those ET waste streams not given an identifier by the site.
- Since only current volumes were provided by ET, the final form volumes were assumed to be the same as the current volumes.
- The volumes for the year 1993 were changed from an annual rate of generation (m³/year) to a cumulative value (m³).

SITE NAME ET			WAST	E TYPE MTRU	HANDLING CH	GENERATOR SI	re et	
MATRIX CODE SITE FINAL FORM II	MWIR ID WIPP ID ET-M001 Local ID			Hot Lab & PU Fac	ility D&D ick plus additional hol	t material.		
Site Matrix Des								
NO MIGRATION VA		ASSIGNMENT			TRUCON CODE			
Defense TRU V Non-Defense TF Commercial TRI Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	F F	Rsearch and Devel, Operations Waste Residues Decon and Decomm Invironmental Resto from Treatment of V faintenance	nissioning X	ISCA Asbestos PCBs Other N/A Unknown	X	

ET-M001 - 1

ET-1

ET-M001 CONTAINER: Type/Size:			Container Matl: steel-galv. Liner Type: rigid Number Stored: Int. Vol/Ctnr: 0.21 m3 Liner Material: HDPE-90 mil Number Projected:
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	Average 0.0 0.0 185.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NAL WASTE Lower Limit	STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity Pu238 4.60E-01 Curies/m Pu239 7.60E+00 Curies/m Pu240 2.60E+00 Curies/m Pu241 3.50E-04 Curies/m Pu241 3.50E+01 Curies/m Pu241 Auxies/m Pu241 Auxies/m Pu241 Auxies/m Pu241 Auxies/m
Comments Other metals - lead.		· · · · · · · · · · · · · · · · · · ·	

SITE NAME ET			WA	STE TYPE TRU	HANDLING CH	GENERATOR SI	TE ET	
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod Site Matrix Des	e Group Heterogene			IE Hot Lab & PU Facility Wastes generated fro 20).		of the Plutonium Facility (I	Bidg 55) and the Hot Lab (Bidg	
NO MIGRATION VA FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, V Operations Waste Residues Decon and Decommis Environmental Restora From Treatment of Wa Maintenance	ssioning X atlon	TSCA Asbestos PCBs Other N/A Unknown	X	

ET-T001 - 1

ET - 3

WASTE STREAM PROFILE FOR THE WIDD TOLL WA

ENAME ET				TE TYPE TRU		INVENTORY RELING CH GEN	IERATOR S	SITE ET
ET-T001 CONTAINER Type/Size	55-gallon		int.	<u> </u>	21 m3 L	Liner Type: rigid iner Material: concrete	9	Number Stored: 0 Number Projected: 25
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/m	13) STORED	TRU WASTI	E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	126.0	120.0	130.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0lm3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3		
Other Inorganic Materials	2040.0	2000.0	2100.0	1994:	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1996:	5.2	5.2 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	28.0	10.0	60.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	·		-		
Packaging Materials, Steel	168.0	LJ		TYPICA	L EPA CODE	S APPLICABLE		
Packaging Material, Plastic	0.0							
Comments								

Solidified, inorganic matrix - Debris from drain line.

Typical isotopic composition is unknown for this container.

Packaging Materials, Steel - Based on 35 kg/drum

Drums are for internal transfer and storage only. Although there is no plastic liner,

R/A material is placed in one-gallon cans or plastic bags before placine in the concrete-lined drums

Would be "RH" without concrete liner.

SITE NAME ET WASTE TYPE TRU HANDLING CH GENERATOR SITE ET ET-T001 CONTAINER: Drum Container Matt: steel - galv. Liner Type: rigid Number Stored: 8 Type/Size: 55-gallon Int. Vol/Ctnr: 0.21 m3 Liner Material: HDPE-90 mil. Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Material Parameters <u>Average</u> **Lower Limit** Nuclide **Upper Limit** <u>Activity</u> Iron-based Metals/Alloys 0.0 Pu238 0.0 0.0 1.00E-02 Curies/m3 <u>Projected</u> Final Form Aluminum-Based Metals/Alloys 0.0 0.0 Pu239 1.10E-01 0.0 End of 1992: Curies/m3 1.7 1.7 m3 Other Metals 144.0 70.0 Pu240 300.0 End of 1993: 4.10E-02 Curies/m3 1.7 1.7 m3 Other Inorganic Materials 11.0 5.0 30.0 Pu242 4.80E-06 Curies/m3 1994: 0.0 0.0 m3/yr Cellulosics 16.0 8.0 Am241 3.40E-02 30.0 Curies/m3 1995: 0.0 0.0 m3/yr Rubber 16.0 8,0 Pu241 7.10E-01 30.0 Curies/m3 1996: 0.0 0.0 m3/yr **Plastics** 113.0 50,0 Cs137 250.0 1.20E-01 1997: Curies/m3 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 Cr90 0.0 1.20E-01 Curies/m3 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 204.0 100.0 400.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 168.0 Packaging Material, Plastic 34.0 Comments Other metals - unknown if iron- or aluminum-based. Other inorganic materials - vermiculite.

Cellulosics - wood, paper.

Solidified, organic matrix - solidified oil

Packaging Materials, Steel - Based on 35 kg/drum

ET-T001 - 3

ET - 5

Idaho National Engineering Laboratory

Information Only

IDAHO NATIONAL ENGINEERING LABORATORY (IN) WASTE STREAM PROFILE METHODOLOGY

The approach used and the assumptions made in preparing the IN waste stream profiles are as follows:

- WTWBIR, Revision 0 waste stream profile data was reviewed and updated by IN to generate Revision 1 WTWBIR data. The primary sources used for the IN review were data from the Idaho Mixed Waste Information (IMWI) system and the IN Draft Site Treatment Plan (DSTP), (Ref. 5). Other sources of information included the Radiological, Physical, and Chemical Characterization of Transuranic Wastes Stored at the IN Report (Ref. 4), the TRU Waste Sampling Program (TWSP) Report (Ref. 1), the Content Code Assessments (Ref. 2), and the Exploratory Research and Development Program (ERDP) 2802 Report (Ref. 3).
- The IMWI contains container level data on all waste stored at the IN. Although the IMWI was initially designed to inventory mixed waste, non-mixed waste is also inventoried in this system. The DSTP database is derived from the data stored in the IMWI and provides determinations and assumptions of the treatment plans and options for proper waste management. The Characterization Report (Ref. 4) contains detailed composition information on each waste stream; most of this information was also derived from the IMWI.
- To determine volume and radionuclide inventory information for Revision 1 WTWBIR, IN corrected and updated the Revision 0 WTWBIR data, as needed, through manipulation and calculation of data existing in the IMWI. This consisted of calculating the volume of waste that will be available for direct shipping to WIPP, the volume of waste that will require repackaging prior to shipment, the volume resulting from treatment of waste prior to shipment to WIPP, and the average curie concentration of all contained radionuclides for each waste stream. Presently, the WTWBIR waste stream profiles sum the volumes for direct ship waste and repackaged waste to report as one volume. All calculations were made on a waste volume basis, as the method used in the IMWI and the DSTP, then converted into container counts where appropriate.
- All treated waste is grouped into a new vitrified final form waste stream number IN-M07.
 Volumes for wastes after vitrification are reported in this waste stream. Curie concentrations for this waste stream are weighted average of all wastes that are treated and included in the final waste form volume.
- Material parameter data entries in the "Typical Material Weights for Final Waste Form" of the waste stream profiles were determined using information from past waste examination programs and knowledge gained in the WIPP Experimental Test Program. This consisted of reviewing past and current visual waste characterization activities and determining average, maximum, and minimum concentrations of waste constituent parameters, where possible. The majority of the data can be traced back to the TRU Waste Sampling Program (TWSP) Report (Ref. 1), the Content Code Assessments (Ref. 2), or the Characterization Report (Ref. 4). Waste volumes used to correct Revision 0 WTWBIR parameter densities were based on the Exploratory Research and Development Program (ERDP) 2802 report (Ref. 3), which includes data obtained from the TRU Waste Management Information System (TWMIS) in 1990. The Characterization Report and IN Draft Site Treatment Plan were also used to determine the typical material weights reported on the waste stream profile sheets, when information from the above sources were inadequate.

IDAHO NATIONAL ENGINEERING LABORATORY (IN) WASTE STREAM PROFILE METHODOLOGY (continued)

- 1. Clements, T. L., Jr. and D. E. Kudera, TRU Waste Sampling Program: Volume i--Waste Characterization, EGG-W-6503, September, 1985
- 2. Clements, T. L. Jr., Content Code Assessments for IN Contact-Handled Stored Transuranic Wastes, WM-F1-82-021, October 1982.
- 3. Edinborough, C. R., Processing Criteria for TRU Removal From RWMC Stored Waste, ERDP 2802 Final Report, CRE-03-90, August, 1990.
- 4. Apel, M. L. ct. al., Radiological, Physical, and Chemical Characterization of Transuranic Wastes Stored at the Idaho National Engineering Laboratory, EGG-RWMC-11109, March, 1994.
- 5. DOE, 1994, Idaho National Engineering Laboratory Draft Site Treatment Plan, DOE/ID-10453, U.S.D.O.E., August 1994.

SITE NAME IN			WAS	STE TYPE MTRU HAN	NDLING RH	GENERATOR SITE	: AW	
MATRIX CODE SITE FINAL FORM II Waste Matrix Code Site Matrix Des	e Group Salt Waste	218T		E Electrorefiner Stripped S N Chloride salts containing		of Cd and Ba.		
NO MIGRATION VA		ASSIGNMENT			RUCON CODE			
PERMANDE FOR DEFENSE TRU WAS NON-DEFENSE TRU COmmercial TRU Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Wast Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning n	CA Asbestos PCBs Other N/A Unknown	X	

IN-M001 - 1

IN - 1

L

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

TENAME IN		·	WASTE TYPE MTRU HANDLING RH GENERATOR SITE AW
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic	55-gallon	INAL WASTE Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Container Mati: Steel Liner Type: Number Stored: 0
Comments Estimate generation of approximate Activity for these radionuclides is	•	τ.	

IN-M001 - 2

IN - 2

SITE NAME IN			WAST	E TYPE MTRU HANDLI	NG RH	GENERATOR SIT	TE AW	
MATRIX CODE SITE FINAL FORM IS Waste Matrix Cod Site Matrix Des	e Group Heterogene	241T		TRU-CD-Hot Cell Waste Metallic Cadmium, Salts, and	cleanup materia	I such as paper to	wels and rags.	
NO MIGRATION VA FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste X	SSIGNMENT Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		TRUC Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X X	

IN-M002 - 1

IN - 3

ENAME IN			WASTE TYPE MTRU HANDLING R	H GENERATOR SITE AW
	<u></u>			J SENERATOR SITE AW
IN-M002 CONTAINER Type/Size	`		Container Mati: steel Liner Int. Vol/Ctnr: 0.208 m3 Liner Mati	[Named Ololedii 3
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	ORM (kg/m3) STORED TRU WASTE ESTIN	MATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	PATES OF WASTE GENER	RATION Nuclide Activity
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final F	Co60 Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0		0.624 m3 Cs134 Cuties/m3
Other Metals	0.0	0.0		0.624 m3 Cs137 Curies/m3
Other Inorganic Materials	0.0	0.0		0.000 m3/yr Mn54 Curies/m3
Cellulosics	0.0	0.0	······································	0.100 m3/yr Pu239 Curies/m3
Rubber	0.0	0.0		0.100 m3/yr Ru106 Curies/m3
Plastics	0.0	0.0		0.100 m3/ry U235 Curies/m3
Solidified, Inorganic matrix	0.0	0.0		0.100 m3/yr
Solidified, Organic matrix	0,0	0.0		0.100 m3/yr
Soils	0.0	0.0	0.0	
Packaging Materials, Steel	131.0		TYPICAL EPA CODES APPL	ICABLE
Packaging Material, Plastic	37.0			
Comments	. —			
Future generation estimated as is	ss than 0-1	m3/yr,		
		•		
Activity for these radionuclides is	unknown.			

IN-M002 - 2

IN - 4

SITE NAME IN			WAST	TE TYPE MTRU HAN	DLING RH	GENERATOR SI	TE AW	J
	Group Uncategoriz	243T		Element Hardware FCF V		r fuel.		
Site Matrix Desc		SSIGNMENT		<u>II</u>	RUCON CODE			
FINAL WASTE FORM Defense TRU WASTE FORM Non-Defense TRU Commercial TRU Unknown	aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ing	A Asbestos PCBs Other N/A Unknown	×	

IN-M003 - 1

IN - 5

2005

E NAME IN			WAS	TE TYPE MTR	U HAND	LING RH GE	NERATOR S	HTE AW
IN-M003 CONTAINER Type/Size TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	55-gallon ES FOR I Average 0.0 0.0 0.0 0.0 0.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Contair Int. V	ner Mati: steel /ol/Ctnr: 0.2 3) STORED RATES End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002: 2003-2022:	08m3 L PTRU WASTE Projected 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 0.0 m3 0.0 m3/yr 0.2 m3/yr		Number Stored: 0 Number Projected: 27 ISOTOPIC COMPOSITION Activity Curies/m3
Future generation estimated to be Activity for these radionuclides is		2 m3/yr.					Pu240 Sr90 Y90	Curies/m3 Curies/m3 Curies/m3
							790 Zr95	Curies/m3 Curies/m3

SITE NAME IN			WAST	TE TYPE MTRU HANDLI	NG RH	GENERATOR SI	TE AW	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID WIPP ID IN-M004 Local ID CH-ANL-			Electrorefiner Stripped Cadm				
Waste Matrix Code Site Matrix Desc		um Metal Waste						
NO MIGRATION VAR		SSIGNMENT		TRUC	ON CODE			
Defense TRU W Non-Defense TR Commercial TRU Unknown	U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decom and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X .	

IN-M004 - 1

IN - 7

IN-M004 CONTAINER: Type/Size:	 _		Container Matt: steet Liner Type: Number Stored: 0 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 13
TYPICAL WASTE DENSITI	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celfulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Projected Final Form Ce144 Curies/m3 0.0 End of 1992: 0.0 0.0 m3 Pm147 Curies/m3 0.0 1994: 0.0 0.0 m3/yr Pr144 Curies/m3 0.0 1995: 0.1 0.1 m3/yr Sm151 Curies/m3 0.0 1996: 0.1 0.1 m3/yr Y91 Curies/m3 0.0 1998-2002: 0.1 0.1 m3/yr m3/yr 0.0 1998-2002: 0.1 0.1 m3/yr 0.0 2003-2022: 0.1 0.1 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic Comments Future generation estimated to be	0.0	1 m3/yr.	

SITE NAME IN			WASTE TYPE MTRU	HANDLING RH	GENERATOR SIT	TE AW
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod Site Matrix Des	e Group Lead/Cadmi	246T <u>DE</u> S	EAM NAME Electrorefiner Inso			
NO MIGRATION VA	RIANCE PETITION A	ISSIGNMENT		TRUCON CODE		
FINAL WASTE FOR	M DESCRIPTORS:					
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X Rsearch and Development Residues Decon and Decome Environmental Residues From Treatment of Maintenance	nmissioning storation	SCA Asbestos PCBs Other N/A Unknown	X

IN-M005 - 1

IN - 9

ENAME IN			WASTE TYPE MTRU HANDLING RH GENERATOR SITE AW	
IN-M005 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon	INAL WASTE	Container Matt: steel Liner Type: Number Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Professional Container Matter Steel Number Steel Number Professional Container Matter Steel Number Steel Numb	jected: 13
Material Parameters fron-based Metals/Alloys	Average 0.0	Lower Limit 0.0	Upper Limit Nuclide Activity	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 Projected Final Form C14 0.0 End of 1992: 0.0 0.0 m3	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	0.0	0.0	0.0 End of 1993: 0.0 0.0 m3 Nb95	Curies/m3
Cellulosics	0.0	0.0	0.0 1994: 0.0 0.0 m3/yr Rh106	Curies/m3 Curies/m3
Rubber	0.0	0.0	0.0 1995: 0.1 0.1 m3/yr Sb125	Curies/m3
Plastics Solidified, Inorganic matrix	0.0	0.0	0.0 1997: 0.1 0.1 m3/ry Sn123	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0 1998-2002: 0.1 0.1 m3/yr Te125 0.0 2003-2022: 0.1 0.1 m3/yr Te125	Curies/m3 Curies/m3
Soils Packaging Materials, Steel	0.0 131.0	0.0	0.0 TYPICAL EPA CODES APPLICABLE	Curies/m3
Packaging Material, Plastic	37.0		THE PROPERTY OF THE PROPERTY O	
Comments				
Future generation estimated to be Activity for these radionuclides is u		m3/yr.		

SITE NAME IN	WASTE TYPE TRU HANDLING CH GENERATOR SITE IN
WASTE STREAM MWIR ID WIPP ID IN-T001 Local ID IN-T001 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics	STREAM NAME Vitrifled DESCRIPTION Waste streams that will be treated to meet current WPP Waste Acceptance Criteria.
Site Matrix Description NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rsearch and Devel. Waste TSCA Asbestos X Operations Waste PCBs

IN-T001 - 1

IN-T001 CONTAINER: Drum Type/Size: 55-gallon				Container Matl: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material;				Number Stored:		
TYPICAL WASTE DENSITI		INAL WASTE		n3) STORED	TRU WASTE	E-ESTIMATED		Number Proj ISOTOPIC C	<u> </u>	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	UF WASTE	GENERATION	<u>Nuclide</u>	Activity		
Iron-based Metals/Alloys	0.0	0.0	0.0		P <u>roj</u> ected	Final Form	Am241	3.14E+00	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	14075,0	6748.0 m3	Np237	1.77E-06	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993;	14075.0	6748.0 m3	Pu238	8.38E-01	Curies/m3	
Other Inorganic Materials	0.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu239	1.51E-01	Curies/m3	
Cellulosics	0.0	0.0	0.0	1995:			Pu240	1.89E-02	Curies/m3	
Rubber	0.0	0.0	0.0	1996;	0.0	0.0 m3/yr	Pu242	2.29E-07	Curies/m3	
Plastics	0.0	0.0	0.0	1997:		0.0 m3/yr	Pu52	1.39E+01	Curles/m3	
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry	Pu83	1.58E-03	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	1	0.0	0.0 m3/yr	U235	8.22E-07	Curies/m3	
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U238	3.26E-08	Curies/m3	
Packaging Materials, Steel	131.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	37.0									

SITE NAME IN			WAS	TE TYPEMTRU HANDLI	ING RH	GENERATOR SI	TE IN
WASTE STREAM MATRIX CODE SITE FINAL FORM II Waste Matrix Cod	MWIR ID IN-W139 WIPP ID IN-W139 Local ID ID-EGG-1 DC e Group Heterogene	42T	STREAM NAME	Transuranic Contaminated Lo	ead Debris		
		eg/mied noergiass, pape	d debris from var er, HEPA fillers, o			es, galvanized shee	t metal, copper/bronzeware,
FINAL WASTE FOR	RIANCE PETITION A M DESCRIPTORS:	ISSIGNMENT		TRUC	CON CODE		
Defense TRU V Non-Defense Ti Commercial TR Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSC	A Asbestos PCBs Other N/A Unknown	X

IN-W139 - 1

IN - 13

ENAME IN			WASTE TYPE MTRU HANDLING RH GENERATOR SITE IN
IN-W139 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Container Mati: steel Liner Type: Number Stored: 25 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Projected Final Form 0.0 End of 1992: 5.4 5.4 m3 0.0 1994: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE D008C
Comments			
Waste material weights and isoto stream.	pic composit	lon are unknown	for this waste

SITE NAME IN			WAST	E TYPE MTRU HANDLI	NG RH	GENERATOR SI	TE IN	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID IN-W146 WIPP ID IN-W146 Local ID ID-EGG- 3129			Uncategorized Inorganic Sluc TRU Heavy Metal Sludge	dges			
Site Matrix Des	Grant to die	TRU, mixed waste slu m.	dge was generated	I from cleaning of 4 catch tank	s. Concentration	ns of radionuclide	s and hazardous waste v	ary from
NO MIGRATION VAL FINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	M DESCRIPTORS: Vaste RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Dperations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X	- The second sec

IN-W146 - 1

256

SITE NAME IN			WAS	TE TYPE MTR	J HAND	LING RH GE	VERATOR S	SITE IN	
IN-W146 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters	55-gallon	INAL WASTE	Int.	13) STORED	TRU WAST	Liner Type: iner Material: E ESTIMATED GENERATION	TYPICAL Nuclide	Number : Number Pro . ISOTOPIC C Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 394.2 0.0 0.0 399.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 173.1 0.0 0.0 173.1 0.0	0.0 0.0 0.0 528.8 0.0 0.0 528.8 0.0	End of 1992; End of 1993; 1994; 1996; 1996; 1997; 1998-2002; 2003-2022;	2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.1 m3 2.1 m3 2.1 m3 0.0 m3/yr	Am241 Ce144 Cm244 Co60 Cs134 Cs137 Eu154 Eu155 Pu238 Pu239 Sb125 Sr90	3.24E-01 1.38E+00 4.07E-01 7.21E-01 2.80E+00 3.07E+01 3.55E-01 2.01E+05 3.71E-01 3.04E-01 1.34E-01 4.18E+01	Curies/m3

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING CH	H GENERA	ATOR SITE RF
	e Group Solidified In	112T-004	DESCRIPTION	Solidified Process Cemented Sludges	s (TRU): Special		
	portiand an	comes from the Rocky d magnesia cements. ASSIGNMENT ID 213	Flats Plant. It con	tains organic, alcoho	ols, organic acids TRUCON C		mine Tetra Acetic Acid (Versenes) set in
FINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TR Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of Maintenance	Tissioning X toration	TSCA Asbesi PCBs Other N/A Unkno	×

IN-W157 - 1

ENAME IN			WAS	TE TYPE MTR	U HANDL	ING CH GEN	IERATOR S	ITE RF	
IN-W157 CONTAINER: Type/Size:	——— —	ck		iner Matt: steel Vol/Ctnr: 1	.9m3 Li	Liner Type: iner Material:		Number S Number Proj	1
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	Average 0.0 0.0 0.0 11.8 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	FORM (kg/m Upper Limit 0.0 0.0 142.3 0.0 0.0 0.0 0.0	RATES	Projected 63.5 63.5 0.0 0.0 0.0 0.0 0.0	ESTIMATED GENERATION Final Form 145.0 m3 145.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	TYPICAL Nuclide Am241 Pu52	Activity 6.74E-02 2.95E+00	OMPOSITION Curies/m3 Curles/m3
Solidified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic Comments 76 in number stored is the number drums/SWB.	381.8 0.0 210.0 16.0	226.4 0,0 at will result from	594.2 0.0		0.0 L EPA CODE D002B D006A D008A F001 F002 F003	0.0 m3/yr			

TENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF	
IN-W157 CONTAINER Type/Size	55-gallon		Container Mati: steel Liner Type: Number Stored: Number Stored: Number Projected:	
TYPICAL WASTE DENSITION Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	Average 0.0 0.0 0.0 26.9 0.0 0.0 0.0 0.0 872.0	Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Typical Isotopic composition Typical Isotopic composition	SITION s/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 131.0 37.0	0.0	D002B D006A D008A F001 F002 F003	

SITE NAME IN				WAST	E TYPE MTRU	HANDLING		GENERATOR:	SITE RF	
MATRIX CODE SITE FINAL FORM ID	WIPP ((Local ((<u>C</u>	D IN-W161 D IN-W161 D ID-EGG-1 5230			Ceramic/Brick Deb Concrete-Brick (TR					
Waste Matrix Code Site Matrix Desc	ription	This waste of firebrick from maintenance generated sin SiO2 = 0.039 surface cont	ontains whole and in the Pu recovery in and from following nce 1973 is a high- %, Fe203 = 0.10%, amination and then	broken pieces of cons ncinerator and related in the Rocky Flats Plant alumina, high-strengty TiO2 = 0.01%, CaO = teached with nitric act	: fire. Waste genera , class f brick manu 3.6% MgO = 0.8%	ated since 19 factured by F , and Alkalies	73 is mostly f	rebrick from Pu tebrick from Pu t 40). Typical c ome of the incine	d other brick from recovery operation	routine ns. The firebrick
PER	M DESCE aste U Waste	RIPTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed Ti Unknown	RU X	Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of V	. Waste X X nissioning X oration	-t	Asbestos PCBs Other N/A Unknown	×	

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF						
IN-W161 CONTAINER Type/Size TYPICAL WASTE DENSIT	:		Container Mat Int. Vol/Ctnr FORM (kg/m3) S	: 1.9 m3 Li	Liner Type: ner Material:	TYPICAL	Number !		
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 23 in number stored is the number drums/SWB	9.2 0.0 193.1 9.2 0.0 9.1 0.0 210.0 16.0	0.0 0.0 0.0 48.6 11.5 0.0 4.9 0.0 0.0	Upper Limit 0.0 0.0 End of 385.4 22.9 0.0 16.3 0.0 1998 0.0 0.0 T	Projected 1992: 18.7 1993: 18.7 1994: 0.0 1995: 0.0 1996: 0.0 1997: 0.0	Final Form 42.8 m3 42.8 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Nuclide Am241 Pu52 U235	Activity 2.11E-02 1.30E+01 1.14E-07	Curles/m3 Curies/m3 Curies/m3	

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF IN-W161 CONTAINER: Drum Container Matt: steel Liner Type: Number Stored: 443 Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE -ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** Nuclide **Activity** Average **Lower Limit** Upper Limit Iron-based Metals/Alloys Am241 0.0 4.82E-02 0.0 Curies/m3 0.0 **Projected Final Form** Aluminum-Based Metals/Alloys Pu52 0.0 2.97E+01 Curies/m3 0.0 0.0 End of 1992: 92.1 92.1 m3 Other Metals U235 0.0 0.0 2.60E-07 Curles/m3 0,0 End of 1993: 92.1 92.1 m3 Other Inorganic Materials 441.0 111.0 0.088 1994: 0.0 0.0 m3/yr Cellulosics 21.0 26.2 52.4 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 20.8 11.3 37.2 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0,0 0.0 1998-2002; 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 F001 Packaging Material, Plastic 37.0

IN-W161 - 3

IN - 22

2/28/95

F002

SITE NAME IN	•		WAS	TE TYPE MTRU HAN	IDLING CH	GENERATOR SIT	E RF	
	Group Solidified Inc	organics	DESCRIPTION	Solidified Process Resid Cemented Sludges (TRU	J): Solid Inorga			
			ste consists of ce	nented inorganic particula			oitaled) wasles from plut	ionium
NO MIGRATION VAR		ISSIGNMENT IU 114	<u></u>	<u>_</u>	RUCON COD	E ID 114		
Defense TRU W Non-Defense TR Commercial TRU Unknown	U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Wasi Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning X	TSCA Asbestos PCBs Other N/A Unknown	×	·

IN-W166 - 1

IN - 23

Number Stored	ENAME IN			WASTE TY	PEMTRU HANDI	LING CH GE	NERATOR S	ITE RF	
24 in number stored is the number of SWBs that will result from overpacking 4	Type/Size. TYPICAL WASTE DENSITE Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	ES FOR FINA Average L 0.0 0.0 0.0 214.1 0.0 0.0 0.0 91.5 0.0 0.0 210.0	AL WASTE O.0 0.0 0.0 12.6 0.0 0.0 44.2 0.0	Int. Vol/Ctr FORM (kg/m3) Upper Limit 0.0 0.0 End of 330.5 0.0 0.0 0.0 227.4 1998 0.0 0.0 2003	til: steel	Liner Type: iner Material: ESTIMATED GENERATION Final Form 45.2 m3 45.2 m3 0.0 m3/yr TYPICAL Nuclide Am241	Number S Number Proj ISOTOPIC C Activity 1.19E-02	jected: 0 OMPOSITION Curies/m3	
KRIDITS DEL SVA			·.						
	24 In number stored is the number idrums per SWB.	r of SWBs that v	vill result from	overpacking 4	F002 F003				

SITE NAME IN			WASTE TYPE	MTRU HANDL	ING CH GEN	IERATOR S	ITE RF	
IN-W166 CONTAINER: Type/Size	55-gallon		Container Matt:		Liner Type: ner Material:		Number Sto Number Projec	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE Lower Limit	FORM (kg/m3) STO RA1 Upper Limit	RED TRU WASTE ES OF WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC COL	MPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	0.0 0.0 489.0 0.0 0.0 0.0 208.9 0.0 131.0	0.0 0.0 0.0 28.8 0.0 0.0 0.0 101.0 0.0	0.0 1 0.0 1 0.0 1 519.2 1998-20 0.0 2003-20	993: 51.0 994: 0.0 995: 0.0 996: 0.0 997: 0.0 002: 0.0 PICAL EPA CODE:	51.0 m3 51.0 m3 51.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu52		Curies/m3 Curies/m3
Packaging Material, Plastic	37.0			D008A F001 F002				

SITE NAME IN				WAST	TE TYPE MTRU	HANDLIN	с	GENERATOR	SITE RF	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	- L- Group Solid	-W167 -EGG-1127 50 lified Organ	ics	DESCRIPTION	Solidified Process Cemented Studges controls of the control of th	s (TRU): So(_			
NO MIGRATION VAI	RIANCE PETI	ITION ASS		y or cernetived of al			ON CODE		es.	
PINAL WASTE FOR Defense TRU W Non-Defense TF Commercial TRU Unknown	/aste RU Waste	X M	ixed TRU on-Mixed TRU uspect Mixed TRU nknown		Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of Maintenance	nissioning Ioration	X TSC	CA Asbestos PCBs Other N/A Unknown	X	

IN-W167 - 1

246

ENAME IN			WASTE TYPE MTR	U HANDL	ING CH GEN	NERATOR S	ITE RF	
Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Typical Waste Densiti Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	ES FOR FINAL	NL WASTE FORM (1	(g/m3) STOREL RATES RATE	7.9 m3 Li 7.7 TRU WASTE Projected 45.9 45.9 0.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: ESTIMATED GENERATION Final Form 104.5 m3 104.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr SAPPLICABLE	TYPICAL Nuclide Am241 Pu52	Number S Number Proj ISOTOPIC C Activity 1.85E-02 2.76E+00	

ITE NAME IN IN-W167 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF						
			Container Matt: steel Liner Type: Number Stored: 568 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE -ESTIMATED TYPICAL ISOTOPIC COMPOSITION						
Material Parameters	Average	Lower Limit	Upper Limit STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity TYPICAL ISOTOPIC COMPOSITION Nuclide Activity						
iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celfulosics Rubber Plastics Solidified, Inorganic matrix Solls Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 548.1 0.0 0.0 0.0 0.0 394.2 0.0 131.0 37.0	0.0 0.0 0.0 206.7 0.0 0.0 0.0 149.0	0.0 Projected Final Form Am241 4.23E-02 Curies/m3 0.0 End of 1992: 118.1 118.1 m3 6.31E+00 Curies/m3 673.1 1994: 0.0 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 485.6 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE D022 F001						
			F003						

SITE NAME IN			WAS	TE TYPE MTRU HANDLING CH GENERATOR SITE RF
MASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID IN-W169 WIPP ID IN-W169 Local ID ID-EGG- 5440 DC			Predominantly Combustible Debris Combustibles (TRU): Dry paper and rags
Site Matrix Des	damp or mo present.	stream is from Rocky Flat rgical gloves, cloth overal	noncombustibles	narily consists of line- and nonline-generated dry combustible materials such as paper, rags, cardboard, wood, wood filters frames, PE bottles, and laundry lint. Some combustibles may be a such as glass, concrete, cement, lead glovebox gloves, batteries, and metal scrap may also be TRUCON CODE ID 216C
Defense TRU W Non-Defense TF Commercial TRU Unknown	/aste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

IN-W169 CONTAINER: Drum Type/Size: 55-gallon			Container Matt: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material:				Number Stored: 2082 Number Projected: (
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 10% of this waste stream volume shielding. It is anticipated that the with internal shielding.	0.0 0.0 36.8 27.2 135.0 57.2 188.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 6.6 0.0 14.8 0.0 0.0	Upper Limit 0.0 0.0 233.0 196.0 817.0 330.0 887.0 0.0 0.0	End of 1992: End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022: TYPICAL	TRU WASTE Projected 4331.0 4331.0 0.0 0.0 0.0 0.0 0.0	E_ESTIMATED GENERATION Final Form 4331.0 m3 4331.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr ES APPLICABLE	TYPICAL Nuclide Am241 Pu52 U235 U238		OMPOSITION Curies/m3 Curies/m3 Curies/m3 Curies/m3
					F003 F005 F005A				

IN-W169 - 2

IN - 30

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE
WASTE STREAM MWIR ID IN-W170 WIPP ID IN-W170 Local ID ID-EGG-114T-120 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Predominantly Combustible Debris DESCRIPTION Combustibles (TRU): Decontamination/Decommissioning Waste Combustible Solids
Site Matrix Description This waste is generated at Argor	nne National Laboratory. The waste is derived from decontamination and disposal of facilities and ancillary systems tion of the waste is unknown. It is expected to contain some cadmium and lead, and may contain F-listed wastes. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

ITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE
IN-W170 CONTAINER Type/Size TYPICAL WASTE DENSITE Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	55-gallon	UNAL WASTE Lower Limit 0.0 0.0 0.0 61.6 1.6 4.7 0.0 0.0 0.0	Container Mati:

SITE NAME IN		WAST	E TYPE MTRU	HANDLING CH	GENERATOR	SITE AE	
WIPP II	D IN-W171 D IN-W171 D ID-EGG-114T-110 5440		Predominantly Co	_	nerated waste compactit	ple and combustible so	ılids.
	This waste is generated at Argo The waste includes soft plastics waste boxes.	nne National Laborato , cardboard, rags, pap	ry-East. The wast per, and cloth from	te is derived from r various processes	s. The waste is package	med in a research env d in 55-gallon drums o	rironment. Ir in standard
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	RU 📙	Rsearch and Deve Operations Waste Residues Decon and Decorr Environmental Res From Treatment of Maintenance	X nmlssioning X storation	TSCA Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN			WA S	STE TYPE MTR	U HANDI	LING CH GE	NERATOR S	ITE AE	
IN-W171 CONTAINER Type/Size TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solis Packaging Materials, Steel Packaging Material, Plastic	55-gallon	INAL WASTE Lower Limit 0.0 0.0 0.0 53.4 1.4 2.9 0.0 0.0 0.0	Int.	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	08m3 L OF WASTE Projected 3.6 3.6 0.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E ESTIMATED GENERATION Final Form 3.6 m3 0.0 m3/yr 8 APPLICABLE		Number ! Number Pro	
					D006A				
			•		D008A				
					F003				

SITE NAME IN		WAST	TE TYPE MTRU HAN	IDLING CH	GENERATOR SI	TE BT	
	IN-W172 ID-EGG-114T-010 5440		Predominantly Combusti Combustibles (TRU): Co				-
Site Matrix Description Th	is waste stream, generated at l sorbent (diatomaceous earth),	Bettis Atomic Power and rubber. The wa	ste stream may also come	ain noncombustible f	plastic, paper, ca ems. Levels of ha	ırbo-wax, filters, oil-contamin azardous materials are unkn	iated own,
FINAL WASTE FORM DESCRIF Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown		,	Rsearch and Devel. Wasi Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning X	Asbestos PCBs Other N/A Unknown	X	

IN-W172 CONTAINER:	Drum		Conta	iner Matt: steel		Liner Type:		Number Stored: 796
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.20	3m3 Li	iner Material:		Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED		E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	<u>RATES O</u>	F WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0	1	rojected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	165.6	165.6 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	165.6	165.6 m3		
Other Inorganic Materials	2.9	0.0	7.2	1994:	0.0	0.0 m3/yr		
Cellulosics	575.6	105.8	961.5	1995:	0.0	0.0 m3/yr		
Rubber	55.2	55.2	163,5	1996:	0.0	0.0 m3/yr		
Plastics	165.6	105.8	288.5	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0,0 m3/yr		
Soils	0.0	0.0	0.0	T/21041		· · · · · · · · · · · · · · · · · · ·		
Packaging Materials, Steel	131.0			1 TPICAL		S APPLICABLE		
Packaging Material, Plastic	37.0				F001	•		
Comments		•			F002			

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID IN-W174 WIPP ID IN-W174 Local ID ID-EGG-112T-834 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Solidified Organics	STREAM NAME Absorbed Aqueous Liquids DESCRIPTION Cemented Studges (TRU): High Level Acid
Site Matrix Description This waste comes from Mound L No MIGRATION VARIANCE PETITION ASSIGNMENT	aboratory. It consists of acid liquids, mainly nitric, absorbed onto a clay called Florco. TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Non-Mixed TRU Suspect Mixed TRU Unknown	RSearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

LE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
IN-W174 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys			Container Mati: steel Liner Type: Number Stored: 51 Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity Upper Limit Projected Final Form
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 172.6 0.0 0.0 0.0 174.7 0.0 0.0 210.0 16.0	0.0 75.8 0.0 0.0 0.0 75.8 0.0 0.0	0.0 End of 1992: 42.3 98.0 m3 Pu239 4.45E-03 Curies/m3 0.0 End of 1993: 42.3 98.0 m3 Pu240 8.85E-03 Curies/m3 231.6 1994: 0.0 0.0 m3/yr 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 231.6 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE D001C D002A
51 in number stored is the numbe drums/SWB.	r of SWBs th	at will result from	

SITE NAME IN			WAS	STE TYPE MTR	J HANDI	LING CH GE	NERATOR S	ITE MD	
Typical Waste de			Int.	n3) <u>STORED</u>	 <u>Tr</u> u waste	Liner Type: iner Material: E-ESTIMATED GENERATION	TYPICAL	Number S Number Pro ISOTOPIC C	i
Material Parameters Iron-based Metals/Alloys	Average	Lower Limit	Upper Limit		111012	OLIVERA (ION	<u>Nuclide</u>	Activity	
Aluminum-Based Metals/A	0.0 0.0 0.0 0.0	0.0	0.0	End of 1992:	Projected 108.8	Final Form 108.8 m3	Pu238 Pu239 Pu240	1.52E+01 1.02E-02	Curies/m3 Curies/m3
Other Inorganic Materials	394.2	0.0 173.1	528.8	End of 1993: 1994:	108.8	108.8 m3 0.0 m3/yr	F0240	2.02E-02	Curies/m3
Cellulosics Rubber	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry			
Solidified, Inorganic matrix Solidified, Organic matrix	399.0	173.1	528.8 0.0	1998-2002:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022: [0.0	0.0 m3/yr			
Packaging Materials, Steel Packaging Material, Plastic	, ,			ITFICA	D001C	S APPLICABLE			
					D002A				

SITE NAME IN		WAST	TE TYPE MTRU	HANDLING C	H GENERATO	OR SITE MD
	IN-W177 ID-EGG-112T-835 3150		Solidified Process Cemented Studges		evel Caustic	
	is waste comes from Mound La	aboratory. It consists	s of caustic waste a	nd neutralized wa		onto a clay (Florco).
FINAL WASTE FORM DESCRIP Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of \ Maintenance	Waste X X X X X X X X X X X X X X X X X X X	TSCA Asbestos PCBs Other N/A Unknown	X

600260

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
IN-W177 CONTAINER: Type/Size:			Container Mati: steel Liner Type: Number Stored: 60 Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected: 0
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials	Average 0.0 0.0 0.0 172.6	Lower Limit 0.0 0.0 0.0 75.8	
Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 0.0 0.0 174.7 0.0	0.0 0.0 0.0 75.8 0.0	0.0 1995: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 231.6 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr
Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0		TYPICAL EPA CODES APPLICABLE D002B
Comments 60 In number stored is the number drums/SWB.	r of SWBs th	at will result from	overpacking 4

SITE NAME IN			WAS	TE TYPE MTR	J HAND	LING CH GEN	ERATOR S	ITE MD	
IN-W177 CONTAINER: Type/Size: TYPICAL WASTE DENSITE	55-gallon	NAL WASTE	lnt.	iner Mati: steel Vol/Ctnr: 0.2		Liner Type: iner Material: E_ESTIMATED		Number S Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit			GENERATION	Nuclide	Activity	OIN OSTITON
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	1.73E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	126.8	126.8 m3	Pu239	5.08E-03	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	126.8	126.8 m3	Pu52	3.85E-04	Curies/m3
Other Inorganic Materials	394.2	173.1	528.8	1994:	0.0	0.0 m3/yr	Pu83	6.49E-02	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	399.0	173.1	528.8	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	(
Packaging Materials, Steel	131.0	<u> </u>		TYPICA	L EPA CODI	ES APPLICABLE			
Packaging Material, Plastic	37.0				D002B				

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING CI	GENER	ATOR SITE	MD
WASTE STREAM MATRIX CODE SITE FINAL FORM I	MWIR ID IN-W179 WIPP ID IN-W179 Local ID ID-EGG-1 3150 DC			Solidified Process Ro		vel Sludge/Ceme	nt	
	le Group Solidified Inc scription This waste of which have		ratory. The was d cement.	ste consists of shower	water, decontar	nination water, c	poling water, a	and some acids and causlics
NO MIGRATION VA	RIANCE PETITION A	SSIGNMENT			TRUCON C	ODE		
Defense TRU V Non-Defense T Commercial TR Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, volume of Waste Residues Decon and Decommis Environmental Restor From Treatment of Wasternance	ssioning X ration	TSCA Asbe PCBs Other N/A Unkn	i	X

かつつう

TE NAME IN			WA	STE TYPE MTRU	HAND	LING CH GEN	ERATOR S	SITE MD
IN-W179 CONTAINER	. 6140							
Type/Size		ack		iner Matt: steel		Liner Type:		Number Stored: 2
• •	L				m3 L	iner Material:		Number Projected: 0
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED 1	RU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
<u>Material Parameters</u>	Average	Lower Limit	<u>Upper Limit</u>	RATES OF	WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		rojected	Final Form	Pu238	2.95E+00 Curies/m3
Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	0.0	End of 1992:	1.5	3.8 m3	Pu83	8.99E-02 Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	End of 1993;	1.5	3.8 m3		
Cellulosics	172.6 0.0	75.8	231.6	1994:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr		
Solidified, Inorganic matrix	174.7	75.8	231.6	1998-2002:	0.0	0.0 m3/ry		
Solidlied, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr		
Soils	0.0	0.0	0.0	<u>L</u>				
Packaging Materials, Steel Packaging Material, Plastic	210.0			TTPICAL		S APPLICABLE		
,	16.0				D002B			
Comments					D006A			
2 in number stored is the number drums/SWB.	of SWBs tha	t will result from	overpacking 4	!	D007A			
di dina O V I D.					D008A			•
					D009A			
					D010A			
					DOLLA			,
					F001			
					F003			
					P015			

SITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD	
IN-W179 CONTAINER: Type/Size: TYPICAL WASTE DENSITII	55-gallon	NAL WASTE	Container Mati: steel Liner Type: Number Stored: 19 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION	2
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solis Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 394.2 0.0 0.0 0.0 399.0 0.0 131.0 37.0	0.0 0.0 0.0 173.1 0.0 0.0 0.0 173.1 0.0 0.0	Projected Final Form Pu83 6.73E+00 Curies/m3	

IN-W179 - 3

IN - 45

2/28/95

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W181 WIPP ID IN-W181 Local ID ID-EGG-112T-978 MATRIX CODE 3150 SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics Site Matrix Description This weets in form Poster State	STREAM NAME Solidified Process Residues DESCRIPTION Cemented Studges (TRU): Laundry Studge
as a poor grade. NO MIGRATION VARIANCE PETITION ASSIGNMENT ID 21	The waste consists of sludge from laundry operations that have been cemented in portland. The cement is described 1A TRUCON CODE ID 211A
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

SITE NAME IN	· 		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W181 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	55-gallon	INAL WASTE Lower Limit 0.0 0.0 3.4 0.0 0.0 0.0 8.7 536.0 0.0	Container Mati: steel Liner Type: Number Stored: 46 Int. Vol/Ctnr: 0.208m3 Liner Material: Number Projected: 0
·			P015

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM WIPP ID IN-W186 Local ID ID-EGG-114T-116 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Predominantly Combustible Debris DESCRIPTION Combustibles (TRU): Combustible Waste
Site Matrix Description Combustible waste consists of ce	
Pinal Waste FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Research and Devel, Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

SITE NAME IN			WAS	TE TYPE MTR	J HANDI	ING CH GEN	ERATOR S	ITE RF	
IN-W186 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters	55-gallon	INAL WASTE	Int.	3) STORED	~' ∶TRU WASTE	Liner Type: iner Material: ESTIMATED GENERATION		Number Pro	Stored: 12958 lected: 0
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solldified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 2.9 575.6 55.2 165.6 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 105.8 55.2 105.8 0.0	0.0 0.0 0.0 7.2 961.5 163.5 288.5 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	D008A F001	2695.1 m3 2695.1 m3 2695.1 m3 0.0 m3/yr	Am241 Pu52 U235	6.68E-02 4.51E+00 6.50E-07	Curies/m3 Curies/m3
					F002				

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W188 WIPP ID IN-W188 Local ID ID-EGG-112T-976 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics	STREAM NAME Solidified Process Residues DESCRIPTION Cemented Studges (TRU): Building 776 Process Studge
NO MIGRATION VARIANCE PETITION ASSIGNMENT ID 21	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown	Research and Devel, Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

TE NAME IN		WAS	STE TYPE MTRU	HAND	ING CH GEN	ERATOR S	ITE RF	
Type/Size	ES FOR FINAL	Int. WASTE FORM (kg/n	n3) STORED T	RU WASTE	Liner Type: iner Material; E-ESTIMATED GENERATION	TYPICAL		1 '1
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 1 in number stored is the number drums/SWB.	0.0 0.0 1.5 15.2 0.0 0.0 4.1 338.0 0.0 210.0	ver Limit Upper Limit 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 0.0 0.0 0.0 0.0 3.8 4.3 235.0 415.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022: TYPICAL	0.3 0.3 0.0 0.0 0.0 0.0 0.0	Final Form 1.9 m3 1.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr S APPLICABLE	Nuclide Pu52	Activity 3.96E+00	Curies/m3

NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF	
IN-W188 CONTAINER: Drum Type/Size: 55-gallon			let V tiet a pan e	Stored:
	55-gallon	NAL WASTE	Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Pr	ojected: (
			F003 P015	

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W189 WIPP ID IN-W189 Local ID ID-EGG-109T-464 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Predominantly Combustible Debris DESCRIPTION Benelex, Plexiglass (TRU): Benelex and Plexiglass
Site Matrix Description This waste, generated at Rocky particles (masonite corp. type 4	
PER PROPERTY OF THE PROPERTY O	X Rsearch and Devet. Waste X TSCA Asbestos Operations Waste X PCBs

IN-W189 CONTAINER: Type/Size:		ack		lainer Matl: steel t. Vol/Ctnr: 1		Liner Type: ner Material:		Number S Number Proj	1 - 1
TYPICAL WASTE DENSITI	ES FOR F Average	INAL WASTE	FORM (kg/	RATES	TRU WASTE	ESTIMATED GENERATION		_	OMPOSITION
Iron-based Metals/Alloys	0.8	0.0	0.0	<u> </u>	Projected	Final Form	Pu52	2.64E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		3.8 m3			
Other Metals	3.4	0.0	0.0	End of 1993:		3.8 m3			
Other Inorganic Materials	48.6	0.0	0.0	1994;	0.0	0.0 m3/yr			
Cellulosics	17.2	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	88.9	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0						
Packaging Materials, Steel	210.0		<u> </u>	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	16.0				D008C				
Comments					F001				

IN-W189 - 2

SITE NAME IN			WAS	STE TYPE MTR	HAND	LING CH GEN	ERATOR S	ITE RF	<u>: </u>
IN-W189 CONTAINER Type/Size	Drum :55-gallon			iner Matt: steel Vol/Ctnr: 0.2	08 m3 L	Liner Type: iner Material:		Number Stored Number Projected	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED		E-ESTIMATED	TYPICAL	ISOTOPIC COMPO	SITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	1.9	0.0	0.0		Projected	Final Form	Pu52	6.03E+00 Curie	s/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		4.4 m3			
Other Metals	7.7	0.0	0.0	End of 1993:		4,4 m3			
Other Inorganic Materials	111.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	39.2	0.0	0.0	1995:	0.0	0,0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	203.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0	Typica	I FDA CODE				
Packaging Materials, Steel	131,0			TTPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				D008C				
					EAA 1				

SITE NAME IN

ENAME IV			WAST	E TYPE MTRU	☐ HANDI	LING CH GEI	ERATOR S	ITE RF	
IN-W197 CONTAINER: Type/Size: TYPICAL WASTE DENSITI			Int. Vo	<u> </u>	~	Liner Type: iner Material: E_ESTIMATED	D. D	Number S Number Proj	jected: 0
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 46 in number stored is the number	0.3 0.0 0.9 8.0 20.8 4.0 31.8 0.0 0.0 210.0	0.0 0.0 0.0 0.0 0.0 0.7 0.0 5.7 0.0 0.0	1.9 0.0 5.3 30.5 66.1 26.1 110.8 0.0 0.0	RATES C End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1898-2002: 2003-2022:	Projected 38.3 38.3 0.0 0.0 0.0 0.0 0.0 0	### ESTIMATED GENERATION	TYPICAL Nuclide Am241 Pu52 U235	Activity 3.61E-01 2.20E+00 4.26E-07	Curies/m3 Curies/m3 Curies/m3
drums/SWB.			точеграскіні д	_	D008C D022 F001 F002 F003 F005A				

NAME IN	e.		WAS	TE TYPE MTRU	HAND	ING CH GEN	ERATOR S	ITE RF	
IN-W197 CONTAIN Type/S	ER: Drum ize: 55-gallon			ner Matl: steel Vol/Ctnr: 0.20	08 m3 Li	Liner Type:		Number S Number Pro	
TYPICAL WASTE DENS Material Parameters	Average	Lower Limit	FORM (kg/m			-ESTIMATED GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Allo Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	9.1 72.6 0.0 0.0 0.0 0.0 131.0	0.0 0.0 0.0 0.0 1.6 0.0 13.1 0.0 0.0	4.4 0.0 12.2 69.7 151.0 59.7 253.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	545.5 545.5 0.0 0.0 0.0 0.0 0.0 0.0	545.5 m3 545.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu52 U235	8.25E-01 5.02E+00 9.72E-07	Curies/m3 Curies/m3 Curies/m3
Packaging Material, Plastic	37.0				D001C D002B				
Comments 11% of this waste stream vol shielding. It is anticipated tha with internal shielding.	ume is classified t the RH-TRU p	as RH-TRU with ortion will be ship	nout current oped as CH-TRU	J	D008A D008C D022 F001				
					F002 F003 F005A	·			

IN-W198 CONTAINER: Type/Size:		ack	 (iner Maii: steel Vol/Ctnr: 1	.9m3 L	Liner Type: iner Material:		Number \$	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 34 in number stored is the number	0.0 0.0 0.1 9.6 9.4 31.2 24.8 0.0 0.0 210.0 16.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.5 21.5 61.7 138.8 44.7 0.0 0.0	RATES (End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	Projected 28.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0	E-ESTIMATED GENERATION Final Form 63.9 m3 63.9 m3 0.0 m3/yr	TYPICAL Nuclide Am241 Np237 Pu242 Pu52 U235		Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
					D029 F001 F002 F003 F005A				

IN-W198 CONTAINER: Type/Size:				ner Mati: steel		Liner Type:		Number S	Stored: 4
				Vol/Ctnr: 0.2		Number Projected: 0			
TYPICAL WASTE DENSITIE	ES FOR F	INAL WASTE	FORM (kg/n	13) STORE	TRU WAST	E ESTIMATED	TYPICAL	LISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	1.63E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		99.9 m3	Np237	2.28E-05	Curies/m3
Other Metals	0.2	0.0	1.1	End of 1993:	99.9	99.9 m3	Pu242	3.63E-05	Curies/m3
Other Inorganic Materials	21.9	7.4	49.2	1994:	0.0	0.0 m3/yr	Pu52	6.52E+00	Curies/m3
Cellulosics	21.5	0.0	141.0	1995:	0.0	0.0 m3/yr	U235	8.99E-08	Curies/m3
Rubber	71.3	0.0	317.0	1996:	0.0	0.0 m3/yr			
Plastics	56.6	0.0	102.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TYDICA	L EDA COD				
Packaging Materials, Steel	131.0			TIFICA		ES APPLICABLE			
Packaging Material, Plastic	37,0				D008A				
Comments					D008C				
13% of this waste stream volume	is classified	as RH-TRU with	out current	<u></u>	D022				
shielding. It is anticipated that the	RH-TRU po	rtion will be ship	ped as CH-TRU)	D029				
with internal shielding.			 		F001				
					F002				
					LOOZ				

000281

SITE NAME IN				WAS	TE TYPE MTRU	HANDLING C	H GE	NERATOR SI	TE RF	
WASTE STREAM	MWIR ID II WIPP ID II Local ID	N-W202	4T-970	STREAM NAMI	Wood Debris Combustibles (TR	(U): Wood				
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	<u>c</u>	5320 mbustible				·				
Site Matrix Desc NO MIGRATION VAF	Lim	me of the fi	ems such as plas mbustibles such a	ic sheeting, Kimwipe is nails and sheetrocl	s, and other combus	stibles are also pr	n of lumber, present. Plast	c sheeting ma	rames, and possibly ladd y have some paint coatin	ers. igs.
FINAL WASTE FORM Defense TRU WANNON-Defense TRU Commercial TRU Unknown	M DESCRIP aste tU Waste	PTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	×	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	el. Waste X X amissioning X storation	TSCA A	asbestos PCBs Other I/A Inknown	X	

SITE NAME IN			WAS	TE TYPE MTR	Ŭ HAND	LING CH GEN	ERATOR S	ITE RF	
Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	55-gallon	INAL WASTE Lower Limit 0.0 0.0 16.3 170.0 0.0 14.9 0.0 0.0 0.0	Int.	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	08 m3 L 0 TRU WASTE 0F WASTE 109.9 109.9 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 109.9 m3 109.9 m3 0.0 m3/yr SAPPLICABLE	TYPICAL Nuclide Pu52	Number S Number Pro ISOTOPIC C Activity 1.79E+00	
					55				

SITE NAME IN		WAST	TYPE MTRU HANDLING CH GENERATOR S	ITE MD
WIPF Loca MATRIX CODE SITE FINAL FORM IDC	R ID IN-W203 P ID IN-W203 I ID ID-EGG-114T-826 5440		redominantly Combustible Debris combustibles (TRU): Combustible Equipment Boxes or Floor	Sweeping and Rust
	n This waste stream, generated at this content code was used for g for large combustible waste item	pove box noor sweepp s such as plastic tank es were included in col	ludes two different types of waste depending on when the ways and rust. The actual amount of floor sweeping is small. Af plexiglass shielding and windows, wood, and fiberglass convent code 824 prior to 1980. Limited amounts of small combustions of small combustions.	ter 1981, this content code is used
FINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wa Commercial TRU Was Unknown	X Mixed TRU ste Non-Mixed TRU		search and Devel. Waste X TSCA Asbestos PCBs PCBs Other N/A Unknown om Treatment of Waste alintenance	X

<u>IN-W203</u>	CONTAINER: Type/Size:		Int.	 -		Liner Type: iner Material:	Number Stored: 3			
<u>Material Para</u>		<u>Average</u>	INAL WASTE	FORM (kg/n Upper Limit	RATES	TRU WASTI OF WASTE	E-ESTIMATED GENERATION	<u>Nuclide</u>	ISOTOPIC C	OMPOSIT
Iron-based Me Aluminum-Bas Other Metals Other Inorgan Cellulosics Rubber Plastics Solidified, Inor Solidified, Organis Packaging Ma Packaging Ma	sed Metals/Alloys ic Materials ganic matrix anic matrix terials, Steel	0.0 0.0 0.3 11.1 63.0 19.3 191.8 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 63.0 19.3 158.7 0.0 0.0	0.0 0.0 17.9 17.3 706.7 194.4 706.7 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	71.9 0.0 0.0 0.0 0.0 0.0 0.0	71.9 m3 71.9 m3 71.9 m3 0.0 m3/yr	Am241 Pu238 Pu239 Pu240 Pu83	1.69E-01 7.64E-01 2.19E-02 1.07E-02 1.42E-01	Curies/n Curies/n Curies/n Curies/n

IN-W203 - 2

IN - 65

2/28/95

SITE NAME IN	WAST	TE TYPE MTRU HANDLING CH	GENERATOR SITE MD
WASTE STREAM MWIR ID IN-W204 WIPP ID IN-W204 Local ID ID-EGG-114 MATRIX CODE SITE FINAL FORM IDC	T-827 DESCRIPTION	Predominately Combustible Debris Combustibles (TRU): Combustible Equipme	nt Drums
Waste Matrix Code Group Heterogeneous Site Matrix Description This waste stre	eam is smaller combustible items from f	Mound Laboratory which fit into drums. TRUCON CODE	
Non-Defense TRU Waste Commercial TRU Waste S	Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel, Waste X TSC, Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	A Asbestos PCBs Other N/A Unknown

185000

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

IN-W204 CONTAINER: Type/Size:			 -	iner Mati: steel Vol/Ctnr: 1		Number Stored: 1 Number Projected: 0			
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/n	RATES (TRU WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soits Packaging Materials, Steel Packaging Material, Plastic Comments 1 in number stored is the number	0.0 0.0 0.1 4.9 27.6 8.4 84.0 0.0 0.0 201.0 16.0	0.0 0.0 0.0 27.6 8.4 69.5 0.0 0.0	0.0 0.0 7.8 7.6 309.5 85.1 309.5 0.0 0.0	End of 1992; End of 1993; 1994; 1996; 1996; 1997; 1998-2002; 2003-2022;	0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.9 m3 1.9 m3 0.0 m3/yr	Am241 Pu52 Pu83	3.36E+00 6.89E-02 4.18E+00	Curies/m3 Curies/m3 Curies/m3

IN-W204 - 2

IN - 67

2/28/95

TE NAME IN			WA	STE TYPE MTR	HAND	ING CH GE	NERATOR S	ITE MD	
IN-W204 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	lnt			Liner Type: ner Material: ESTIMATED		Number S Number Pro	
Material Parameters Iron-based Metals/Alloys	Average 0.0	Lower Limit	Upper Limit	<u>[</u>	-	GENERATION	Nuclide Am241	Activity	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 1.3	Final Form 1.3 m3	Pu52	7.68E+00 6.89E+02	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	11.1	0.0	17.9 17.3	End of 1993: 1994:	1.3	1.3 m3 0.0 m3/yr	Pu83	9.55E+00	Curies/m3
Cellulosics Rubber	63.0 19.3	63.0 19.3	706.7 194.4	1995: 1996:	0.0	0.0 m3/yr			
Plastics Solidified, Inorganic matrix	191.8	158.7 0.0	706.7	1997:	0.0	0.0 m3/yr 0.0 m3/ry			
Solidified, Organic matrix Soils	0.0	0,0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr			
Packaging Materials, Steel	0,0 131.0	0.0	0.0	TYPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				D008A D009A				

D009D

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W205	STREAM NAME Combustible Debris
WIPP ID IN-W205	
Local ID ID-EGG-114T-900	DESCRIPTION Combustibles (TRU): Low Specific Activity Plastics, Paper, etc.
MATRIX CODE 5300	
SITE FINAL FORM IDC	·
Waste Matrix Code Group Combustible	
present.	ky Flats Plant primarily consists of line- and nonline-generated combustible materials such as plastics, paper, empty ic sheeting, and surgical gloves. The waste may be dry or damp. Limited amounts of noncombustibles may also be
NO MIGRATION VARIANCE PETITION ASSIGNMENT 10 21	TRUCON CODE ID 2168
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	RU Rearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

SWB overpa	ick	Conta	iner Mati: steel		Liner Type:		Number Stored:
		l Int.	. Vol/Ctnr: 1	.9m3 Li	ner Material:		Number Projected:
S FOR FI	NAL WASTE	FORM (kg/ı		TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity
16.6	1.9			Projected	Final Form	Pu52	1.72E-01 Curies/m3
0.0	0.0	0.0					
0.0	0.0	0.0	End of 1993:	0.2			
40.2	30.7	52.1	1994:	0.0			
57.4	27.9	109.9	1995:	0.0			
10.1	3.8	15.9	1996:	0.0	0.0 m3/yr		
7.9	13.8	21.5	1997:	0.0	0.0 m3/ry		
0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr		
0.0	0.0	0.0	TYPICA	L EDA CODE	C ADDI ICADI E		
210.0	1		TIPICA		SAPPLICABLE		
16.0							
	-			F001			
	S FOR FI Average 16.6 0.0 0.0 40.2 57.4 10.1 7.9 0.0 0.0 210.0	S FOR FINAL WASTE Average	S FOR FINAL WASTE FORM (kg/star) Average	Int. Vol/Ctnr: 1	Int. Vol/Ctnr: 1.9 m3 Li S FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE RATES OF WASTE	Int. Vol/Ctnr: 1.9 m3 Liner Material:	Int. Vol/Ctnr: 1.9 m3 Liner Material:

NAME IN	·	···-	WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR S	RF RF	
IN-W205 CONTAINE	R: Drum	· · · · · · · · · · · · · · · · · · ·	Conta	iner Mati: steel		Liner Type:		Number S	tored:
Type/Si	Type/Size: 55-gallon				08m3 Li	iner Material:	Number Projected: (
TYPICAL WASTE DENS	TIES FORF	INAL WASTE	FORM (kg/n	n3) STORED	TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO!
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuctide</u>	Activity	
Iron-based Metals/Alloys	37.8	4.4	98.6		Projected	Final Form	Pu52	3.95E-01	Curies/m3
Aluminum-Based Metals/Alloy	s 0.0	0.0	0.0	End of 1992:	0.6	0.6 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	0.6	0.6 m3			
Other Inorganic Materials	91.9	70.1	119.0	1994:	0.0	0.0 m3/yr			
Cellulosics	131.0	63.6	251.0	1995:	0.0	0.0 m3/yr			
Rubber	23.0	8.7	36.3	1996:	0.0	0.0 m3/yr			
Plastics	18.0	31.5	49.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	Tomic 6					
Packaging Materials, Steel	131,0			TYPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				D008A				
•					F001				
					F002				
					F003				

02000

SITE NAME IN				WAS	TE TYPEMTRU	HANDLING (Н	GENERATOR :	SITE MD	
WASTE STREAM	WIPP ID	IN-W214 IN-W214			E Composite Filters				<u></u>	
MATRIX CODE SITE FINAL FORM I		ID-EGG-1 5410	18T-813	DESCRIPTION	N Filters (TRU): Glas	ss Fillers and Fi	berglass	·		-
Waste Matrix Cod Site Matrix Des	cription T	his waste s	tream generated at d amounts of other	the Mound Laborato noncombustibles,	ry, consists primarily	of spun glass fi	Iters and fil	perglass gloveb	ox prefilters. The	waste may
NO MIGRATION VA	RIANCE P	ETITION A	SSIGNMENT			TRUCON	CODE			
FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Devel Operations Waste Residues Decon and Decomm Environmental Rest From Treatment of V	nissioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	x	

IN-W214 CONTAINER: Type/Size:	;		Ini			Liner Type: iner Material:		Number S Number Pro	
TYPICAL WASTE DENSITII Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	Average 0.0 0.0 0.0 85.3 2.1 0.0 0.0	Lower Limit 0.0 0.0 0.0 10.5 0.5 0.0 0.0 0.	Upper Limi 0.0 0.0 0.0 128.4 4.2 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997:	Projected 0.2 0.2 0.0 0.0 0.0 0.0	E ESTIMATED GENERATION Final Form 0.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	TYPICAL Nuclide Pu238 Pu239		OMPOSITION Curies/m3 Curies/m3
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments I in number stored is the number of	0.0 0.0 210.0 16.0	0.0	0.0	1998-2002: 2003-2022: TYPICA	0.0 0.0 L EPA CODE D001C D002B D009A D009D	0.0 m3/yr 0.0 m3/yr S APPLICABLE			

ITE NAME IN			WA	STE TYPE MTR	U HANDI	LING CH GEN	IERATOR S	SITE MD	
IN-W214 CONTAINER Type/Size	55-gallon		fn	£	08 m3 Li	Liner Type: iner Material:		Number S	L 1
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	. ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0	-	Projected	Final Form	Pu238	7.66E+02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.5 m3	Pu239	6.83E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.5	0.5 m3			
Other Inorganic Materials	194.7	24.0	293,3	1994:	0.0	0.0 m3/yr			
Cellulosics	4.8	1.2	9.6	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			-
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0,0	0.0	0.0	Typic a					
Packaging Materials, Steel	131.0			TYPICA	_	S APPLICABLE			
Packaging Material, Plastic	37.0				D001C				
					D002B				
					D009A				
					D009D				

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W216 WIPP ID IN-W216 Local ID ID-EGG-102T-001 MATRIX CODE SITE FINAL FORM IDC	STREAM NAME Solidified Process Residues DESCRIPTION Uncernented inorganic sludge (TRU): First stage sludge.
Waste Matrix Code Group Solidified Inorganics Site Matrix Description The waste stream generat radiation levels of first stagent in the stream generation levels of first stagent in the stagent in the stream generation levels of first stagent in the stagent in	ed at Rocky Flats Plant, consists of first and second stage sludges. Sludges were combined starting in 1979 to reduce the ge sludge. Portland cement was added to absorb free liquids. ID 211A TRUCON CODE ID 211A
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	T Sperations 44986 V PCB8

ENAME IN			WASTE	TYPEMTRI	U HANDL	ING CH GEN	ERATOR S	SITE RF	
IN-W216 CONTAINER: Type/Size:			Int. Vol	L	.9m3 Li	Liner Type: ner Material:		Number S Number Proj	
TYPICAL WASTE DENSITION Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber	0.0 0.0 1.5 15.2 0.0	0.0 0.0 1.5 0.0 0.0	0.0 0.0 Er 1.5 Er 37.3	RATES (and of 1992: 1994: 1995:	Projected 532.0 532.0 0.0 0.0	ESTIMATED GENERATION Final Form 1214.0 m3 1214.0 m3 0.0 m3/yr 0.0 m3/yr	TYPICAL Nuclide Am241 Pu52	- ISOTOPIC C Activity 1.14E+01 3.71E+00	OMPOSITION Curies/m3 Curies/m3
Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 4.1 338.0 0.0 0.0 210.0	0.0 3.8 235.0 0.0 0.0		1998: 1997: 1998-2002: 2003-2022: TYPICAI	D002B	0.0 m3/yr 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr S APPLICABLE			
Comments 639 in number of stored is the num drums per SWB.	nber of SWB	s that will result f	forn overpacking 4]	D005A D006A D007A D008A D009A				
					D009A D011A D022 D028 F001				
			;		F002 F003 P015				·

Type/Size: 55-gallon Int. Vol TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 0.0 0.0 0.0 Aluminum-Based Metals/Alloys 0.0 0.0 0.0 Other Metals 3.4 3.4 3.4 3.4 Other Inorganic Materials 34.8 0.0 85.2 Celfulosics 0.0 0.0 0.0 Rubber 0.0 0.0 0.0 Plastics 9.4 8.7 9.8 Solidified, Inorganic matrix 772.0 536.0 947.0	RATES OF WASTE GENERATION Nuclide Activity
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 0.0 0.0 0.0 Aluminum-Based Metals/Alloys 0.0 0.0 0.0 Other Metals 3.4 3.4 3.4 Other Inorganic Materials 34.8 0.0 85.2 Celfulosics 0.0 0.0 0.0 Rubber 0.0 0.0 0.0 Plastics 9.4 8.7 9.8 Solidified, Inorganic matrix 772.0 536.0 947.0 Soils 0.0 0.0 0.0 Packaging Materials, Steel 131.0	RATES OF WASTE GENERATION Nuclide Activity
	1996: 0.0 0.0 m3/yr 1997: 0.0 0.0 m3/yr 1998-2002: 0.0 0.0 m3/yr 2003-2022: 0.0 0.0 m3/yr TYPICAL EPA CODES APPLICABLE D002B D005A D006A D007A D008A D009A D011A D022 D028 F001 F002

SITE NAME IN			WASTE 1	TYPE MTRU	_	ING CH GE		SITE RF, AE	
IN-W220 CONTAINER Type/Size: TYPICAL WASTE DENSITE Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic Comments 187 in number stored is the numb drums per SWB.	ES FOR F Average 0.0 0.0 1.5 15.2 0.0 0.0 4.1 338.0 0.0 0.0 210.0 16.0	NAL WASTE Lower Limit 0.0 0.0 1.5 0.0 0.0 0.0 0.0 3.8 235.0 0.0	Container Int. Volco FORM (kg/m3) Upper Limit 0.0 0.0 1.5 Enc 37.3 0.0 0.0 4.4 415.0 18 0.0 0.0	Matt: steel Ctnr: 1.9 STORED RATES O d of 1992: d of 1993: 1994: 1995: 1996: 1997: 1998-2002: 199	### HANDLE F WASTE		VERATOR :	Number S	
					D009A F001 F002 F003 F005A				
					P015				

TE NAME N		WAS	TE TYPE MTR	U HAND	LING CH GEN	ERATOR S	SITE RF, AE	
IN-W220 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	55-gallon	Conta Int.	iner Mati: steel Vol/Ctnr: 0.2 n3) STORED RATES End of 1992: End of 1993; 1994: 1996: 1997: 1998-2002: 2003-2022:	08m3 L TRU WASTE Projected 398.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 398.0 m3 398.0 m3 0.0 m3/yr	Number S Number Pro		
Packaging Malerial, Plastic	37.0			D002B D004A D005A D006A D007A D008A D009A F001 F002 F003 F005A				

800293

SITE NAME IN			WAS	TE TYPE MTRU HANDI	LING CH	GENERATOR SI	TE RF	
	Group Solidified Inc	02T-113 <u>r</u>	DESCRIPTION	E Absorbed Aqueous Liquids N Uncemented inorganic slud eutralized aqueous laboratory	dge (TRU): solid la	ab waste.		
NO MIGRATION VAF	M DESCRIPTORS:	SSIGNMENT ID 113	<u> </u>	TRI Rsearch and Devel, Waste	UCON CODE D			
Non-Defense TR Commercial TRU Unknown	U Waste	Non-Mixed TRU Suspect Mixed TRU Unknown		Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance		PCBs Other N/A Unknown	×	

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GEN	ERATOR S	ITE RF	<u> </u>
	:55-gallon		Int.		08 m3 L	Liner Type: iner Material:		Number S Number Pro	<u> </u>
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORED	TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu52	1.27E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	14,4		U235	1.09E-05	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	14.4	L—————————————————————————————————————			
Other Inorganic Materials	26.9	0.0	325.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			,
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		•	
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	872.0	517.0	1357.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVBIC 4	. 554 565				
Packaging Materials, Steel	131.0	1		ITPICA		ES APPLICABLE			
Packaging Material, Plastic	37.0				D002B				
					F003				

SITE NAME IN		WAST	E TYPEMTRU HANDLI	ING CH	GENERATOR SIT	re RF
WIPP (Local I MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	D IN-W222 D IN-W222 D ID-EGG-102T-292 3150 Solidified Inorganics	DESCRIPTION	Solidified Process Residues Uncemented inorganic sludg	e (TRU): cemen	-	
Site Matrix Description NO MIGRATION VARIANCE	This waste stream, generated at etc. Portland cement is added to 290 in 1973.	Rocky Flats Plant, co absorb free Ilquids.	The studge may contain a lim	illed number of s	urgical gloves. Co	uilding filter plenums, pumps, ontent code 292 replaced code
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU		TRUI Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	×	Asbestos PCBs Other N/A Unknown	X .

つついり

ENAME IN			WASTE	TYPEMTRI	IDINAH [LING CH GEN	ERATOR S	ITE RF	
IN-W222 CONTAINER Type/Size:		ack	Container Int. Vol/	Matl: steel Ctnr: 1	.9 m3 L	Liner Type: Iner Material:		Number S Number Pro	1 1
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m3) Upper Limit	STORED RATES (TRU WASTI DF WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide		OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.1 0.0 0.0 4.8 0.2 0.0 18.2 126.6	0.0 0.0 0.0 0.0 0.0 0.0 3.8 70.1	0.5 0.0 En 95.9 1.4 0.0 29.9 208.4	nd of 1992: ad of 1993: 1994: 1996: 1996: 1997: 1998-2002:	700 3.9 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8.8 m3 8.8 m3 0.0 m3/yr	Am241 Pu52	5.93E-03 2.81E+01	Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 210.0 16.0	0.0	0.0	TYPICA	D002B D006A	S APPLICABLE			
5 in number stored is the number drums per SWB.	of SWBs the	at will result from	overpacking 4		D008A F001 F002 F003 F003	·			

SITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W222 CONTAINER: Type/Size: TYPICAL WASTE DENSIT! Material Parameters	55-gallon	NAL WASTE	Container Mati: steel Liner Type: Number Stored: 48 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.1 0.0 0.0 10.9 0.4 0.0 41.6 289.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 8.7 160.0 0.0	1.1 Projected Final Form Am241 1.35E-02 Curies/m3 0.0 End of 1992: 10.0 10.0 m3 0.0 End of 1993: 10.0 10.0 m3 219.0 1994: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 68.3 1997: 0.0 0.0 m3/yr 476.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE D002B D006A D008A F001 F002 F003 F003
			F003

SITE NAME IN		WAST	TE TYPE MTRU HA	INDLING CH	GENERATOR SI	TE RF
WIPP	D IN-W225 D IN-W225 D ID-EGG-109T-302 5440		Predominantly Combus Benelex, Plexiglass (TR		exiglass.	
Site Matrix Description	The waste, generated at Rocky	present. Plexiglass is ass are combustible.	s the other major consitul Content Code 302 was	Some of the benelex Itent in the waste. The	k has lead shielding he plexiglass thickn 973.	board made from wood chips and attached to it. Metal hinges, and less ranges from 2 to 4 inches.
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	eu 📙	Rsearch and Devel. Was Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Wast Maintenance	este X TSC X Onling X		X

E NAME IN			WAS	TE TYPE MTR	U HAND		NERATOR S	SITE RF			
IN-W225 CONTAINER: SWB overpack Type/Size: TYPICAL WASTE DENSITIES FOR FINAL WASTE FO				Container Mati: sleei Liner Type: Int. Vol/Ctnr: 1.9m3 Liner Material:					Number Stored: 1 Number Projected: 0		
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	E_ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C Activity	NOTTIZOGMO		
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber	0.0 0.0 0.0 60.2 81.9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 44.2 364.8	End of 1992: End of 1993: 1994: 1996:	0.9 0.9 0.0 0.0	3.8 m3 3.8 m3 0.0 m3/yr 0.0 m3/yr	Am241 Pu52	1.80E-03 8.04E-01	Curies/m3 Curies/m3		
Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 87.1 0.0 0.0	0.0 6.7 0.0 0.0	0.0 168.6 0.0 0.0	1996: 1997: 1998-2002: 2003-2022:	0.0 0.0 0.0 0.0	0.0 m3/yr 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr					
Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0		0.0	TYPICA	L EPA CODE D008C	S APPLICABLE					
Comments 1 in number stored is the number drums per SWB.	of SWBs tha	t will result from o	overpacking 4		F001 F001 F001						

SITE NAME IN			WAS	STE TYPE MTR	HANDL	ING CH GEN	ERATOR S	ITE RF	·	
IN-W225 CONTAINER: Drum Type/Size: 55-gallon				Container Mati: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material:				Number Stored: 11 Number Projected: 0		
TYPICAL WASTE DENSITIES FOR FINAL WASTE FO						-ESTIMATED	TYPICAL ISOTOPIC COMPOSITION			
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	<u>NucHde</u>	<u>Activity</u>	<u> </u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	4.11E-03	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	2.3	2.3 m3	Pu52	1.84E+00	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	2.3	2.3 m3				
Other Inorganic Materials	37.0	0.0	101.0	1994:	0.0	0.0 m3/yr				
Cellulosics	187.0	0.0	833.0	1995:	0.0	0.0 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	199.0	15.3	385.0	1997:	0.0	0.0 m3/ry		•		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	TYDICA	L EDA CODE	S APPLICABLE				
Packaging Materials, Steel	131.0	-		TIPICA		3 APPLICABLE				
Packaging Material, Plastic	37.0				D008C					
					F001					
					F001					
•					F001			-		

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
WASTE STREAM MWIR ID IN-W228	STREAM NAME Wastewater Treatment Studges								
WIPP ID IN-W228	- Transmis Transmis Treatifier Slouges								
Local ID ID-EGG-102T-002	DESCRIPTION Uncemented inorganic studge (TRU): second stage studge								
MATRIX CODE 3121	Second stage studge								
SITE FINAL FORM IDC									
Waste Matrix Code Group Solidified Inorganics									
	t the Rocky Flats Plant, consists of wet studge from treatment of all other plant radioactive and/or chemical								
contaminated wastes, and further treatment of the first stage effluent. Some pre-1973 wastes may include non-sludge wastes such as electric motors, mercury and lithlum batteries, bottles of liquid chemicals, and small amounts of mercury in pint bottles. Portland cement was added to absorb the free NO MIGRATION VARIANCE PETITION ASSIGNMENT ID 211A									
FINAL WASTE FORM DESCRIPTORS:									
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown X Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance								

Container SWB overpack Type/Size Type/Si	TE NAME IN WASTE TYPE MTRU HANDLING CH GENERAT	TOR SITE RF
Material Parameters	Type/Size: Int. Vol/Ctnr: 1.9 m3 Liner Material:	
IN - 90 2/28/0	Material Parameters Average Lower Llimit Upper Llimit Up	clide Activity 241 1.62E-01 Curies/m3 32 2.94E-01 Curies/m3

SITE NAME IN WASTE TYPE	MTRU HANDLING	G CH GENERATOR SITE	RF
-------------------------	---------------	---------------------	----

P015

066310

IN-W228 - 3

IN - 91

2/28/95

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF IN-W228 CONTAINER: Drum Container Mati: steel Liner Type: Number Stored: 2559 Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** Nuclide **Average** Activity Lower Limit Upper Limit Iron-based Metals/Alloys Am241 0.0 3.71E-01 Curies/m3 0.0 0.0 Projected Final Form Aluminum-Based Metals/Alloys 0.0 Pu52 0.0 0.0 6.72E-01 Curies/m3 End of 1992: 532.0 532.0 m3 Other Metals 0.0 0.0 0.0 End of 1993: 532.0 532.0 m3 Other Inorganic Materials 22.7 0.0 103.0 1994: 0.0 0.0 m3/yr Cellulosics 0.2 0.0 1.1 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr **Plastics** 3.1 2.2 4.4 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 332.0 80.9 408.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 D002B Packaging Material, Plastic 37.0 D003E D005A D006A D007A D008A D009A D009D D011A D022 D028 F001 F002 F003 F003 F003

IN - 92

2/28/95

IN-W228 - 4

SITE NAME IN

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE RF

P015

IN-W228 - 5

IN - 93

2/28/95

SITE NAME IN			WAS	TE TYPE MTRU HAP	NDLING CH	GENERATOR SI	TE RF	
	MWIR ID IN-W230 WIPP ID IN-W230 Local ID ID-EGG-1 5200 George Group Inorganic No cription insulation, fire	15T-122		Inorganic Non-Metal Del		Vaste		
NO MIGRATION VA	RIANCE PETITION A	SSIGNMENT ID 122			TRUCON CODE	ID 122	~	
Defense TRU V Non-Defense TI Commercial TR	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU	X	Rsearch and Devel, Was Operations Waste Residues		SCA Asbestos PCBs Other		
Unknown	Ц	Unknown		Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	on 🗌	N/A Unknown	X	

TENAME IN			WAS	STE TYPE MTR	川 HANDL	ING CH GEN	ERATOR S	ITE RF	
IN-W230 CONTAINER Type/Size TYPICAL WASTE DENSIT		INAI WASTE	int,	L <u></u> .	_	Liner Type: ner Material: -ESTIMATED		Number S Number Pro	jected: 6
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	Nuclide	ISOTOPIC C Activity	OMPOSITION
fron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	2.23E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	5.1	11.6 m3	Pu52	2.71E-03	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	5.1	11.6 m3	U235	3.42E-06	Curies/m3
Other Inorganic Materials	231.6	21.1	547.4	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr		•	
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls Packaging Materials, Steel	0.0 210.0	0.0	0.0	TYPICA	LEPA CODE	S APPLICABLE			
Packaging Material, Plastic	16.0	1			F001				
					F002				

IN-W230 - 2

SITE NAME IN			WAS	STE TYPE MTRI	J HANDL	ING CH GEN	IERATOR S	ITE RF	
IN-W230 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gailon	INAL WASTE I	lot.	n3) STORED	 TRU WASTE	Liner Type: Iner Material: ESTIMATED		Number S Number Pro ISOTOPIC C	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	KATES	OF WASIE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	Am241	5.08E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0,0	0.0	End of 1992:		13.1 m3	Pu52	6.18E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	13.1	13.1 m3	U235	7.80E-06	Curies/m3
Other Inorganic Materials	528.8	48.1	1250.0	1994;	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0			TYPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				F001				
					F002				

SITE NAME IN		WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE RF
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Inc.	IN-W240 ID-EGG-119T-118 5220 organic Non-metal	,	Glass (TRU): Glass Waste Containers or raschig rings from various processes.
NO MIGRATION VARIANCE PE FINAL WASTE FORM DESCRII Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	<u> </u>	×	Rearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

30316

IN-W240 - 1

IN - 97

SITE NAME IN			WAS	TE TYPE MTR	U HAND		NERATOR S	ITE RF	
IN-W240 CONTAINER Type/Size Type/Size TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	55-gallon	1NAL WASTE Lower Limit 0.0 0.0 0.0 51.4 0.0 0.0 3.8 0.0 0.0	Conta	iner Matt: steel Vol/Ctnr: 0.2 13) STORED RATES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	DB m3 L DTRU WASTE Projected 169.1 169.1 0.0 0.0 0.0 0.0 0.0	Liner Type: Liner Material: E-ESTIMATED GENERATION Final Fortm 169.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		Number S Number Pro	
					D008A D009A				
					F001				*

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W243 WIPP ID IN-W243 Local ID ID-EGG-119T-440 MATRIX CODE 5220 SITE FINAL FORM IDC Waste Matrix Code Group Inorganic Non-metal	STREAM NAME Glass Debris DESCRIPTION Glass (TRU): Glass
dissolver pyrex laboratory glass glass. The waste includes limite	the Rocky Flats Plant, consists of glass sample vials, bottles, lead-taped sample vials, ion exchange columns, ware such as pyrex flasks and beakers, glovebox windows (glass, plexiglass, leaded glass), and crushed and ground diamounts of other noncombustibles such as metals, and limited amounts of combustible wastes. No sludges should vials may contain limited amounts of free liquids. 8; 2168 TRUCON CODE ID 2188
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rearch and Devei. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GEI	ERATOR S	NTE DE	
							ILICATOR S	NIE (RF	
IN-W243 CONTAINER: Type/Size:			Int. V	L	.9m3 L	Liner Type: iner Material:		Number S Number Pro	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidifled, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 47 in numer stored is the number drums/SWB.	0.0 0.0 0.7 130.9 0.0 0.5 14.2 0.0 0.0 210.0	0.0 0.0 0.0 22.5 0.0 0.0 1.7 0.0 0.0	0.0 0.0 5.7 372.2 0.0 3.8 30.6 0.0 0.0	RATES End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	Projected 38.8 38.8 0.0 0.0 0.0 0.0 0.0 0.0	E - ESTIMATED GENERATION Final Form 88.7 m3 88.7 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 8.5 APPLICABLE	TYPIGAL Nuclide Am241 Pu52 U235 U238		Curies/m3 Curies/m3 Curies/m3 Curies/m3

IN-W243	CONTAINER:	Drum		Conta	Iner Mati: steel	1	Liner Type:		Marie	
11111111	Type/Size:				Vol/Ctnr: 0.20		ner Material:		Number S Number Pro	
Material Paran	_	Average	Lower Limit	Upper Limit	RATES	F WASTE	ESTIMATED GENERATION		Activity 1.53E-01	<u> </u>
Other Metals Other Inorganic Cellulosics Rubber Plastics Solidified, Inorg Solidified, Orga Soils Packaging Mate Packaging Mate Comments	ed Metals/Alloys Materials anic matrix nic matrix erials, Steel erial, Plastic ste stream volume anticipated that the				End of 1992: End of 1983: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	147.0 147.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 D002B D008A D008C D029	Final Form 147.0 m3 147.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr SAPPLICABLE	Pu52 U235 U238	1.57E+01 6.16E-07 4.26E-08	Curies/m3 Curies/m3

SITE NAME IN			WAS	TE TYPE MTRU HAI	NDLING CH	GENERATOR SIT	re RF
WASTE STREAM	MWIR ID IN-W WIPP ID IN-W Local ID ID-E	V245		Uncategorized Unknown			
MATRIX CODE SITE FINAL FORM ID	8900		<u>DESCRIP HO</u>	Slass (TRU): Unleache	d Rashig Ring:	5	
Waste Matrix Code					-		
NO MIGRATION VAR	Rashig resista above- may be	Content code 441, Onless Rings. The rings are about the content of pluto a contaminated with small CON ASSIGNMENT ID 1:	ached Kashig Kings to pout 1,75 inches high 11.8 - 13.8 weight % nium, were leached y I amounts of oil.	was used from 1971-79 as and 1,5 inch in diameter, s B203, with an isotopic co with nitric acid to recover th	s a separate str with a 0.25 inch plent of 108/11	eam, and then combined wal thickness. The ring B of not less than 0.24, and then rinsed with water	ultiplication in liquid storage of with content code 442, Leached gs are heat and chemical Some of the rings, which had r, and dried. Some of the rings
FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	aste X	RS: Mixed TRU Non-Mixed TRU Suspect Mixed Ti Unknown	RU T	Research and Devel, Was Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	X Oning X	TSCA Asbestos PCBs Other N/A Unknown	X

E NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W245 CONTAINER Type/Size TYPICAL WASTE DENSITI		INAL WASTE	Container Mati: steel Liner Type: Number Stored: 54 Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 54 in number stored is the number drums/SWB.	0.0 0.0 0.0 154.6 9.9 0.0 3.5 0.0 0.0 210.0	0.0 0.0 0.0 92.0 5.9 0.0 1.4 0.0 0.0	Description Projected Final Form Pusition Pus

ENAME IN			WAS	TE TYPE MTRI	J HANDI	ING CH GEN	ERATOR 8	ITE RF	
IN-W245 CONTAINER: Type/Size:			—	iner Mati: steel Vol/Ctnr: 0.20	08/m3 L	Liner Type: iner Material:		Number 8 Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/n			E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241 Pu52	1.22E-02 3.16E+01	Curies/m3 Curies/m3
Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	0.0	End of 1992: End of 1993:	124.1 124.1	124.1 m3 124.1 m3	· 		J 411.23/1110
Other Inorganic Materials Cellulosics	353.0 22.7	210.0 13.5	443.0 35.6	1994: 1995:	0.0	0.0 m3/yr		-	
Rubber	0.0	0.0	0.0	1996:	0.0	0,0 m3/yr			•
Plastics Solidified, Inorganic matrix	7.9 0.0	3.3 0.0	0.0	1997: 1998-2002:	0.0	0.0 m3/ry 0.0 m3/yr			
Solidified, Organic matrix Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steel Packaging Material, Plastic	131.0 37.0			TYPICA	LEPA CODE D001C	S APPLICABLE			
Comments					D002B				
7% of this waste stream volume shielding. It is anticipated that the				J	D008C				
with internal shielding.			· .		F001				

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE RF

SITE NAME IN

ENAME IN			WAS	STE TYPE MTRU] HAND	LING CH GEN	IERATOR S	ITE RF	
IN-W247 CONTAINER: Type/Size: TYPICAL WASTE DENSITI			Int.	n3) STORED	⊐ <u>TRU</u> WAST	Liner Type: iner Material: E_ESTIMATED	TYPICAL	Number S Number Proj ISOTOPIC C	1 1
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 86.3 10.3 0.0 4.5 0.0 0.0 210.0	0.0 0.0 0.0 37.8 0.0 0.0 1.9 0.0 0.0	0.0 0.0 0.0 167.3 11.5 0.0 10.8 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	32.9 32.9 0.0 0.0 0.0 0.0 0.0	Final Form 75.1 m3 75.1 m3 75.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr ES APPLICABLE	<u>Nuclide</u> Am241 Pu52 U235	Activity 2.26E-03 6.66E+00 1.81E-07	Curles/m3 Curles/m3 Curles/m3
Comments 40 in number stored is the number		at result from our		 1	D008A D028				
drums/SWB.	. 01 01105 (1	er ream nou ov	еграскіпд 4		D029 F001 F002 F003 F005A				

IN-W247 CONTAINER: Dr. Type/Size: 55 TYPICAL WASTE DENSITIES Material Parameters A Iron-based Metals/Alloys	gallon FOR FIN	IAL WASTE	Int. V		08 m3 L	Liner Type: iner Material:		Number S Number Pro	
Material Parameters A		IAL WASTE	FORM (kg/m	44 070000					
Iron-based Metals/Allovs	TACIONE	Lower Limit	Upper Limit	RATES	TRU WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 6% of this waste stream volume is clashielding. It is anticipated that the Ri	0.0 0.0 197.0 23.6 0.0 10.3 0.0 0.0 0.0 131.0 37.0	0.0 0.0 0.0 86.3 0.0 0.0 4.4 0.0 0.0	0.0 0.0 382.0 26.2 0.0 24.7 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022: TYPICA	166.6 166.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 D002B D002B D008A D028	Final Form 166.6 m3 166.6 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 6.0 m3/yr	Am241 Pu52 U235	5.17E-03 1.52E+01 4.11E-07	Curies/m3 Curies/m3 Curies/m3

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING CH	H G	ENERATOR S	ITE MD	
WASTE STREAM	MWIR ID IN-W249	STI	REAM NAME	Uncalegorized Uni	known				
	WIPP ID IN-W249			E Charlegorizea Off	Anomi				
	Local ID ID-EGG-1	19T-810 DI	ESCRIPTION	Glass (TRU): Glas	es Flacke Sampl	la Misla sta			
MATRIX CODE	8900				35, 1 Idaka, Gallipii	ie A1912' 610	,		
SITE FINAL FORM	oc								
Waste Matrix Code	Group (norganic N	on-metai		7					
Site Matrix Des	cription This waste :	stream, generated at Mound	Laboratory	consists mostly of w	hole and broken s	daceware c	and slage as as	· · · · · · · · · · · · · · · · · · ·	
NO MIGRATION VA		The distribution of other house	ombustibles,	material similar to the	TRUCON CO	es 803, 805	5, 811, and 826	may be present.	
FINAL WASTE FOR	M DESCRIPTORS:						-		
Defense TRU W Non-Defense TF Commercial TRI Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of Maintenance	missioning X toration		Asbeslos PCBs Other N/A Unknown	X .	

TENAME IN			WAS	TE TYPE MTR	U HAND	LING CH GEN	IERATOR S	ITE MD	
IN-W249 CONTAINER Type/Size TYPICAL WASTE DENSITI		INAL WASTE	Int. 1	<u> </u>	.9m3 L	Liner Type: iner Material: E-ESTIMATED		Number S Number Proj	jected: 1
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	Pu238	2.60E+02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		1.5 m3	Pu239	1.87E+00	Curies/m3
Other Metals	0.7	0.0	5.7	End of 1993:		<u> </u>			
Other Inorganic Materials	130.9	22.5	372.2	1994:	0.0	1.5 m3			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.5	0.0	3.8	1996:		0.0 m3/yr			
Plastics	14.2	1.7	30.6	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022; [0.0	0.0 m3/yr			
Packaging Materials, Steel	210.0	<u></u>	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	16.0	. 1			D009A				
	····				D009D				

ITE NAME N			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD							
	: 55-gallon		Int	ainer Mati: steel		Liner Type: iner Material:		Number Sto Number Proje	1 1	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/		TRU WASTI	E-ESTIMATED	TYPICAL	ISOTOPIC CO	MPOSITION	
Material Parameters	Average	Lower Limit	Upper Limi	RATES	OF WASTE	GENERATION	Nuclide	Activity	III OSITION	
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	Pu238		Curles/m3	
Afuminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		2.0 m3	Pu239		Curies/m3	
Other Metals	1.6	0.0	13.1	End of 1993;		2.0 m3				
Other Inorganic Materials	299.0	51.4	850.0	1994;	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr				
Rubber	1.1	0.0	8.7	1996:	0.0	0.0 m3/yr				
Plastics	32.4	3.8	69.9	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr				
Solls	0.0	0.0	0.0	(-				
Packaging Materials, Steel	131.0		·	TYPICA	<u>L EPA CODE</u>	S APPLICABLE				
Packaging Material, Plastic	37.0				D009A					
					DAAAD					

SITE NAME IN			WAST	E TYPE MTRU	HANDLING CH	+ (GENERATOR S	SITE RF	
WASTE STREAM	MWIR ID IN-W250 WIPP ID IN-W250		STREAM NAME	Leaded Gloves/Apr	ons Debris				
MATRIX CODE SITE FINAL FORM ID			DESCRIPTION	Glovebox Gloves (TRU): Leaded Ru	lbber			
	Discarded	leaded glovebox gloves a	nd leaded aprons	3.					
NO MIGRATION VAL		ASSIGNMENT ID 123			TRUCON CO	ODE ID 1	23		
Defense TRU W Non-Defense TR Commercial TRU Unknown	IU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decom and Decomn Environmental Rest From Treatment of Maintenance	nissioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	X	

ENAME IN			WAS	TE TYPE MTR	U HANDI	ING CH GE	NERATOR S	ITE RF	
IN-W250 CONTAINER Type/Size TYPICAL WASTE DENSITI			Int.			Liner Type: iner Material:		Number ! Number Pro	jected: 0
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	ESTIMATED GENERATION	<u>Nuclide</u>	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 4.5	Final Form 10.1 m3	Am241 Pu52	3.52E-04 2.13E+01	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	111.8 12.6	24.7	207.8 31.6	End of 1993; 1994:	4.5	10.1 m3			
Cellulosics Rubber	2.4	0.5	4.4	1995:	0.0	0.0 m3/yr 0.0 m3/yr			
Plastics	116.6 7.1	25.8 1.6	216.6 13.3	1996: 1 1997:	0.0	0.0 m3/yr 0.0 m3/ry			
Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr			
Soils Packaging Materials, Steel	0.0 210.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	16.0	·			D008C				
Comments 22 in number stored is the number drums/SWB.	er of SWBs th	at result from ove	erpacking 4						

000331

SITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
IN-W250 CONTAINER Type/Size	·			vol/Ctnr: 0.20	08 m3 Li	Liner Type: ner Material:		Number S Number Proj			
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>			
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	8.04E-04	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	45.9	45.9 m3	Pu52	4.86E+01	Curies/m3		
Other Metals	255.3	56.5	474.5	End of 1993:	45.9	45.9 m3					
Other Inorganic Materials	28.8	4.8	72.1	1994:	0,0	0.0 m3/yr					
Cellulosics	5.4	1.2	10.1	1995:	0.0	0.0 m3/yr					
Rubber	266.2	58.9	494.7	1996:	0.0	0.0 m3/yr					
Plastics	16.3	3.6	30.3	1997:	0,0	0.0 m3/ry					
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr					
Solidifled, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Soils	0.0	0.0	0.0	TVDICA	I EDA CODE	S APPLICABLE					
Packaging Materials, Steel	131.0			TIFICA		S AFFLICABLE					
Packaging Material Plactic	37.0				D008C						

SITE NAME IN			WAST	TE TYPE MTRU	HANDLING CH	GENERATOR SI	TE RF
	MWIR ID III WIPP ID III			Leaded Gloves/Apr			
MATRIX CODE SITE FINAL FORM IDO Waste Matrix Code	<u>5</u>	311	DESCRIPTION	Glovebox Gloves (TRU): Leaded Rubb	er Gloves and Aprons	
	ription This	s waste comes from Ro eting may also be pres	ent,	of leaded rubber gl		A limited amount of unlea	ided gloves, lead bricks, and lead
FINAL WASTE FORM Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	I DESCRIP Iste U Waste		TRU X	Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of Maintenance	. Waste X X nissloning X oration	TSCA Asbestos PCBs Other N/A Unknown	X

ENAME IN			WAS	STE TYPE MTRU	HAND	LING CH GEN	ERATOR :	SITE RF	
IN-W252 CONTAINER Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel			Conta	iner Mati: steel Vol/Ctnr: 1 n3) STORED RATES C End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	9m3 L TRU WASTE Projected 37.2 37.2 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 85.0 m3 85.0 m3 0.0 m3/yr	Number 9		
Packaging Material, Plastic	16,0	١			D008C				
Comments			•		D022				
45 in number stored is the number drums/SWB.	r of SWBs th	at result from ove	erpacking 4		D028 D029 F001 F002 F003				
					F005A				

IN-W252 CONTAINER:	Drum		Contai	ner Matl: sleel		Liner Type:		Number Store	d : 5
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.20	8m3 L	iner Material:		Number Projecte	d:
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE I	FORM (kg/n			E-ESTIMATED	TYPICAL	ISOTOPIC COMP	ositio
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected_	Final Form	Am241		ries/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	12.0	123.0 m3	Pu52	5.33E+01 Cu	ries/m3
Other Metals	0.0	0.0	0.0	End of 1993:	123.0	123.0 m3			
Other Inorganic Materials	19.2	5.2	64.5	1994:	0.0	0.0 m3/yr			
Cellulosics	3.7	0.0	28.4	1996:	0.0	0.0 m3/yr			
Rubber	410.0	266.0	629.0	1996:	0.0	0.0 m3/yr			
Plastics .	12.0	3.3	44.8	1997:	0.0	0,0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solldified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TYPICA	L EDA COO	ES APPLICABLE			
Packaging Materials, Steel	131.0			TITICA	D008C	ES AFFLICABLE			
Packaging Material, Plastic	37.0								
Comments					D022				
13% of this waste stream volume	ie classified	se PH-TRII with	out Current	· ·	D028				
shielding. It is anticipated that the				υ	D029				
with internal shielding.					F001				
					F002				
•					F003				

IN-W252 - 3

SITE NAME IN				WAST	E TYPE MTRU	HANDLING C	H G	ENERATOR SI	TE RF	
	WIR ID IN-			STREAM NAME	Leaded Gloves/Ap	rons Debris				
L MATRIX CODE SITE FINAL FORM IDC	Local ID ID-		-463	DESCRIPTION	Glovebox Gloves (TRU): Leaded F	Rubber Glov	es and Aprons		
Waste Matrix Code G	Group Com	bustible			1					
NO MIGRATION VARI	shee	ting may als	so be present.		s of leaded rubber g	·	CODE ID 22			
FINAL WASTE FORM					· · ·			<u> </u>		
Defense TRU Was Non-Defense TRU Commercial TRU Unknown	J Waste	Si Si	ixed TRU on-Mixed TRU uspect Mixed TRU nknown	, X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	

000336

IN-W254 - 1

IN - 117

ENAME IN			WASTE TYPE MTRU HANDLING	CH GENERATOR	SITE RF
IN-W254 CONTAINER: Type/Size:	<u> </u>	ck	1 	er Type:	Number Stored: 3 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	RM (kg/m3) STORED TRU WASTE EST	MATED TYPICA	L ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	RATES OF WASTE GEN	ERATION Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Fina	l Form Pu52	1.39E+01 Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992; 2.6	5.8 m3	
Other Metals	111.8	24.7	207.8 End of 1993: 2.6	5.8 m3	
Other Inorganic Materials	12.6	2.1	31.6 1994: 0.0	0.0 m3/yr	
Cellulosics	2,4	0.5	4.4 1995; 0.0	0.0 m3/yr	•
Rubber	116.6	25.8	216.6 1998: 0.0	0.0 m3/yr	
Plastics	7.1	1.6	13.3 1997: 0.0	0.0 m3/ry	
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.0	0.0 m3/yr	
Solidified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.0	0.0 m3/yr	
Soils	0.0	0.0	0.0	<u> </u>	
Packaging Materials, Steel	210.0	1	TYPICAL EPA CODES AP	<u>PLICABLE</u>	
Packaging Material, Plastic	16.0		D008C		
Comments	- -		F001		
3 in number stored is the number drums/SWB.	of SWBs that	result from ove	F002		

337

IN-W254 CONTAINER:	Drum		Cont	ainer Matl: steel		Liner Type:		No march a co	
Type/Size: 55-gallon				. Vol/Ctnr: 0.2	08 m3 L	iner Material:		Number S Number Pro	L
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/	m3) STORED	TRU WASTI	E_ESTIMATED			OMPOSITION
Material Parameters	Average	Lower Limit	/ Upper Limi	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u>OMEOSITION</u>
Iron-based Metals/Alloys	0.0	0.0	0.0	•	<u>Proj</u> ected	<u>Final</u> Form	Pu52	3.18E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	7.6	7.6 m3	•		
Other Metals	255.3	56.5	474.5	End of 1993:	7.6	7.6 m3			
Other Inorganic Materials	28.8	4.8	72.1	1994;	0.0	0.0 m3/yr			
Cellulosics	5.4	1.2	10.1	1995:	0.0	0.0 m3/yr			
Rubber	266.2	58.9	494.7	1996:	0.0	0.0 m3/yr			
Plastics	16.3	3.6	30.3	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	•					
Packaging Materials, Steel	131.0	L	لتنبي	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				D008C				
Comments					F001				

000333

SITE NAME IN				WAS	TE TYPE MTRU	HANDLING C	н	SENERATOR S	ITE MD	
WASTE STREAM	MWIR ID WIPP ID		201.802		E Leaded Gloves/Ap		Clayer and	O Rings		
MATRIX CODE SITE FINAL FORM ID	į	5311	201-002	pedota noi	GIOVADUX CIDVES	(TNO). BIY BOX (Sioves and	O-Rings		
Waste Matrix Code Site Matrix Desi	cription Th			t the Mound Labora	atory. The waste cor	nsists of neopren	ne dry box (glovebox) glove	s, neoprene, O-rings, an	d lead-
NO MIGRATION VAI		- -	SSIGNMENT			TRUCON	CODE			
Defense TRU W Non-Defense Tr Commercial TRI Unknown	Vaste RU Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRI Unknown	× ×	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

WASTE TYPE	MTRU
------------	------

HANDLING CH

GENERATOR SITE MD

IN-W256 CONTAINER: Type/Size:		ack		ainer Mati: steel . Vol/Ctnr:		Liner Type: iner Material:		Number S Number Pro)
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/	RATES	TRU WASTI OF WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 0.0 111.8 12.6 2.4 116.6 7.1 0.0 0.0	0.0 0.0 24.7 2.1 0.5 25.8 1.6 0.0 0.0	0.0 0.0 207.8 31.6 4.4 216.6 13.3 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 0.0 0.0 0.0 0.0 0.0	Final Form 16.4 m3 16.4 m3 0.0 m3/yr	Am241 Pu238 Pu239 Pu240	2.35E-02 4.30E+01 3.07E-01 6.59E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3

Comments

9 in number stored is the number of SWBs that result from overpacking 4 drums/SWB.

TE NAME IN			WA	STE TYPE MTR	U HAND	LING CH GEN	IERATOR S	ITE MD	
IN-W256 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INIAI WACTE	Int.	L	08 m3 L	Liner Type: iner Material:		Number 8 Number Pro	jected: 0
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	E ESTIMATED GENERATION	<u>TYPICAL</u> <u>Nuclide</u>	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0	•	Projected	Final Form	Am241	5.36E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		18.5 m3	Pu238	9.82E+01	Curies/m3
Other Metals	255.3	56.5	474.5	End of 1993:		18.5 m3	Pu239	7.00E-01	Curies/m3
Other inorganic Materials	28.8	4.8	72.1	1994:	0.0	0.0 m3/yr	Pu240	1.50E+00	Curies/m3
Cellulosics	5.4	1.2	10.1	1995;	0,0	0.0 m3/yr			
Rubber	266.2	58.9	494.7	1996:	0.0	0.0 m3/yr			
Plastics	16.3	3.6	30.3	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0,0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0,0	0.0			<u> </u>			
Packaging Materials, Steel	131.0			TYPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				D008C				

IN-W256 - 3

IN - 122

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING CH	GENERATOR	SITE AE
	WWIR ID IN-W259 WIPP ID IN-W259		STREAM NAME	Heterogeneous Det	xis		
MATRIX CODE SITE FINAL FORM IDC	Local ID ID-EGG- 5400	44T-104	DESCRIPTION	Radioactive Source	s (TRU): Alpha H	lot Cell Waste	
Waste Matrix Code (Site Matrix Descr				1			
NO MIGRATION VARI	include: lab electric mol or reduced,	equipment, tools, fixture ors. Sodium in the wast mixed with pelletized cla	es, glassware, pig te is reacted with	pe, tubing, fitting, fastr ethyl alcohol, mixed w	iers, rubber O-ring	gs and gloves, rags, and rous and nonferrous me	and combustible waste are d Q-tips. Noncombustible wastes etal scraps and parts, and small nd oxidizing agents are neutralized
FINAL WASTE FORM Defense TRU Was Non-Defense TRU Commercial TRU Unknown	ste X I Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Operations Waste Residues Decon and Decommi Environmental Resto From Treatment of William	Waste X X X I I I I I I I I I I I I I I I I	TSCA Asbestos PCBs Other N/A Unknown	X

SITE NAME IN

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE AE

IN-W259 CONTAINER: Drum Container Matt: steel Liner Type: Number Stored: Type/Size: 55-gallon 283 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Material Parameters <u>Average</u> Lower Limit **Upper Limit** Nuclide <u>Activity</u> Iron-based Metals/Alloys 96.2 0.0 Pu239 1634.6 2.45E-01 Curies/m3 **Projected** Final Form Aluminum-Based Metals/Alloys 0.0 0.0 1.6 Pu240 2.71E-02 Curies/m3 End of 1982: 58.8 58.8 m3 Other Metals 0.1 0.0 22.7 U235 End of 1993: 6.09E-05 Curies/m3 58.8 58.8 m3 Other Inorganic Materials 2.4 0.0 24.0 1994: 0.0 0.0 m3/yr Cellulosics 80.9 0.0 184.8 1995: 0.0 0.0 m3/yr Rubber 7.3 0.0 16.4 1996: 0.0 0.0 m3/yr **Plastics** 64.9 0.0 149.0 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 Packaging Material, Plastic D008A 37.0

IN-W259 - 2

IN - 124

SILE NAME IN		WASTE TYPE MTRU HANDLING CH GENERATOR SITE BT
WASTE STREAM MWIR ID	IN-W260A STREAM	M NAME Inorganic Process Residues
	IN-W260A	HINDIGATIC Process Residues
Local ID	ID-EGG-144T-040 DESCF	RIPTION Radioactive Sources (TRU): Solid Binary Scrap Powder, Etc.
MATRIX CODE	3100	Company Collab Floride Life.
SITE FINAL FORM IDC		
Waste Matrix Code Group	ncalegorized Metal	
Site Matrix Description To Control Con	eramo based 662 dila 1162. Sulle kilofod	ic Power Laboratory, contains solid binary scrap as powder, pellets, or rods. The material is made of s or fuel rods constructed of fuel pellets within hollow zirconium tubes are also included.
HO WINDLE HOLL TANKANCE F	ETHON ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCR	IPTORS:	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Research and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown

IN-W260A CONTAINER: Type/Size:		ıck	Container Mati: steel Liner Type: Number Stored: Int. Vol/Ctnr: 1.9m3 Liner Material: Number Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	E FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSIT
Material Parameters	<u>Average</u>	Lower Limit	RAICO UP WASIE GENERATION
Iron-based Metals/Alloys	112.2	112.2	112.2 Projected Final Form
Aluminum-Based Metals/Alloys	12.2	12.2	12.2 End of 1992: 2.5 5.6 m3
Other Metals	10.8	10.8	10.8 End of 1993: 2.5 5.6 m3
Other Inorganic Materials	12.8	1.0	12.8 1994: 0.0 0.0 m3/yr
Cellulosics	3.2	0.0	19.8 1995: 0.0 0.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr
Plastics	6.6	0.0	29.6 1997: 0.0 0.0 m3/ry
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.0 0.0 m3/yr
Solidified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Soils	0.0	0.0	00
Packaging Materials, Steel	210.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	16.0		
Comments			
3 in number stored is the number drums/SWB.	of SWBs tha	result from ove	erpacking 4

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE BT
IN-W260A CONTAINER: Type/Size	55-gailon		Container Matl: steel Liner Type: Number Stored: 30 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	
<u> Material Parameters</u>	<u>Average</u>	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys	256.1	256.1	256.1 Projected Final Form
Aluminum-Based Metals/Alloys	27.8	27.8	27.8 End of 1992: 6.3 6.3 m3
Other Metals	24.7	24.7	344
Other Inorganic Materials	29.3	2.3	30.3
Cellulosics	7.4	0.0	5.5
Rubber	0.0	0.0	0.0 11.074
Plastics	15.1	0.0	0.0 (ms/y)
Solidified, Inorganic matrix	0.0	0.0	0.01110119
Solidified, Organic matrix	0.0	0.0	O.O. MONT
Soils	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Packaging Materials, Steel	131.0		10.0 TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	37.0		
Comments	······································		
sotopic composition is unknown	for this waste	stream.	

000346

IN-W260A - 3

IN - 127

SITE NAME IN			WAST	TE TYPE MTRU HAN	NDLING RH	GENERATOR SI	TE BT
MATRIX CODE SITE FINAL FORM II Waste Matrix Code	e Group Uncate	7260B GG-144T-040 gorized Metal	<u>DESCRIPTION</u>	Inorganic Process Resid	RU): Solid Binary :		
NO MIGRATION VA			Some kilorods or fuel	Toda constructed of fuer p	o binary scrap as sellets within hollow	powder, pellets, or ro v zirconium tubes are	ods. The material is made of also included.
FINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRO Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown		Rsearch and Devel. Wast Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ite X TS(CA Asbestos PCBs Other N/A Unknown	X

360347

IN-W260B - 1

IN - 128

ENAME IN			WASTE TYPE MTRU HANDLING RH GENERATOR SITE BT
IN-W260B CONTAINER: Type/Size:	55-gallon		Container Mati: steel Liner Type: Number Stored: 11 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F Average	INAL WASTE Lower Limit	FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	256.1 27.8 24.7 29.3 7.4 0.0 15.1 0.0 0.0 0.0 131.0 37.0	256.1 27.8 24.7 2.3 0.0 0.0 0.0 0.0 0.0	27.8 End of 1992: 2.2 2.2 m3
Comments (solopic composition is unknown)	or this waste	stream.	

IN-W260B - 2

IN - 129

SITE NAME IN			WA	STE TYPEMTRU	HANDLING	СН	GENERATOR S	SITE MD	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID IN-W263 WIPP ID IN-W263 Local ID ID-EGG- 4200 DC			ME Contaminated Solis		minated So	ii		
Waste Matrix Code Site Matrix Desi	cription This waste,	generated at Mound Labo en packaged. A few waste I chise!.	ratories,consi boxes also i	ists of soils, including s nclude picks, shovels,	small rocks and metal cans, ru	d pebbles, g abber gloves	eneraled from cl	leanup of a leak. Al ators, plastic, and p	l soil waste ossibly an air
NO MIGRATION VAI		SSIGNMENT			TRUCON	CODE			
Defense TRU W Non-Defense TR Commercial TRU Unknown	/aste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Operations Waste Residues Decom and Decommental Residues From Treatment of Victorians	x nissioning X pration	TSCA	Asbestos PCBs Other N/A Unknown	x	

Number Stored: 19 Number Stored: 19 Number Stored: 19 Number Projected: 0 Number Proj	SITE NAME IN			WAS	TE TYPE MTR	U HAND		VERATOR S	ITE MO	
D006A D007A D008A D009A D010A D011A	Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	55-gallon ES FOR F Average 0.1 0.0 0.0 6.4 19.0 0.0 0.0 0.0 0.0 131.0	0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0	Upper Limit 0.1 0.0 0.0 33.9 19.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002: 2003-2022:	D TRU WASTE Projected 3.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Section Sect	Nuclide Pu238 Pu239	Number Pro ISOTOPIC C Activity 4.20E-01 2.54E-02	composition Curies/m3 Curies/m3

000350

SITE NAME IN			WAS	STE TYPE MTRU	HANDLING CE	GENERATOR S	ITE RF
WI	VIR ID IN-W265 PP ID IN-W265 cat ID ID-EGG-14 5430			Predominately Inorg		Debris , Concrete, Dirt and Sand	
Waste Matrix Code Gro Site Matrix Descript	This waste camount may	ontains blacktop, concrete	h as coveralis	s and gloves. The was	ste is generated:	from cleanup of spills and	waste may be damp. A limited leaks, process changes,
NO MIGRATION VARIANT		SSIGNMENT ID 121			TRUCON C	ODE ID 121	
Defense TRU Waste Non-Defense TRU V Commercial TRU Wa	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Operations Waste Residues Decom and Decomm Environmental Rest From Treatment of V	nissioning X oration	TSCA Asbestos PCBs Other N/A Unknown	X X

SITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W265 CONTAINER: Type/Size: TYPICAL WASTE DENSITE Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials	55-gallon ES FOR F Average 0.0 0.0 0.0 447.0	0.0 0.0 0.0 0.0 8.7	Container Matt: steel Liner Type: Number Stored: 230 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: D
Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 24.0 0.0 0.0 49.0 131.0 37.0	0.0 0.0 12.0 0.0 0.0 9.6	12.0 1995: 0.0 0.0 m3/yr 24.0 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 144.2 TYPICAL EPA CODES APPLICABLE F001 F002 F003 F004

IN-W265 - 2

IN - 133

SITE NAME IN		WAST	E TYPEMTRU HAN	IDLING CH	GENERATOR SI	TE IN, AW
	D IN-W269A	STREAM NAME	Debris Waste			
WIPP	D IN-W269A					
	D ID-EGG-141T-150	DESCRIPTION	Particulate Wastes (TRU)): Laboratory Wast		
MATRIX CODE	5000		,,,,,,,	, ======	•	
SITE FINAL FORM IDC		,				
Waste Matrix Code Group					•	
NO MIGRATION VARIANCE	This waste stream, generated at HEDL samples, analytical samp absorbed on Oil-Dri, enriched at sources, and irradiated GE ca? samples, gloves, etc. PETITION ASSIGNMENT	nd normal U308 pellets	, aluminum foil and capsu P includes Kimwipes, tras	re, viais, miscellani	ous waste from glo	oveboxes, dissolved pellets
FINAL WASTE FORM DESC	RIPTORS:			_		
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU F	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Invironmental Restoration From Treatment of Waste Mainlenance	ning X	A Asbestos PCBs Other N/A Unknown	X

0000

ENAME IN			WAS	TE TYPE MTR	U HAND		NERATOR S	ITE IN, AW	
IN-W269A CONTAINER Type/Size TYPICAL WASTE DENSIT Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Solid Packaging Materials, Steel Packaging Material, Plastic Comments 9 in number stored is the number	Average 42.1 0.0 0.0 1.1 35.4 3.2 28.4 0.0 0.0 210.0 16.0	NAL WASTE Lower Limit 0.0 0.	Int. FORM (kg/n Upper Limit 715.8 0.7 9.9 10.5 80.9 7.2 65.3 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	7.2 7.2 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E-ESTIMATED GENERATION Final Form 16.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr SAPPLICABLE	TYPICAL Nuclide Am241 Pu238 Pu239 Pu240 Pu242 Pu52 U235	Number S Number Pro ISOTOPIC C Activity 2.51E+00 2.92E+00 2.57E+01 2.66E+00 8.72E-06 1.19E-01 4.45E-03 2.74E-05	jected:

SITE NAME N			WAS	TE TYPE MTRI	HAND	LING CH GEN	JERATOR S	ITE IN, AW		\Box
IN-W269A CONTAINER: Type/Size	55-gallon		Int. 1	<u></u>		Liner Type: steel iner Material:		Number S Number Pro		
TYPICAL WASTE DENSITI	E3 FUR FI	INAL WASTE	FORM (kg/m		TRU WASTI	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
<u>Material Parameters</u>	<u>Average</u>	Lower Limit	Upper Limit	MAIES I	JE WASIE	GENERATION	<u>Nuclide</u>	Activity		
Iron-based Metals/Alloys	96.2	0.0	1634.6		<u>Projected</u>	Final Form	Am241	5.73E+00	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	1,6	End of 1992:		18.4 m3	Pu238	6.66E+00	Curies/m3	
Other Metals	0.1	0.0	22.7	End of 1993:	18.4	18.4 m3	Pu239	5,86E+01	Curies/m3	
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0		Pu240	6.07E+00	Curies/m3	
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Pu242	1.99E-05	Curies/m3	
Rubber	7.3	0.0	16,4	1996:	0.0	0.0 m3/yr	Pu52	2.71E-01	Curies/m3	
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/yr	U235	1.02E-02	Curles/m3	
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry	U238	6.25E-05	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			,	
Soils	0.0	0.0	0.0	1043-2022. {	0.0	0.0 m3/yr				
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE				
Declario Madada II Dia a										

SITE NAME IN	WASTE TYPE MTRU HANDLING RH GENERATOR SITE IN, AW
WASTE STREAM MWIR ID IN-W269B	STREAM NAME Debris Waste
WIPP ID IN-W269B	
Local ID ID-EGG-141T-150	DESCRIPTION Particulate Wastes (TRU): Laboratory Waste
MATRIX CODE	(). Castractory trade
SITE FINAL FORM IDC	
Waste Matrix Code Group Heterogeneous	
absorbed on Oil-Dri, enriched and n sources, and irradiated GE ca??. L samples, gloves, etc.	aho National Engineering Laboratory, contains laboratory waste from ANL-W including fluxwire, fission counters, dissolved and absorbed on Oil-Dri, glassware, vials, miscellaneous waste from gloveboxes, dissolved pellets normal U308 pellets, aluminum foil and capsules, TREAT waste capsules, chlorinated ion exchange resins, Pulab waste from ICPP includes Kimwipes, trash, glassware, dissolved camples absorbed in Oil-Dri, analytical
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance X TSCA Asbestos DCBS Other N/A Vnknown

	SITE NAME IN			WAS	TE TYPE MTR	U HANDI	LING RH GEI	ERATOR S	ITE IN, AW	
ð H	IN-W269B CONTAINER: Type/Size: TYPICAL WASTE DENSITE	55-gallon	INAL WASTE	Int.	n3) STORED	08m3 Li	Liner Type: Iner Material: ESTIMATED		Number S Number Proj	1 1
3	<u> Material Parameters</u>	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
tol.	Iron-based Metals/Alloys	96.2	0.0	1634.6		Projected	Final Form	Am241	5.73E+00	Curies/m3
į.	Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:	0.3	0.3 m3	Pu238	6.66E+00	Curies/m3
:- <u>]</u>	Other Metals	0.1	0.0	22.7	End of 1993:	0.3	0.3 m3	Pu239	5.86E+01	Curies/m3
	Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr	Pu240	6.07E+00	Curies/m3
	Cellulosics	80.9	0.0	184.8	1995:	0.0		Pu242	1.99E-05	Curles/m3
	Rubber	7.3	0.0	16.4	1996:	0,0	0.0 m3/yr	Pu52	2.71E-01	Curies/m3
	Plastics	64,9	0.0	149.0	1997:	0.0	0.0 m3/yr	U235	1.02E-02	Curies/m3
	Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry	U238	6.25 E-0 5	Curies/m3
	Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
	Soils	0.0	0.0	0.0	,		0.0 m3/yr			
	Packaging Materials, Steel	131.0	·		TYPICA	L EPA CODE	S APPLICABLE			
	Packaging Material, Plastic	37.0								

IN-W269B - 2

IN - 138

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING C		GENERATOR	SITE MD	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Des	e Group Heterogene	1371-814	DESCRIPTION	Uncategorized inor Nonmetal Moids an Ory. The records at Most, with some containe	d Crucibles (TRI	U): Contai			
NO MIGRATION VAL		ISSIGNMENT			TRUCON C	ODE			
PINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	/aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Operations Waste Residues Decon and Decomm Environmental Residues From Treatment of Vi	issioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	

s _	ITÉ NAME IN	- <u>-</u> -		WAS	STE TYPE MTRI	HANDI	LING CH GEN	IERATOR S	ITE MD	
~	IN-W271 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	iner Mati: steel Vol/Ctnr: 0.20	 TRU WASTI	Liner Type: iner Material: E_ESTIMATED		Number S Number Proj	- I
C	Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPOSITION
ت ئ	Iron-based Metals/Alloys	415.6	2.2	764.4		Projected	Final Form	Pu239	1.63E+01	Curies/m3
ال	Aluminum-Based Metals/Alloys	17.5	17.5	38.2	End of 1992:	0.4	0.4 m3	Pu240	3.75E+01	Curies/m3
ت	Other Metals	9.2	9.2	46.6	End of 1993:	0.4	0.4 m3			
	Other Inorganic Materials	31,7	0.0	812.5	1994:	0.0	0.0 m3/yr			
	Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		•	
	Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
	Plastics	4.8	0.0	4.8	1997:	0.0	0.0 m3/ry			
	Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
	Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
	Soils	0.0	0.0	0.0	Ļ					
	Packaging Materials, Steel	131.0		L	TYPICAL	LEPA CODE	S APPLICABLE			
	Packaging Material, Plastic	37.0				D009B				
						D009D				

IN-W271 - 2

IN - 140

SITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF						
WASTE STREAM	MWIR ID IN-W272 WIPP ID IN-W272 Local ID ID-EGG-1		STREAM NAME DESCRIPTION	Debris Waste Nonmetal Molds and Crucible	es (TRU): Coars	e Graphite			
MATRIX CODE SITE FINAL FORM ID	5000		ı				į		
	cription Coarse grap	hite chunks.					·		
FINAL WASTE FOR		(33IGMMEN I IID 113			CON CODE ID 11	5			
Defense TRU W Non-Defense TR Commercial TRI Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Mainlenance		Asbestos PCBs Other N/A Unknown	×		

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF <u>IN-W272</u> CONTAINER: Drum Container Matt: steel Liner Type: Number Stored: Type/Size: 55-gallon 9 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** <u>Average</u> Lower Limit Nuclide **Upper Limit** Activity Iron-based Metals/Alloys 0.0 0.0 Pu52 1.76E+02 Curies/m3 0.0 **Projected Final Form** Aluminum-Based Metals/Alloys 0.0 0.0 0.0 End of 1992: 1.9 1.9 m3 Other Metals 0.0 0.0 0.0 End of 1993: 1.9 1.9 m3 Other inorganic Materials 187.0 162.0 211.0 1994: 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.0 1995: 0.0 m3/yr 0.0 Rubber 0.0 0.0 0.0 1996: 0 0.0 m3/yr **Plastics** 41.8 32.2 51.4 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0,0 1988-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0,0 2003-2022: 0.0 0.0 m3/yr 0.0 0.0 0.0

TYPICAL EPA CODES APPLICABLE F001

F002

Packaging Materials, Steel

Packaging Material, Plastic

131.0

37.0

SITE NAME JN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF						
WASTE STREAM MWIR ID IN-W275 WIPP ID IN-W275 Local ID ID-EGG-137T-301 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description This waste stream generaled.	STREAM NAME Debris Waste DESCRIPTION Nonmetal Molds and Crucibles (TRU): Graphite Cores						
	at the Rocky Flats Plant, is similar to graphite molds, content code 300. A graphite core is part of the shaped graphite Some graphite molds are also included in this content code. This content code has not been used since 1977. The s, and some of the graphite has been scarfed or wire brushed to remove any above-discard deposits of plutonium						
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed T Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance						

IN-W275 CONTAINER: Type/Size:		ack		iner Matt: steel Vol/Ctnr: 1	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/ı	RATES C	_ Tru Waste	ner Material: ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	
iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 0.1 138.4 3.6 0.0 5.5 0.0 0.0 210.0 16.0	0.0 0.0 0.1 138.4 3.6 0.0 5.5 0.0	0.0 0.0 0.1 138.4 3.6 0.0 5.5 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 EPA CODE	Final Form 4.1 m3 4.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu52	2.38E-02 1.51E+01	Curies/m

IN-W275 - 2

IN - 144

2/28/95

TIE NAME IN			WAS	TE TYPE MTRI	J HAND	LING CH GEN	ERATOR S	ITE RF	<u> </u>	
IN-W275 CONTAINER Type/Size TYPICAL WASTE DENSITI	: 55-gallon	INAL MACTE	fnt. V		1	Liner Type: iner Material:		Number S Number Proj	J I	
	_	HANT MASIE	-URM (kg/m	3) <u>Stored</u> Rates (TRU WASTE	E ESTIMATED GENERATION		ISOTOPIC C	OMPOSITION	
<u>Material Parameters</u>	Average	Lower Limit	Upper Limit		TIAUTE	GENERATION	<u>Nuclide</u>	Activity		-
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	Am241	5.42E-02	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	4.6		Pu52	3.45E+01	Curies/m3	
Other Metals	0.3	0.3	0.3	End of 1993:		4.6 m3			441.0011115	
Other Inorganic Materials	316.0	316.0	316.0		4.6	4.6 m3				
Cellulosics	8.2	8.2	├ ─~	1994:	0.0	0.0 m3/yr				
Rubber	0.0	0.0	8.2	1995:	0.0	0.0 m3/yr				
Plastics		<u> </u>	0.0	1996:]	0.0	0.0 m3/yr				
Solidified, Inorganic matrix	12.6	12.6	12.6	1997:	0,0	0.0 m3/ry				
	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0							
Packaging Materials, Steel	131.0			TYPICAL	<u>EPA CODE</u>	S APPLICABLE				
Packaging Material, Plastic	37.0				F001					

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF						
WASTE STREAM MWIR ID IN-W276 WIPP ID IN-W276 Local ID ID-EGG-137T-300 MATRIX CODE SITE FINAL FORM IDC	STREAM NAME Debris Waste DESCRIPTION Nonmetal Molds and Crucibles (TRU): Graphite						
above-discard deposits of plut							
NO MIGRATION VARIANCE PETITION ASSIGNMENT ID FINAL WASTE FORM DESCRIPTORS:	15; 215A TRUCON CODE ID 215A						
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Suspect Mixed TRU Unknown Unknown	RU Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance						

000365

IN-W276 - 1

IN - 146

2/28/95

IN-W276 CONTAINER: Type/Size:			Int.			Liner Type: iner Material:		Number S	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 132 in number stored is the numb drums/SWB.	0.0 0.0 0.0 133.6 2.9 0.0 3.3 0.0 0.0 210.0 16.0	0.0 0.0 0.0 67.9 0.0 0.0 1.4 0.0 0.0	0.0 0.0 0.0 204.9 4.3 0.0 4.8 0.0 0.0	RATES End of 1992; End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 109.7 109.7 0.0 0.0 0.0 0.0 0.0 0.0	E-ESTIMATED GENERATION Final Form 250.5 m3 250.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	TYPICAI Nuclide Am241 Pu52		Curies/m3 Curies/m3

SITE NAME IN			WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
Type/Size	IN-W276 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE FOR					Container Mati: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material: RM (kg/m3) STORED TRU WASTE ESTIMATED						
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, (norganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	Average 0.0 0.0 0.0 305.0 6.7 0.0 7.4 0.0 0.0 0.0 131.0 37.0		Upper Limit 0.0 0.0 0.0 469.0 9.8 0.0 10.9 0.0 0.0	RATES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 282.0 282.0 0.0 0.0 0.0 0.0 0.0 0.0	E-ESTIMATED GENERATION Final Form 282.0 m3 282.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 8S APPLICABLE	TYPICAL Nuclide Am241 Pu52	<u>Activity</u> 1.45E-01 2.82E+01	Curies/m3 Curies/m3			

SITE NAME IN			WAS	STE TYPE MTRU	HANDLING C	н	GENERATOR S	SITE MD	
WASTE STREAM MATRIX CODE SITE FINAL FORM II Waste Matrix Code	e Group Uncategori:	132T-803	DESCRIPTIO	Metal Debris Metals (TRU): Met					
Sife Matrix Des	noncombus content cod leached will	stible waste also present fr de 832 is containers of liqu h nitric acid, ultrasonically	rom content co-	des 810, 811, 812, 81 ost of the waste is mi	ns, notplates, ring 13, 814, 826, and alal waste that is	stands, e 832. Co primarily s of pluto	tc. Limited amountent code 812 is	um-metal wastes in the forn unts of combustible and s spent ion-exchange resin a lions. Some of the metals v	
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel Operations Waste Residues Decon and Decomi Environmental Resi From Treatment of Maintenance	i. Waste X X missioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	-

Number Stored S
Comments D009D 12 in number stored is the number of SWBs that result from overpacking 4

HE NAME IN		_	WAS	STE TYPE MTR	U HAND		ERATOR S	ITE MD	
IN-W280 CONTAINER Type/Size TYPICAL WASTE DENSITI Material Parameters	55-gallon	INAL WASTE	Int. FORM (kg/n	n3) STORED	08m3 Li	Liner Type: iner Material: E-ESTIMATED GENERATION			
tron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	415.6 17.5 9.2 31.7 0.0 0.0 4.8 0.0 0.0 0.0 131.0 37.0	2.2 17.5 9.2 0.0 0.0 0.0 0.0 0.0 0.0	9 Upper Limit 764.4 38.2 46.6 812.5 0.0 0.0 4.8 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	25.6 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 25.6 m3 25.6 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu238 Pu239 Pu83	Activity 9.21E-03 6.49E+02 4.50E+00 2.63E+01	Curies/m3 Curies/m3 Curies/m3

D009D

SITE NAME IN		WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD						
WIPP Local MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description	This waste stream, generated at the ducts, conduit, electric motors, purp	DESCRIPTION Miscellaneous (Paper, Metal, Etc.) (TRU): Noncombustible Equipment Boxes Mound Laboratory, consists of large, noncombustible wastes such as tanks (stainless steel and tantalum), piping, ps, metallurgical presses, lathes, dissolvers, evaporators, furnaces, ladders, vacuum sweepers, 24 x 24 x 12 inch es, plexiglass glovebox windows, and floor tile. Limited amounts of combustible wastes (plastic tanks, fiberglass ontrol tents, etc.) are also included.						
NO MIGRATION VARIANCE FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU	TRUCON CODE X						

IT	ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD							
	Type/Size Type/Size Typical Waste Densiti Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	55-gallon	NAL WASTE Lower Limit 2.2 17.5 9.2 0.0 0	Int. Vo FORM (kg/m3) Upper Limit 764.4 38.2 46.6 812.5 0.0 0.0 4.8 0.0	RATES (ind of 1992; ind of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	TRU WASTE Projected 348.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E-ESTIMATED GENERATION Final Form 348.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr SAPPLICABLE		Number S Number Pro		

SITE NAME IN	WAS	TE TYPE MTRU HANDLING CH	GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W WIPP ID IN-W Local ID ID-EC MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Helerog	283 GG-134T-241 DESCRIPTION	E Heterogeneous Debris Miscellaneous (Paper, Metal, Etc.) (TRU): Americium Process Residue
exchange renovation of the matrix description of the matrix descriptio	ions of the americlum recovery line. Some of	the containers are lead-lined.	tools, equipment, PVC piping, glassware (flasks, broken ion tics. Wastes were shipped only in 1972 and 1973, from
FINAL WASTE FORM DESCRIPTOR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	S: Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSCA Asbestos PCBs Other N/A Unknown

SITE NAME IN		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
Type/Size: 55-gatlor Type/Size: 55-gatlor Type/Size: 55-gatlor Type/Size: 55-gatlor Type/Size: 55-gatlor Type/Size: 55-gatlor Average iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Type/Size: 55-gatlor Average in type/Size: 50-gatlor Average in type/Size: 50-gatlor Type/Size: 55-gatlor Type/Size: 5	Lower Limit 159.0 0.0 0.0 129.0 13.5 0.0	Container Matl: Steel Liner Type: Number Stored: 5 Number Projected: 0

SITE NAME IN		WASTE TYPE MTRU HANDLING CH GENERATOR SITE BC
	IN-W285	STREAM NAME Heterogeneous Debris
Local II MATRIX CODE SITE FINAL FORM IDC	DID-EGG-134T-201 5400	DESCRIPTION Miscellaneous (Paper, Metal, Etc.) (TRU): Noncombustible Solids
Waste Matrix Code Group	Heterogeneous	Battelle Columbus Laboratories, contains noncombustible items such as tools, crucibles, piping, valves, pieces of
NO MIGRATION VARIANCE I		TRUCON CODE
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE BC IN-W285 CONTAINER: SWB overpack Container Matt: Steel Liner Type: Number Stored: 000376 Type/Size: 19 Int. Vol/Ctnr: 1.9m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Material Parameters Average Lower Limit **Upper Limit** Nuclide **Activity** Iron-based Metals/Alloys 42.1 0.0 715.8 Pu239 1.26E-01 Curies/m3 <u>Projected</u> Final Form Aluminum-Based Metals/Alloys 0.0 0,0 0.7 U235 End of 1992: 15.6 4.25E-05 Curies/m3 35.7 m3 Other Metals 0.0 0.0 9.9 End of 1993: 15.6 35.7 m3 Other Inorganic Materials 1.1 0.0 10.5 1994: 0.0 0.0 m3/yr Cellulosics 35.4 0.0 80.9 1995: 0.0 0.0 m3/yr Rubber 3.2 0.0 7.2 1996: 0.0 0.0 m3/yr **Plastics** 28,4 0.0 65.3 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 Packaging Materials, Steel TYPICAL EPA CODES APPLICABLE 210.0 Packaging Material, Plastic 16.0 D008C Comments

19 in number stored is the number of SW8s that result from overpacking 4 drums/SW8.

IN-W285 - 2

IN - 157

2/28/95

SITE NAME IN			WAS	TE TYPE MTRI		LING CH GE	VERATOR S	SITE BC	
IN-W285 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) <u>Stored</u>	TRU WAST	Liner Type: iner Material: E-ESTIMATED		Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	Nuclide	Activity	UMPUSITION
Iron-based Metals/Alloys	96.2	0.0	1634.6		D!41	.	Pu239	2.87E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:	Projected 40.5	Final Form	U235	9.70E-05	Curies/m3
Other Metals	0.1	0.0	22.7	End of 1992:	49.3	49.3 m3		3.702-03	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	49.3	49,3 m3			
Cellulosics	80.9	0.0	184,8	1995:	0.0	0.0 m3/yr			
Rubber	7.3	0.0	16.4	1996:	0.0	0.0 m3/yr			
Plastics	64.9	0.0	149.0	L	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0		L	TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material Plastic	37.0				DOUGC				

SITE NAME IN			WAST	E TYPE MTRU HANDLI		GENERATOR SI	TE AE	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID		GG-134T-101	STREAM NAME	Metal Debris Miscellaneous (Paper, Metal,	, Etc.) (TRU): (Cut Up Gloveboxes		
Waste Matrix Code Site Matrix Desc	cription This wa	aste stream, generated at a	Argonne National Lat e waste is predomina	poratory-East, contains glovet intly noncombustible. There r	oox sections a nay be some l	nd associated equip ead (EP toxic, wast	oment from decontaminatio e code D008) present.	n and
NO MIGRATION VAR FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	M DESCRIPTOI		,	TRUC Research and Devel. Waste Operations Waste Residues Occon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN			WA	STE TYPE MTR	_	LING CH GEN	EPORT	ITE AE	
Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Solidified, Materials, Steel Packaging Material, Plastic	55-gallon	NAL WASTE Lower Limit 44.2 27.4 12.6 0.0 23.7 0.3 2.4 0.0 0.0 0.0	Int.	End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002: 2003-2022:	TRU WASTE Projected 212.0 212.0 0.0 0.0 0.0 0.0 0.0	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 212.0 m3 212.0 m3 212.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 8 m3/yr 10 m3/yr 10 m3/yr 10 m3/yr 10 m3/yr 10 m3/yr 11 m3/yr 12 m3/yr 13 m3/yr 14 m3/yr		Number St Number Pro ISOTOPIC C Activity 1.99E-03 7.89E-04 2.58E-01 3.07E+00 2.85E-01 1.24E-08 5.91E-05	['']
					DOUG				

SITE NAME IN		WAS	TE TYPE MTRU HANDL	ING CH	GENERATOR S	ITE RF, AE
WiPP	ID IN-W289 ID IN-W289 ID ID-EGG-134T-121 8200		Unknown Solids Miscellaneous (Paper, Metal	l, Etc.) (TRU): D	DW Noncombustii	ble Solids
Site Matrix Description NO MIGRATION VARIANCE	This waste is genera facilities and ancillary	led at Argonne National Laborat systems. The composition of the			derived from deco	ontamination and disposal of
FINAL WASTE FORM DESC		IEN I	TRUC	CON CODE		
Defense TRU Waste Non-Defense TRU Was Commercial TRU Waste Unknown		ked TRU of Mixed TRU	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X	Asbestos PCBs Other N/A Unknown	×

00038

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE RF, AE

CONTAINER: Drum IN-W289 Container Matt: steet Liner Type: Number Stored: 122 Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** Average **Lower Limit** Upper Limit Nuclide **Activity** Iron-based Metals/Alloys 415.6 Am241 2.2 4.67E-01 764.4 Curies/m3 **Projected** Final Form Aluminum-Based Metals/Alloys 17.5 17.5 Pu239 38.2 5.90E+00 Curies/m3 End of 1992: 25.4 25.4 m3 Other Metals 9.2 9.2 46.6 End of 1993: 25.4 25.4 m3 Other Inorganic Materials 31.7 0.0 812.5 1994: 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr **Plastics** 4.8 0.0 4.8 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 Packaging Material, Plastic D004A 37.0 D005A D006A D007A D008A D009A F001

F002 P015

SITE NAME IN			WA		ING CH	GENERATOR O	ITE AF
WASTE STREAM	MWIR ID IN-W	Q1				GENERATOR S	IIE AE
	WIPP ID IN-W	I	SIKEAMNAN	E Debris Waste			
MATDIY CODE	Local ID ID-EG	G-134T-100	DESCRIPTIO	Miscellaneous (Paper, Metal,	Etc.) (TRII)	General Plant What	
MATRIX CODE SITE FINAL FORM ID	<u>c</u> 5000				, —, , , , , , , , , , , , , , , , , , 	Coneral Flant AAGS!	u
Waste Matrix Code	Group Helerog	eneous		-			
	streams	Prior to 1977 small am	t Argonne National L e, small tools, balan nounts of absorbed o	aboratory-East, contains combi ces, and empty metal cans. The organic wastes are included.	ustible and no e waste is usu	ncombustible items ally separated into	such as paper, rags, rubber combustible and noncombustible
NO MIGRATION VAR	IANCE PETITIO	N ASSIGNMENT		TRUC	ON CODE		
FINAL WASTE FORM	A DESCRIPTOR:	<u>3;</u>			· L		
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	eu X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSC	A Asbestos PCBs Other N/A Unknown	X

TE NAME (N			WAS	TE TYPE MTR	IDNAH [U	LING CH GEN	ERATOR S	ITE AE	
IN-W291 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INIAL WAOTE	Int.	L	_	Liner Type: iner Material:		Number Number Pro	L
	LS TUKF	IVAL WASTE	FURM (kg/m		TRU WASTE	ESTIMATED GENERATION	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	<u>Average</u>	Lower Limit /	Upper Limit	IVAILS	OF WASIE	GENERA HON	<u>Nuclide</u>	Activity	
iron-based Metals/Alloys	96.2	0.0	1634.6		Projected	Final Form	Am241	5.23E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:	639.0	639.0 m3	Np237	7.16E-05	Curies/m3
Other Metals	0.1	0.0	22.7	End of 1993:	639.0	639.0 m3	Pu239	2.17E-01	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994;	0.0	0.0 m3/yr	Pu240	9.73E-01	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	U235	2.43E-07	Curies/m3
Rubber	7.3	0.0	16.4	1996:	0.0	0.0 m3/yr	U238	9.62E-07	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	1					
Packaging Materials, Steel	131.0	·		TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				D001C				
•					F003				

IN-W291 - 2

IN - 164

2/28/95

SITE NAME IN			WAS	TE TYPE MTRU HANDI	ING CH	GENERATOR SI	TE RF
	MWIR ID IN-W29	4	STREAM NAM				
MATRIX CODE SITE FINAL FORM ID:	Local ID D-EG0 5100	5-132T-481	DESCRIPTION	Metals (TRU): Leached Nor	ı Special Source	e Metal	
Waste Matrix Code Site Matrix Desc	ription This wast	rized Metal e comes from the Roo to recover plutonium	cky Flats Plant. It cor	isists of the smaller pieces of	the waste descr	ibed under content	code 480 that have been washed
NO MIGRATION VAR			17C	TRU	ICON CODE	217C	
Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	ste X J Waste	Mixed TRU Non-Mixed TRU Suspect Mixed Ti Unknown	RU .	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	×

ENAME IN		WASTE TYPE MTRU	HANDLING CH	GENERATOR SITE RF
Type/Size	Average Lower Limit 1	RATES OF Pr 148.5 Pr 21.1 End of 1992: 208.9 End of 1993: 23.9 1994: 1996: 17.2 1997: 1998-2002: 2003-2022: TYPICAL E	Liner Type:	yr yr ry yr

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF IN-W294 CONTAINER: Drum Container Mati: steel Liner Type: Number Stored: Type/Size: 55-gallon 1946 int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Material Parameters **Lower Limit** <u>Average</u> **Upper Limit** <u>Nuclide</u> **Activity** Iron-based Metals/Alloys 162.0 0.0 339.0 Am241 7.53E-02 Curies/m3 Projected Final Form Aluminum-Based Metals/Alloys 9.6 0.0 Pu52 48.1 2.31E+01 End of 1992: 404.8 404.8 m3 Curies/m3 Other Metals 122.0 0.0 477.0 U235 End of 1993: 2.02E-06 404.8 404.8 m3 Curies/m3 Other Inorganic Materials 31.7 13.1 54.6 1994: 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.2 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr **Plastics** 16.4 4.4 39.3 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 Packaging Materials, Steel TYPICAL EPA CODES APPLICABLE 131.0 Packaging Material, Plastic 37.0 D008A D008C Comments 5% of this waste stream volume is classified as RH-TRU without current D022 shielding. It is anticipated that the RH-TRU portion will be shipped as CH-TRU F001 with internal shielding. F002 F005

SITE NAME IN		The state of the s
		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR I	D IN-W296	STREAM NAME Metal Debris
WIPP I	D IN-W296	
	D ID-EGG-132T-480	DESCRIPTION Metals (TRU): Non Special Source Metal
MATRIX CODE	5100	
SITE FINAL FORM IDC		
Waste Matrix Code Group	Uncategorized Metal	
Site Matrix Description	The waste comes from Rocky Fit	lats Plant. It consists of nonline- and line-generated wastes. The waste may be in the form of gloveboxes, glovebox
	cans, carts, power tools (saws, d	resses, ducting, piping, angle fron, tanks, downdraft tables, part carriers, respirator filters, ultrasonic cleaners, control n, vacuum sweepers, pumps, motors, tailing stairs, metal racks and trays, hotplates, empty metal produce and paint drills, etc.), hand tools (wrenches, hammers, saws, chisels, guages, etc.), chairs, desks, lables, typewriters, filing ns, etc. The waste may also include limited amounts of combustible waste.
		7; 217C TRUCON CODE ID 217C
FINAL WASTE FORM DESCI	RIPTORS:	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRI Unknown	Rearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

IN-W296 CONTAINER: Type/Size:	int	ainer Mati: steel . Voi/Ctnr:	Number Stored: Number Projected:						
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE Lower Limit	FORM (kg/i	RATES	OF WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	. ISOTOPIC C Activity	OMPOSI
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidifled, Inorganic matrix Solidifled, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	25.7 1.7 70.1 8.2 1.7 0.8 11.5 0.0 0.0 210.0	0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0	116.5 14.4 235.6 26.1 7.2 4.3 21.5 0.0 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	51.4 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 117.3 m3 117.3 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Np237 Pu52 U235	1.11E-02 1.34E-06 2.35E+00 4.89E-08	Curies/n Curies/n Curies/n
Comments 62 in number stored is the number drums/SWB.		at result from ove	erpacking 4		D008C D028 D029 F001				

F005A F005A

ENAME IN			WASTE	TYPEMTRI	HANDL	ING CH GEN	ERATOR S	SITE RF	
IN-W296 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon ES FOR F	INAL WASTE	int. Vo	r Mati: steel	TRU WASTE	Liner Type: ner Material:	TYPICAL	Number Pro	Stored: 22443 Jected: 0
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 5% of this waste stream volume is shielding. It is anticipated that the with internal shielding.	Section	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	538.0 E 59.5 16.4 9.8 49.2 0.0 0.0 0.0	nd of 1992: nd of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	4668.1 4668.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Finat Form 4668.1 m3 4668.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr SAPPLICABLE	Nuclide Am241 Np237 Pu52 U235	Activity 2.54E-02 3.07E-06 5.36E+00 1.12E-07	Curies/m3 Curies/m3 Curies/m3
					F001 F002 F003 F005A F005A	·			

SITE NAME IN			WAS	STE TYPE MTRU HANDLE	NG CH	GENERATOR SI	ITE RF	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID IN-W298 WIPP ID IN-W298 Local ID ID-EGG- 5100 C			Metal Debris N Metals (TRU): Tantalum				
Waste Matrix Code Site Matrix Desc	Group Uncategoriz ription This waste	ed Metal comes from the Rocky Fla	its Plant. It cor	nsists of used tantalum crucibles	s, funnels, funne	linserts, and pou	ır rods.	
NO MIGRATION VAR		ASSIGNMENT D 117; 21	7B	TRUC	ON CODE ID 1	17		-
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	×	Asbestos PCBs Other N/A Unknown	X	

IN-W298 - 1

IN - 171

2/28/95

IN-W298 CONTAINER: Type/Size:		iner Matt: sleel Vol/Ctnr:	Number Stored: Number Projected:						
TYPICAL WASTE DENSITII Material Parameters	ES FOR F	INAL WASTE		RATES	TRU WASTI	ESTIMATED GENERATION		ISOTOPIC C	
Iron-based Metals/Alloys	81.0	0.0	Upper Limit 172.1		Projected	Final Form	Am241	5.27E-01	Curies/
Aluminum-Based Metals/Alloys	2.8	0.0	10.0	End of 1992:		41.5 m3	Pu52	3.88E+01	Curies/
Other Metals	17.8	0.0	87.6	End of 1993:		41,5 m3			
Other Inorganic Materials	9.2	0.0	21.5	1994:	0.0	0.0 m3/yr			
Cellulosics	6.0	0.0	26.8	1995:	0.0	0.0 m3/yr			
Rubber	0.6	0.0	4.0	1996;	0.0	0.0 m3/yr			
Plastics	6.0	0.0	8.8	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	210.0	<u> </u>		IYPICA	_	S APPLICABLE			
Packaging Material, Plastic	16.0				D008A				
Comments	•	D008C							

N-W298 CONTAINER: Type/Size:	Container Mati: steel Liner Type: Int. Vol/Ctnr: 0.208/m3 Liner Material:					Number Stored: 271 Number Projected: 0			
TYPICAL WASTE DENSITIE Naterial Parameters	S FOR F Average	INAL WASTE Lower Limit	FORM (kg/m3) Upper Limit	STORED RATES C	TRU WASTI	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
ron-based Metals/Alloys	185.0	0.0	393,0		Projected	Final Form	Am241	1.20E+00	Curies/m3
lluminum-Based Metals/Alloys	6.3	0.0		nd of 1992;	56.4	56.4 m3	Pu52	8.86E+01	Curies/m3
Other Metals	40.7	0.0	├ ── ┤	nd of 1993:	56.4	56.4 m3			
Other Inorganic Materials	20.9	0.0	49.2	1994:	0.0	0.0 m3/yr			
ellulosics	13.7	0.0	61,2	1996:	0.0	0.0 m3/yr			
ubber	1.4	0.0	9.2	1996:	0.0	0.0 m3/yr			
lastics	13.6	0.0	20.1	1997:	0.0	0.0 m3/ry			
olidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
olidified, Organic matrix	0,0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
oils	0.0	0.0	0.0						
ackaging Materials, Steel	131.0			TYPICAL	. EPA CODE	S APPLICABLE			
ackaging Material, Plastic	37.0				D008A				
omments					D008C				

F0507

SITE NAME IN				WAS:	TE TYPE MTRU	ANDLING C		GENERATOR SI	TE RF	
WASTE STREAM	MWIR ID WIPP ID	IN-W300		STREAM NAME	Metal Debris					
MATRIX CODE SITE FINAL FORM ID	1	ID-EGG-1: 5100	32T-117	<u>DESCRIPTION</u>	Metals (TRU): Metal	VVaste				
Waste Matrix Code Site Matrix Desc										
NO MIGRATION VAL FINAL WASTE FOR			SSIGNMENT ID 117			TRUCON CO	ODE ID 1	17		
Defense TRU W Non-Defense TR Commercial TRU Unknown	lU Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. W Operations Waste Residues Decon and Decommis Environmental Restora From Treatment of Wa Maintenance	sloning X	TSCA	Asbestos PCBs Other N/A Unknown	×	·

000333

Soils

Packaging Materials, Steel

Packaging Material, Plastic

0.0

131.0

37.0

0.0

0.0

00000

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

WASTE TYPE MTRU HANDLING CH GENERATOR SITE RE

IN-W300 CONTAINER: Drum Container Mati: steel Liner Type: Number Stored: Type/Size: 55-gallon 7276 0.208 m3 Int. Vol/Ctnr: Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** <u>Average</u> Lower Limit Upper Limit Nuclide **Activity** Iron-based Metals/Alloys 256.1 256,1 Am241 1.22E-01 256,1 Curies/m3 Projected Final Form Aluminum-Based Metals/Alloys 27.8 27.8 Pu52 27.8 1.29E+01 End of 1992: Curies/m3 1513.0 1513.0 m3 Other Metals 24.7 24.7 U235 24.7 End of 1993: 3.58E-07 Curies/m3 1513.0 1513.0 m3 Other Inorganic Materials 29,3 2.3 29.3 U238 4.45E-10 Curies/m3 1994: 0.0 0.0 m3/yr Cellulosics 7.4 0.0 45.3 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr **Plastics** 15.1 0.0 67.6 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr

TYPICAL EPA CODES APPLICABLE

D008A

D008C

F001

F002

P015

IN-W300 - 2

IN - 175

2/28/95

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE BT
WASTE STREAM MWIR ID IN-W302 WIPP ID IN-W302 Local ID ID-EGG-132T-020 8200 SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Unknown Solids DESCRIPTION Metals (TRU): Noncompressible, Noncombustible
Site Matrix Description This waste stream, generated at solidified chemical waste, contaminated in sheet, fixtures, small equipment to include spent chemical solutions.	Bettls Atomic Power Laboratory, contains noncompressible and noncombustible items such as absolute filters, ninated metal equipment, furnace brick, and highly contaminated glovebox equipment. Metal scrap could include bars, tools, etc. made of carbon steel, stainless steel, inconnel, aluminum, copper, brass and zirconium. Chemical wastes and associated solids from the isotope and isotopic dilution analysis of nuclear fuel specimens. The residues were ixed with absorbent material or solidified.
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	TRUCON CODE X

66039

E NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GE	NERATOR S	ITE BT	
1N-W302 CONTAINER Type/Size			Int.	L	,9 m3 L	Liner Type: iner Material:		Number S Number Proje	L.
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics	Average 42.1 0.0 0.0 1.1 35.4 3.2 28.4	NAL WASTE	FORM (kg/m Upper Limit 715.8 0.7 9.9 10.5 80.9 7.2 65.3	RATES	Projected	E ESTIMATED GENERATION Final Form 67.8 m3 67.8 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		Activity 3.46E+00 6.24E-01	LJ
Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 36 in number stored is the number	0.0 0.0 0.0 210.0 16.0	0.0 0.0 0.0	0.0 0.0 0.0	1998-2002; 2003-2022;	0.0 0.0	0.0 m3/ry 0.0 m3/yr 0.0 m3/yr			

(<u>*</u>
\bigcirc
$\stackrel{\frown}{\frown}$
Ç
\mathcal{C}
-1

TE NAME IN				STE TYPE MTR		LING CH GE	<u>=PORT</u> NERATOR S	ITE BT		_
IN-W302 CONTAINER Type/Size TYPICAL WASTE DENSIT Material Parameters	: 55-gallon	INAL WASTE	Int.	n3) STORED	TRU WASTI	Liner Type: iner Material: E_ESTIMATED GENERATION	TYPICAL			
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidifled, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	96.2 0.0 0.1 2.4 80.9 7.3 64.9 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1634.6 1.6 22.7 24.0 184.8 16.4 149.0 0.0 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	76.3 76.3 0.0 0.0 0.0 0.0 0.0	Final Form 76.3 m3 76.3 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Nuclide Am241 Pu239 U233	Activity 7.89E-01 1.42E-01 1.33E-01	Curies/m3 Curies/m3 Curies/m3	
					F001					

F002

SITE NAME IN			WAST	E TYPE TRU HANDLI		GENERATOR SI	TE MD	
	MWIR ID IN-W304 WIPP ID IN-W304 Local ID ID-EGG- 5190		STREAM NAME					
	ription Waste prim grinders, m combustible	arily consists of noncor etallurgical polishers, ri e wastes, such as plasti		ich as small tanks, dissolvers, floor tile, sheet metal, vacuun sent.	, motors, pump n sweeper filte	os, piping, small val rs, sweeper hose, a	ves, tools, hotplates, presse and glass. Limited amounts	es, s of
NO MIGRATION VARI FINAL WASTE FORM Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	DESCRIPTORS: ste X J Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		TRUC Research and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X	,

Type/Size: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM Material Parameters Average Lower Limit Upper Iron-based Metals/Alloys 106.4 0.0	RATES OF WASTE GENERATION	ted: 0
Material Parameters Average Lower Limit Upper	RATES OF WASTE GENERATION	WUSITION
Aluminum-Based Metals/Alloys 0.0 0.0	0.0 Projected Final Form Pu238 2.27E+01 C	uries/m3 uries/m3
Other Metals 19.4 0.0 Other Inorganic Materials 41.6 0.0 Collularies	0.0 End of 1993: 10.6 24.2 m3 Pu240 2.77E-02 C 0.0 1994: 0.0 0.0 m3/yr Pu52 1.38E-03 C	uries/m3 uries/m3
Rubber 0.0 0.0 Plastics 0.9 0.0	0.0 1995: 0.0 0.0 m3/yr Pu83 2.77E+00 Cr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/ry	uries/m3
Solidified, Organic matrix 0.0 0.0 Soils 0.0 0.0	0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr	
Packaging Materials, Steet 210.0 Packaging Material, Plastic 16.0 Comments	TYPICAL EPA CODES APPLICABLE	

IN-W304 - 2

IN - 180

THE NAME IN			WAS	TE TYPE TRU	HANDI	LING CH GE	NERATOR S	ITE MD	
TYPICAL WASTE DENSIT	:55-gallon	INAL WASTE	Int. 1	 STORED	08m3 Li	Liner Type: iner Material: EESTIMATED		Number : Number Pro	
Material Parameters	Average	Lower Limit	<u>Upper Limit</u>	ICKIES	DE WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	243.0	0.0	0.0		Projected	<u>Final Form</u>	Pu238	5.17E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1992:		55.9 m3	Pu239	3.05E-01	Curies/m3
Other Inorganic Materials	95.1	0.0	0.0	End of 1993:	55.9	55,9 m3	Pu240	6.33E-02	Curies/m3
Celiulosics	34.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu52	3.15E-03	Curies/m3
Rubber	J	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu83	6.32E+00	Curies/m3
Plastics	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	2.1	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022: [0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material Diaglic	27.0								

SITE NAME IN			WAS	TE TYPE TRU	HANDLING CH	H GEN	ERATOR SI	TE MD	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	Group Combustit	114TN-804	DESCRIPTION	-				nple vials, gaskets, manipulat	
NO MIGRATION VAI			er combustible wa	astes may be included	TRUCON CO		ng, piping, sam	npie viais, gaskets, manipulati	or
FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	faste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X .	Rsearch and Devel. Operations Waste Residues Decon and Decomme Environmental Resto From Treatment of William	issioning X ration	PC Ot N/	ebestos CBs her A known	X	

000401

IN-W305 - 1

IN - 182

IN-W305 CONTAINER: Type/Size:	SWB		 -	iner Mati: steel Vol/Ctnr: 1	.9 m3 Li	Liner Type: iner Material:		Number Stored:
TYPICAL WASTE DENSITIE			FORM (kg/n	n3) STORED) <u>TRU W</u> ASTE	E-ESTIMATED GENERATION		Number Projected: ISOTOPIC COMPOSIT
Iron-based Metals/Alloys	Average 24.2	Lower Limit	Upper Limit				<u>Nuclide</u> Pu238	Activity
Aluminum-Based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	1 4250	4.47E+01 Curies/m
Other Metals	2.6	0.0	0.0	End of 1992:	13,1	29.8 m3		
Other Inorganic Materials		0.0	0.0	End of 1993:	13.1	29.8 m3		
Cellulosics	5.5	0.0	0.0	1994:	0.0	0.0 m3/yr		
Rubber	13.7	0.0	0.0	1995:	0.0	0.0 m3/yr		
Plastics	17.5	0.0	0.0	1996:	0.0	0.0 m3/yr		
Solidified, Inorganic matrix	42.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Packaging Materials, Steel	0.0 210.0	0.0	0.0	TYPICAL	L EPA CODE	S APPLICABLE		
Packaging Material, Plastic	16.0					O AL I LIOABLE		

IN-W305 - 2

IN - 183

ENAME IN			WASTE TYPE TRU	HANDLING	CH GEN	ERATOR S	ITE MD	
IN-W305 CONTAINER: Type/Size:	55-gallon				er Type:		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		D TRU WASTE EST OF WASTE GEN	TIMATED ERATION			OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	55.3 0.0 6.0 12.5 31.3 39.9 95.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 End of 1992 0.0 End of 1993 0.0 1994 0.0 1995 0.0 1996 0.0 1997	33.5 33.5 0.0 0.0 0.0 0.0	33.5 m3 33.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238	1.02E+02	Curies/m3
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 131.0 37.0	0.0	0.0 1998-2002: 0.0 2003-2022: 0.0 TYPIC		0.0 m3/yr 0.0 m3/yr PLICABLE			
Comments Min and max weights are unknow	n							

E NAME IN			WASTE	TYPEMTRI	J HANDL	ING CH GEN	IERATOR S	RF RF
IN-W306.1 CONTAINER: Type/Size TYPICAL WASTE DENSITI			Container Int. Vol/	Ctnr: 1		Liner Type: ner Material: ESTIMATED		Number Stored: 44 Number Projected: 0
Material Parameters	Average	Lower Limit	Upper Limit	RATES (F WASTE	GENERATION	Nuclide	ISOTOPIC COMPOSITION Activity
fron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 214.1 0.0 0.0 0.0 91.5 0.0 210.0 16.0	0.0 0.0 12.6 0.0 0.0 0.0 44.2 0.0	0.0 0.0 En 0.0 En 330.5 0.0 0.0 227.4	d of 1992: d of 1993: 1994: 1995: 1996: 1997: 998-2002:	9.2 9.2 9.0 0.0 0.0 0.0 0.0 0.0 0.0	20.9 m3 20.9 m3 20.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		
Comments		•						

SITE NAME IN			WAST	E TYPE MTRU	HANDLING C	Н	GENERATOR S	NTE RF	
V	WIR ID IN-W306 VIPP ID IN-W306 Ocal ID ID-EGG- 8200	.1	STREAM NAME DESCRIPTION	Unknown Solids Uncategorized (TR	(U): Pre 73 Drun	ns			
SITE FINAL FORM IDC	RFP								•
Waste Matrix Code G Site Matrix Descri	ption This waste	organics stream was received p ed. It is expected to be	rior to 1973. As cor e similar to other Ro	ntainer specific infor cky Flats wastes re	mation was not e eceived since 197	entered int 73.	o lhe database p	orior to 1973, these wastes ar	e
NO MIGRATION VARIA	NCE PETITION	ASSIGNMENT			TRUCON C	ODE			
FINAL WASTE FORM I Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	te X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of N Maintenance	. Waste X X nissioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	X	

ENAME IN			WAS	TE TYPE MTRI		ING CH GEN	ERATOR S	ITE RF
IN-W306.1 CONTAINER: Type/Size:	55-gallon		Int.)8 m3 Li	Liner Type: ner Material:		Number Stored: 1451 Number Projected: 0
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/n	13) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	PF WASTE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	301.8	301.8 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	301.8	301.8 m3		
Other Inorganic Materials	489.0	28.8	754.8	1994:	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996;	0.0	0.0 m3/yr		•
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	208.9	101.0	519.2	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	Ŀ				
Packaging Materials, Steel	131.0	·J	<u> </u>	TYPICAL	EPA CODE	<u>S APPLICABLE</u>		
Packaging Material, Plastic	37.0							
Comments								

5.7% of the waste stored is currently characterized as RH-TRU if internal sheilding is not used. It is anticipated that all waste in this waste stream will be categorized as CH-TRU at the time of shipment to WIPP utilizing minimal internal shielding as necessary. For WTWBIR purposes, all of the waste in this waste stream is assumed to be CH-TRU.

00C406

IN-W306.1 - 3

IN - 187

SITE NAME IN		1414.077		· Ital Oiti
		WASTE TYPE MTRU	HANDLING CH	GENERATOR SITE RF
WIF	IR ID IN-W306.2	STREAM NAME Unknown Solids		
MATRIX CODE SITE FINAL FORM IDC	8200 RFP	DESCRIPTION Uncategorized (Ti	RU): Pre 73 Drums	
Waste Matrix Code Gro Site Matrix Descripti	on This waste stream was receiv	ed prior to 1973. As container specific info to be similar to other Rocky Flats wastes re	rmation was not entered i eceived since 1973.	nto the database prior to 1973, these wastes are
NO MIGRATION VARIAN	CE PETITION ASSIGNMENT		TRUCON CODE	
FINAL WASTE FORM DE	SCRIPTORS:			
Defense TRU Waste Non-Defense TRU Was Commercial TRU Was Unknown	TO THIS COUNTY	herations Maste	nissioning X	A Asbestos PCBs Other N/A Unknown

IN-W306.2 - 1

IN - 188

IN-W306.2 CONTAINER Type/Size	:		Int.		.9 m3 Li	Liner Type: ner Material:		Number Stored: 44 Number Projected: 0
TYPICAL WASTE DENSITI	Average	INAL WASTE Lower Limit	FORM (kg/n / Upper Limit	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC COMPOSITION Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	112.1 12.2 10.8 12.8 3.2 0.0 6.6 0.0	112.1 12.2 10.8 1.0 0.0 0.0 0.0	112.1 12.2 10.8 12.8 19.8 0.0 29.6	End of 1992; End of 1993; 1994; 1996; 1996; 1997;		20.9 m3 20.9 m3 20.9 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 210.0 16.0	0.0	0.0	2003-2022: <u>Typica</u>	0.0	0.0 m3/yr		
Comments								

LE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W306.2 CONTAINER Type/Size TYPICAL WASTE DENSITE Material Parameters	55-gallon	INAL WASTE	RATES OF WASTE GENERATION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	256.1 27.8 24.7 29.3 7.4 0.0 15.1 0.0 0.0 131.0 37.0	256.1 27.8 24.7 2.3 0.0 0.0 0.0 0.0 0.0	Description Projected Final Form State Projected Final Form State Projected Projecte

5.7% of the waste stored is currently characterized as RH-TRU if internal shellding is not used. It is anticipated that all waste in this waste stream will be categorized as CH-TRU at the time of shipment to WIPP utilizing minimal internal shielding as necessary. For WTWBIR purposes, all of the waste in this waste stream is assumed to be CH-TRU.

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W306.3 WIPP ID IN-W306.3 Local ID ID-EGG-287T-9999 MATRIX CODE 8200 SITE FINAL FORM IDC RFP	Unknown Solids DESCRIPTION Uncategorized (TRU): Pre 73 Drums
Waste Matrix Code Group Heterogeneous This waste stream was received puncategorized. It is expected to be the stream was received puncategorized. It is expected to be the stream was received puncategorized. It is expected to be the stream was received puncategorized. It is expected to be the stream was received puncategorized.	orior to 1973. As container specific information was not entered into the database prior to 1973, these wastes are e similar to other Rocky Flats wastes received since 1973. TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Wixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCRs

IN-W306.3 - 1

IN - 191

ENAME IN				TYPEMTR	-	LING CH GE	<u>EPURT</u> NERATOR S	SITE RF
IN-W306.3 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters			FORM (kg/m3	l/Ctnr:	TRU WASTE	Liner Type: Iner Material: ESTIMATED GENERATION		Number Stored: 44 Number Projected: 0 ISOTOPIC COMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments Number stored (44) is the number	42.1 0.0 0.0 1.1 35.4 3.2 28.4 0.0 0.0 210.0 16.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.9 10.5 80.9 7.2 65.2 0.0 0.0	End of 1992; ind of 1993; 1994; 1996; 1996; 1997; 1998-2002; 2003-2022;	9.2 9.2 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 20.9 m3 20.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr	<u>Nuclide</u>	Activity

NAME IN			WASTE	TYPEMTR	J HANDL	ING CH GEN	NERATOR S	ITE RF
	: 55-gallon		Int. Vol	Mati: steel /Ctnr: 0.2)8 m3 Li	Liner Type:		Number Stored: 1451 Number Projected: 0
TYPICAL WASTE DENSIT Material Parameters	<u>Average</u>	NAL WASTE	FORM (kg/m3) Upper Limit	STORED RATES	TRU WASTE	ESTIMATED GENERATION		ISOTOPIC COMPOSITION Activity
fron-based Metals/Afloys Aluminum-Based Metals/Afloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	96.2 0.0 0.1 2.4 80.9 7.3 64.9 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22.7 E1 24.0 184.8 16.4 149.0	nd of 1992; nd of 1993; 1994; 1995; 1996: 1997; 1998-2002; 2003-2022;	301.8 301.8 0.0 0.0 0.0 0.0 0.0 0.0	301.8 m3 301.8 m3 0.0 m3/yr 0.0 m3		
Comments 5.7% of the waste stored is curre								

5.7% of the waste stored is currently characterized as RH-TRU if internal shellding is not used. It is anticipated that all waste in this waste stream will be categorized as CH-TRU at the time of shipment to WIPP utilizing minimal internal shielding as necessary. For WTWBIR purposes, all of the waste in this waste stream is assumed to be CH-TRU.

060413

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W306.4 WIPP ID IN-W306.4	STREAM NAME Unknown Solids
Local ID ID-EGG-287T-9999 MATRIX CODE 8200 SITE FINAL FORM IDC RFP	DESCRIPTION Uncategorized (TRU): Pre 73 Drums
Waste Matrix Code Group Filter Site Matrix Description This waste stream was received uncategorized. It is expected to it	prior to 1973. As container specific information was not entered into the database prior to 1973, these wastes are be similar to other Rocky Flats wastes received since 1973.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Per	Research and Devel. Waste Operations Waste Residues Obter Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

E NAME IN			WAS	STE TYPE MTR		ING CH GE	NERATOR S	HTE RF
IN-W306.4 CONTAINER Type/Size TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	:	INAL WASTE F	Int.	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 9.2 9.2 0.0 0.0 0.0 0.0 0.0	Liner Type: mer Material: ESTIMATED GENERATION Final Form 20.9 m3 20.9 m3 0.0 m3/yr		Number Stored: 44 Number Projected: 0 ISOTOPIC COMPOSITION Activity
Packaging Material, Plastic	16.0							
Comments Number stored (44) is the number drums/SWB.	r of SWBs as	a result of overes	okina 4	1				

00041

In the same of the	·		
IN-W306.4 CONTAINER:			Container Matt: steel Liner Type: Number Stored: 145
Type/Size:	55-gallon		Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: (
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	EDDM (Include)
Material Parameters	_		RATES OF WASTE GENERATION
Iron-based Metals/Alloys	Average	Lower Limit	The state of the s
	0.0	0.0	0.0 Projected Final Form
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992: 301.8 301.8 m3
Other Metals	0.0	0.0	0.0 End of 1993: 301.8 301.8 m3
Other Inorganic Materials	168.3	48.1	500.0 1994: 0.0 0.0 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 0.0 0.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr
Plastics	0.0	0.0	0.0 1997: 0.0 0.0 m3/ry
Solidified, Inorganic matrix	0.0	0,0	
Solidified, Organic matrix	0.0	0.0	0.0 11.3/91
Sails	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Packaging Materials, Steel	131.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	37.0		
Comments			

5.7% of the waste stored is currently characterized as RH-TRU if internal sheilding is not used. It is anticipated that all waste in this waste stream will be categorized as CH-TRU at the time of shipment to WIPP utilizing minimal internal shielding as necessary. For WTWBIR purposes, all of the waste in this waste stream is assumed to be CH-TRU.

000415

SITE NAME IN			WAST	E TYPEMTRU	HANDLING C		GENERATOR:	SITE IN, RF	_
v	WIR ID IN-W308 VIPP ID IN-W308 .ocal ID ID-EGG- 8200			Unknown Sollds Uncategorized (TF	(U): Not Record	led - Unkn	own		
SITE FINAL FORM IDC Waste Matrix Code G Site Matrix Descri	roup Unknown ption This waste Initial Drum information	s available. The stream	m is believed to con-	sist of various type	shallow land bur o have been initi s of waste gener	rial during lially genera ated by plu	he INEL Early \ ated at the Rock	Vaste Retrieval (EWR) a cy Flats Plant. No conte aplutonium operations. A	and the
NO MIGRATION VARIA	NCE PETITION A		unknown at this time		TRUCON C			operations.	
Defense TRU Wasi Non-Defense TRU Commercial TRU W Unknown	te X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decom and Decomn Environmental Rest From Treatment of \ Maintenance	nlssioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	x	

300415

IN-W308 - 1

IN - 197

TE NAME IN			WAS	TE TYPE MTR	U HANDI	LING CH GEN		ITE IN, RF	
IN-W308 CONTAINER: Type/Size:		·	Int.	l	_	Liner Type: iner Material:		Number : Number Pro	
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber	Average 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	FORM (kg/m Upper Limit 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995:	Projected	Final Form 713.2 m3 713.2 m3 713.2 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	TYPICAL Nuclide Am241 Pu238 Pu239 Pu52	Activity 3.73E-01 2.06E-02 1.44E-01 1.19E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Plastics Solidified, inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 210.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1997; 1998-2002; 2003-2022; <u>TYPICA</u>	0.0 0.0 0.0 L EPA CODE UNK	0.0 m3/ry 0.0 m3/yr 0.0 m3/yr SAPPLICABLE			
Comments Number stored (377) is the number drums/SWB.	er of SWBs as	s a result of over	packing 4						

IN-W308 CONTAINER: Type/Size:				ner Matt: steel /ol/Ctnr: 0.2	08 m3 Li	Liner Type: ner Material:		Number : Number Pro	<u> </u>
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/m	3) STORED RATES	TRU WASTE	ESTIMATED GENERATION			OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solis Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	929.0 929.0 0.0 0.0 0.0 0.0 0.0 0.0 UNK	929.0 m3 929.0 m3 929.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr	Am241 Pu238 Pu239 Pu52	8.53E-01 4.71E-02 3.29E-01 2.72E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3

6.7% of the waste stored is currently characterized as RH-TRU if internal sheilding is not used. It is anticipated that all waste in this waste stream will be categorized as CH-TRU at the time of shipment to WIPP utilizing minimal internal shielding as necessary. For WTWBIR purposes, all of the waste in this waste stream is assumed to be CH-TRU.

SITE NAME IN	_			WAST	E TYPE MTRU HAND	LING CH	GENERATOR SI	TE RF
MATRIX CODE SITE FINAL FORM I	<u>DC</u>	IN-W309 ID-EGG-1 3114 RFP			This waste stream contains waste stream is lathe coola About 10% of the organic w wastes. These liquid waste	nı, wnich is b laste stream i	is trichinmethane. The	RFP. About 47% of the organic nd 40% carbon tetrachloride, remainder is other organic of form a grease or paste-like
Waste Matrix Cod Site Matrix Des NO MIGRATION VA	eription				inaterial.			y out of paste like
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TR Unknown	M DESCRIF Vaste RU Waste		Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X .	Research and Devel. Waste Operations Waste Residues Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X	SCA Asbestos PCBs Other N/A Unknown	

00419

IN-W309 - 1

IN - 200

IN-W309 CONTAINER: Type/Size:		ick	 1	ner Mati: Vol/Ctnr:	.9 m3 Li	Liner Type: iner Material:		Number \$	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		13) STORED	TRU WASTI	ESTIMATED GENERATION	TYPICAL Nuclide	Number Pro ISOTOPIC C Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 0.0 4.9 0.0 0.0 4.6 0.0 386.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.8 0.0 0.0 11.3 0.0 469.4	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	99.1 99.1 99.1 0.0 0.0 0.0 0.0 0.0	227.2 m3 227.2 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu52	2.05E-02 1.34E+00	Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments Number stored (120) is the number	0.0 210.0 16.0 er of SWBs a	0.0	0.0	TYPICA	D005A D011A F001 F002	S APPLICABLE			

TENAME IN			WAS	STE TYPE MTRI	HAND	LING CH GE	NERATOR S	SITE RF		_
IN-W309 CONTAINER: Type/Size:	'L			ilner Mati: steel Vol/Cinr: 0.20	08/m3 L	Liner Type:		Number S Number Proj	L I	_
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/n	RATES (TRU WAST	E-ESTIMATED GENERATION	TYPICAL Nuclide		OMPOSITION	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 11.3 0.0 10.6 0.0 682.0 0.0 131.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 692.0	0.0 0.0 0.0 40.6 0.0 0.0 25.7 0.0 1072.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	256.0 256.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	256.0 m3 256.0 m3 256.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr m3/yr 0.0 m3/yr	Am241 Pu52	5.19E-02 3.05E+00	Curies/m3 Curies/m3	
					F001 F002 F004	·			,	

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID IN-W311 WIPP ID IN-W311 Local ID ID-EGG-14 MATRIX CODE 3140 SITE FINAL FORM IDC RFP Waste Matrix Code Group Salt Waste	Suits (1176). Worken Saits - 30% Onpulyenzed
specified. NO MIGRATION VARIANCE PETITION AS	s generated at the Rocky Flats Plant. Very little information is available about this content code. The composition of the sall itself is not
Non-Defense TRU Waste Commercial TRU Waste	Mixed TRU Non-Mixed TRU Operations Waste Residues Unknown Environmental Restoration From Treatment of Waste Maintenance X TSCA Asbestos CTSCA Asbestos CTSCA Asbestos CTSCA Asbestos COHET COHE

D 11:EW-MI

IN - 203

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE RATES OF WASTE Material Parameters iron-based Metals/Alloys Average Iron-based Metals/Alloys Lower Limit Upper Limit Upper Limit Projected Aluminum-Based Metals/Alloys Other Metals 51.2 10.0 92.8 End of 1992: 1.8 1.8 Other Inorganic Materials 21.8 20.8 22.8 1994: 0.0 0.0 Cellulosics 5.7 0.0 11.5 1995: 0.0 0.0 Rubber 0.0 0.0 0.0 1998: 0.0 0.0 Plastics 4.5 2.9 6.0 1997: 0.0 Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0				
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 12.6 0.0 25.3 Projected Aluminum-Based Metals/Alloys 0.0 0.0 0.0 End of 1992: 1.8 Other Metals 51.2 10.0 92.8 End of 1993: 1.8 Other Inorganic Materials 21.8 20.8 22.8 1994: 0.0 Cellulosics 5.7 0.0 11.5 1995: 0.0 Rubber 0.0 0.0 0.0 1998: 0.0 Plastics 4.5 2.9 6.0 1997: 0.0 Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0	Liner Type: iner Material:		Number S Number Proj	jected: 0
Aluminum-Based Metals/Alloys 0.0 0.0 0.0 End of 1992: 1.8 Other Metals 51.2 10.0 92.8 End of 1993: 1.8 Other Inorganic Materials 21.8 20.8 22.8 1994: 0.0 Cellulosics 5.7 0.0 11.5 1995; 0.0 Rubber 0.0 0.0 0.0 1998: 0.0 Plastics 4.5 2.9 6.0 1997: 0.0 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 0.0	GENERATION Final Form	Nuclide Am241	Activity 4.97E+01	OMPOSITION Curies/m3
	4.2 m3 4.2 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		7.07E+02	Curies/m3
Solidified, Organic matrix Solls Packaging Materials, Steel O.0 O.0 O.0 O.0 O.0 O.0 TYPICAL EPA CODE:	0.0 m3/yr 0.0 m3/yr S APPLICABLE			
Packaging Material, Plastic 6.0 D028 Comments F001 Number stored (2) is the number of SWBs as a result of overpacking 4 drums/SWB.				

IN-W311 - 2

IN - 204

ITE NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
<u>IN-W311</u> <u>CONTAINER:</u> Type/Size:	55-gallon		Int	Container Mati: steel Liner Type: Number Stored: Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected:							
TYPICAL WASTE DENSITI	ES FOR F	<u>INAL WASTE</u>	FORM (kg/ı		TRU WASTI	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION		
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity			
Iron-based Metals/Alloys	28.8	0.0	57.7		Projected	Final Form	Am241	1.14E+02	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		4.7 m3	Pu52	2.66E+02	Curies/m3		
Other Metals	117.0	22.9	212.0	End of 1993;	4.7	4.7 m3					
Other Inorganic Materials	49.8	47.5	52.0	1994:	0.0	0.0 m3/yr					
Cellulosics	13.1	0.0	26.2	1995:	0.0	0.0 m3/yr					
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr					
Plastics	10.2	6.6	13.8	1997:	0.0	0.0 m3/ry			·		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr					
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Soils	0.0	0.0	0.0	ι		<u></u>					
Packaging Materials, Steel	131.0	·		TYPICA	<u>L EPA CODE</u>	S APPLICABLE					
Packaging Material, Plastic	37.0				D028						
					F001						

SITE NAME IN		4	WA	STE TYPE MTRU HAN	NDLING CH	GENERATOR :	SITE RF
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	Group Sait Wast	2 3-146T-124 e nical salt consists of used	chioride saits fro	Salls (TRU): Pyrochemical		efining, molten salt	extraction or direct oxide reduction.
		additional information is a	avaliable about th		RUCON CODE		
PINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Wast Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning X	CA Asbestos PCBs Other N/A Unknown	X

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W312 CONTAINER Type/Size Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic			Container Mati: Liner Type: Number Stored: 1 Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity
Comments Number stored (1) is the number of	i SWBs as a	result of overpa	cking 4

SITE NAME IN			WAS	STE TYPE MTRI	J HAND	LING CH GEN	IERATOR S	ITE RF		
	55-gallon		Int.	<u> </u>	08m3 L	Liner Type: iner Material:		Number S Number Proj	1	<u></u>
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r		TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC CO	OMPOSITION	
<u>Material Parameters</u>	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	<u>Nuclide</u>	Activity		
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu52	3.58E+02	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1892:	2.3	2.3 m3				
Other Metals	0.0	0.0	0.0	End of 1993:	2.3	2.3 m3				
Other Inorganic Materials	228.0	52.8	582.0	1994:	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0,0	0.0 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	——————————————————————————————————————						
Packaging Materials, Steel	131.0		·	TYPICAL		S APPLICABLE				
Onekogi Metadel DiH-					DOUGD					

SITE NAME IN			WAS	TE TYPE MTRU	HANDLING C	_	GENERATOR	SITE RF	
	e Group Salt Waste	1461-414		Salts (TRU): Direct			formation is		
NO MIGRATION VA	RIANCE PETITION	***************************************			TRUCON C			mable,	
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRU Unknown	/aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decon and Decommi Environmental Resto From Treatment of William	ssioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
IN-W314 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber			Container Mati: Liner Type: Number Stored: 4 Int, Vol/Ctnr: 1.9 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity
Plastics Solidified, Inorganic matrix	15.3	15.3	0.0 1996: 0.0 0.0 m3/yr 15.3 1997: 0.0 0.0 m3/ry 0.0 1998-2002: 0.0 0.0 m3/yr
Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 0.0 210.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic Comments	16.D		F001
Number stored (4) is the number drums/SWB.	of SWBs as	a result of overp	acking 4

IN-W314 - 2

IN - 210

SITE NAME (N			WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR	SITE RF	
IN-W314 CONTAINER: Type/Size:	55-gallon		Int,	<u> </u>	08 m3 Li	Liner Type: iner Material:		Number 5	· ' I
TYPICAL WASTE DENSITI	<u>ca ruk fi</u>	NAL WASTE	FORM (kg/n	n3) STORED	TRU WASTE	E-ESTIMATED	TYPICA	L ISOTOPIC C	OMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	KAIES	UF WASIE	GENERATION	Nuclide	Activity	<u></u>
Iron-based Metals/Alloys	22.1	22.1	22.1		Projected	Final Form	Am241	8.44E-02	Cuties/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.8 m3	Pu52	3.09E+02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:					
Other Inorganic Materials	149.0	149.0	149.0	1994;	0.0	0.8 m3			
Cellulosics	0.0	0.0	0.0	1995;		0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:		0.0 m3/yr			
Plastics	35.0	35.0	35.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0		0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steet	131.0	<u></u>	<u> </u>	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				F001				

SITE NAME IN	WASTE TYPE MTRU HANDLING RH GENERATOR SITE IN
WASTE STREAM MWIR ID IN-W322 WIPP ID IN-W322 Local ID ID-EGG-144T-154 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal	STREAM NAME Sample Fuel DESCRIPTION
NO MIGRATION VARIANCE PETITION ASSIGNMENT	utron sources, a tadrum needle, small vials of fuel, and metal containers of experimental fuel capsules.
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown X Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

000431

IN-W322 - 1

IN - 212

ENAME IN			WAS	TE TYPE MTR	IDMAH U	LING RH GE	VERATOR S	ITE IN	
IN-W322 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int. \	3) STORED	08m3 Li	Liner Type: iner Material: E-ESTIMATED		Number S Number Proj ISOTOPIC C	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	1.9 0.0 0.0 0.0 0.0 0.0	1.9 m3 1.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu239 Pu240 U235	1.46E+01 3.04E+00 3.95E-04	Curies/m3 Curies/m3 Curies/m3
Comments									
Waste material weights are unknown	wn for this w	aste stream.	·	-					

IN-W322 - 2

IN - 213

SITE NAME IN			WAS	STE TYPE MTRU HANDLI	NG RH	GENERATOR SI	ITE IN, AW	
WASTE STREAM	MWIR ID IN-			E Predominantly Combustible I				
MATRIX CODE SITE FINAL FORM II	544		DESCRIPTIO	N Radioactive Sources (TRU):	Combustible La	b Waste		
Waste Matrix Code Site Matrix Des			ted at the Argonne N	ational Laboratory-West and NF	3F -446 - 1810-			
	abras Trans	sive media and metal plece	es. Small residuals o	f moderators and fuel are trappe handled waste are stored at the	(ets and gloves,	leather, rags, tow	els, Q-tips, tubing, filter med	
FINAL WASTE FOR Defense TRU W Non-Defense TF Commercial TRI Unknown	Vaste RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X	 -

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING RH GEN	ERATOR S	ITE IN, AW	
IN-W323 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	Int.	iner Mati: steel Vol/Ctnr: 0.2		Liner Type: iner Material: E-ESTIMATED		Number 9	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPUSITION
Iron-based Metals/Alloys	36.8	0.0	63.2		Desirated	F:	Pu238	2.17E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 1.9	Final Form	Pu239	4.01E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.9	1.9 m3	Pu241	4.65E+00	Curies/m3
Other Inorganic Materials	2.6	0.0	10.5	1994;	0.0	1.9 m3	U235	1.54E-04	Curies/m3
Cellulosics	213.2	61.6	357.9	1995:	0.0	0.0 m3/yr			
Rubber	2.4	1.6	7.2	1996:	0.0	0.0 m3/yr			
Plastics	21.3	4.7	57.3	1997:	0.0	0.0 m3/yr 0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0	. [
Packaging Materials, Steel	131.0		<u>-</u>	TYPICA	_	S APPLICABLE			
Packaging Material, Plastic	37.0				D008C				

SITE NAME IN		WAST	E TYPE MTRU	HANDLING CH	GENERATOR S	ITE MO
OI 99IW	IN-W325 IN-W326 ID-EGG-288T-8†5 5300 Mound	STREAM NAME	Unknown Solids Unknown (TRU):			ITE IMD
Waste Matrix Code Group C Site Matrix Description T	ombustible his waste stream was generated	at Mound Laborator	ry.			
NO MIGRATION VARIANCE P	ETITION ASSIGNMENT			TRUCON COL	DE	
FINAL WASTE FORM DESCRI				-	-= <u> </u>	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Deve Operations Waste Residues Decom and Decom Environmental Res From Treatment of Maintenance	missioning X storation	TSCA Asbestos PCBs Other N/A Unknown	×

THE NAME IN			WAS	TE TYPE MTRI	J HAND	LING CH GEN	IERATOR S	ITE MD		
IN-W325 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	<u> </u>		Liner Type: iner Material: E_ESTIMATED		Number S Number Proj		<u> </u>
Material Parameters	Average	Lower Limit	Upper Limit	RATES (F WASTE	GENERATION	Nuclide	Activity	OMPOSITION	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics	0.0 0.0 0.3 11.1 63.0 19.3 191.8	0.0 0.0 0.0 0.0 63.0 19.3	0.0 0.0 17.9 17.3 706.7 194.4 706.7	End of 1992: End of 1993: 1994: 1995: 1996: 1997:	0.4 0.4 0.0 0.0 0.0 0.0	0.4 m3 0.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238	3.23E+01	Curies/m3	
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 0.0 131.0	0.0	0.0	2003-2022: TYPICAL	0.0 EPA CODE	0.0 m3/yr				
Packaging Material, Plastic	37.0				UNK					

#EF099

IN-W325 - 2

IN - 217

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID IN-W327 WIPP ID IN-W327 Local ID ID-EGG-288T-847 MATRIX CODE 5300 SITE FINAL FORM IDC Mound Waste Matrix Code Group Combustible	STREAM NAME Combustible Debris DESCRIPTION Unknown (TRU): Low Specific Activity < 100 nCi/g Combustible
Site Matrix Description This waste stream is from Moun (rubber and cloth), plastic bottles NO MIGRATION VARIANCE PETITION ASSIGNMENT	Ad Laboratory and consists of nonline generated combustible wastes such as plastic sheeting, paper, reagents, gloves s, wood, paper suits, and shoe covers. About 75% of the waste is compacted. The waste may be either dry or damp. TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Non-Mixed TRU Suspect Mixed TRU Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCRe

IN-W327 CONTAINER: Type/Size		ack	Container Matl: Liner Type: Number Stored: Number Stored: Number Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITE Upper Limit Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solids	0.0 0.0 0.1 4.9 27.6 8.5 84.0 0.0	0.0 0.0 0.0 0.0 27.6 8.5 69.5 0.0	0.0 Projected Final Form Pu238 9.75E+00 Curies/m 0.0 End of 1992: 1.2 2.7 m3 7.8 End of 1993: 1.2 2.7 m3 7.6 1994: 0.0 0.0 m3/yr 309.5 1995: 0.0 0.0 m3/yr 85.1 1996: 0.0 0.0 m3/yr 309.5 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr
Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0		TYPICAL EPA CODES APPLICABLE UNK

5 IN-W327 - 2

IN - 219

ENAME IN			WA	STE TYPE MTR	U HAND	LING CH GEI	NERATOR S	ITE MD	 -
	55-gallon		Int.	L		Liner Type: iner Material:		Number S Number Proj	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r		TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC CO	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	MATES	UF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Farm	Pu238		Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		Final Form			outres/iiis
Other Metals	0.3	0.0	17.9	End of 1993;		3.1 m3			
Other Inorganic Materials	11.1	0.0	17.3	1994;	——	3.1 m3			
Cellulosics	63.0	63,0	706.7	1995:	0.0	0.0 m3/yr	4		
Rubber	19.3	19.3	194.4	1996:	0.0	0.0 m3/yr			
Plastics	191.8	158.7	706.7		0.0	0.0 m3/yr	*		
Solidified, Inorganic matrix	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	 	1998-2002:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0	0.0	0.0	<u>TYPICA</u>	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				UNK	-			

SITE NAME IN				WAS	TE TYPE MTRU HAN	DLING CH	GENERATOR S	ITE MD
WASTE STREAM	MWIR ID WIPP ID	IN-W329 IN-W329		STREAM NAM	Heterogeneous Debris			
MATRIX CODE SITE FINAL FORM ID		ID-EGG-288 5400 Mound	BT-848	DESCRIPTION	Unknown (TRU): Low Sp	ecific Activity < 1	00 nCi/g Nancomb	ustible
Waste Matrix Code	Group H	eterogeneou nis waste stri	eam, generated a	t Mound Laboratory,	consists of nonline general	ed noncombustib	a wastes such as t	ools, pipe, equipment, metal,
NO MIGRATION VAI			, p	and dirt. Limited am	ouries of combustible waste	s such as paper,	rags, etc. are also i	oois, pipe, equipment, metal, ncluded.
FINAL WASTE FOR			- Torring I			RUCON CODE		
Defense TRU W Non-Defense TR Commercial TRU Unknown	U Waste		Mixed TRU Non-Mixed TRU Suspect Mixed TF Unknown	RU X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ing X	CA Asbestos PCBs Other N/A Unknown	X

IN-W329 - 1

IN - 221

TIE NAME IN			WAS	STE TYPE MTR	HAND	LING CH GEN	ERATOR S	SITE MD	
TYPICAL WASTE DENSIT	:55-gallon	INAL WASTE	lml.	n3) STORED	 TRU WASTI	Liner Type: Iner Material: E ESTIMATED GENERATION	TYPICAL	Number S Number Proj ISOTOPIC C	1 - 1
Material Parameters	Average	Lower Limit	Upper Limit	IGILO	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
lron-based Metals/Alloys Aluminum-Based Metals/Alloys	415.6	2.2	764.4		<u>Projected</u>	Final Form	Pu238	1.22E+02	Curies/m3
Other Metals	17.5	17.5	38.2	End of 1992:	1.1	1.1 m3	Pu239	5.34E-02	Curies/m3
Other Inorganic Materials	9.2	9.2	46.6	End of 1993:	1.1	1.1 m3			
Cellulosics	0.0	0.0	812.5	1994:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Plastics	4.8	0.0	0.0	1996;	0.0	0.0 m3/yr			
Solidifled, Inorganic matrix	0.0	0.0	0.0	1997: 1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0,0	0.0	2003-2022;	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	i.	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				UNK	_			

60044

IN-W329 - 2

IN - 222

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID IN-W33 WIPP ID IN-W33 Local ID ID-EGO	288T-801 DESCRIPTION Unknown (TRU): Plastic, Tygon, Manipulator Boots, etc.
Site Matrix Description This wast vials, gast contains of	stream, generaled at Mound Laboratory, consists of various types of plastics (PVC, PE tygon, etc.) in the form of tubing, piping, sample ets, manipulator boots, etc. Limited amounts of other combustible wastes from content codes 801 and 802 may also be included. One drur need 832, liquid mercury. The wastes are primarily from D&D activities at the plutonium processing and research buildings. Waste d on 7 1977. Limited amounts of waste may be damp.
PINAL WASTE FORM DESCRIPTORS Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Operations Waste Suspect Mixed TRU Unknown Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

ENAME IN			WASTE TYPE MTR	U HANDL	ING CH GEN	ERATOR S	ITE MD	
IN-W330 CONTAINER: Type/Size: TYPICAL WASTE DENSITI					Liner Type: ner Material:		Number St Number Proje	L
Material Parameters	Average	Lower Limit		OF WASTE	ESTIMATED GENERATION	<u>Nuclide</u>	ISOTOPIC CO Activity	MPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.1 4.9 27.6 8.5 84.0 0.0 0.0 210.0	0.0 0.0 0.0 27.6 8.5 69.5 0.0 0.0	0.0 0.0 End of 1992: 7.8 End of 1993: 7.6 1994: 309.5 1995: 1996: 309.5 1997: 0.0 1998-2002: 0.0 0.0 TYPICA	2.1 0.0 0.0 0.0 0.0 0.0 0.0	4.7 m3 4.7 m3 0.0 m3/yr	Pu236 Pu83		Curies/m3 Curies/m3
Comments								
Number stored (3) is the number drums/SWB.	of SWBs as	a result of overp	acking 4					

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GEN	ERATOR S	ITE MD		
IN-W330 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) STORED	TRU WASTI	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number S Number Pro	1	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	One Collina	
iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	6.36E+01	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		5.4 m3	Pu83	8.89E-01	Curies/m3	
Other Metals	0.3	0.0	17,9	End of 1993:	5.4	5.4 m3				
Other Inorganic Materials	11,1	0.0	17.3	1994:	0.0	0.0 m3/yr				
Cellulosics	63.0	63.0	706,7	1995;	0.0	0.0 m3/yr				
Rubber	19.3	19.3	194.4	1996:	0.0	0.0 m3/yr				
Plaslics	191.8	158.7	706.7	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	'						
Packaging Materials, Steet	131.0	L		TYPICA		S APPLICABLE				
Packaging Material, Plastic	37.0				UNK					

SITE NAME IN			WAST	E TYPE MTRU	HANDLING C	H	ENERATOR	R SITE BC	
Y		olumb		Solidified Process Unknown (TRU): \$		ns			
Site Matrix Descri _l	ption This waste o which is soli	omes from the Battelle dified in a plaster-of-par	Columbus Labs. (I It is a lurco soap de	contamination s	olution (use	d to decontan	minate glove boxes fr	om a Pu lab)
NO MIGRATION VARIA FINAL WASTE FORM I Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	DESCRIPTORS: te X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of N	missioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	X	

000445

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GE	NERATOR S	ITE BC	
	55-gallon		Int.	<u> </u>		Liner Type: .iner Material:		Number S	· · · · · · · · · · · · · · · · · · ·
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/m		TRU WAST	E ESTIMATED	TYPICAL	. ISOTOPIC C	COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	- Control
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	1.07E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.8 m3	Pu239	7.79E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		0.8 m3			
Other Inorganic Materials	394.2	173.1	528.8	1994:	0.0				
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	399.0	173.1	528.8	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	·		0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				UNK				

IN-W332 - 2

IN - 227

SITE NAME IN	WASTE TYPE MTRU HANDLING CH GENERATOR SITE BC							
MATRIX CODE 500	W334 EGG-288T-203 DESCRIPTION Unknown (TRU): Paper, Metals, Glass telle Columb							
Site Matrix Description This waste stream, generated at Battelle Columbus Laboratories, contains a mixture of combustible and noncombustible items in roughly equal proportions. Combustible items include paper and paper products. Noncombustibles are primarily metal and some glass. NO MIGRATION VARIANCE PETITION ASSIGNMENT TRUCON CODE								
FINAL WASTE FORM DESCRIPTO Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown								

100447

E NAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE BC
IN-W334 CONTAINER: Type/Size: TYPICAL WASTE DENSITE Material Parameters	ES FOR F	INAL WASTE	RATES OF WASTE GENERATION
Iron-based Metals/Alloys	Average	Lower Limit	Upper Limit
Aluminum-Based Metals/Ailoys	42.1	0.0	715.8
Other Metals	0.0	0.0	0.7 End of 1992: 1.5 3.5 m3
Other Inorganic Materials	1.1	0.0	9.9 End of 1993: 1.5 3.5 m3
Cellulosics	35.4	0.0	10.5 1994: 0.0 0.0 m3/yr
Rubber	3.2	0.0	60.9 1995: 0.0 0.0 m3/yr
Plastics	28.4	0.0	7.2 1996: 0.0 0.0 m3/yr 65.2 1997: 0.0 0.0 m3/yr
Solidified, Inorganic matrix	0.0	0.0	
Solidified, Organic matrix	0.0	0.0	0.0
Soils	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Packaging Materials, Steel	210.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	16.0		UNK
Comments			
Number stored (2) is the number of drums/SWB.	of SWBs as a	result of overp	acking 4

, IN-W334 - 2

IN - 229

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GE	VERATOR S	SITE BC	
IN-W334 CONTAINER Type/Size TYPICAL WASTE DENSITI	Int.	iner Mati: steel Vol/Ctnr: 0.2		Number Stored: 19 Number Projected: 0 AL ISOTOPIC COMPOSITION					
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	<u>ISOTOPIC C</u> Activity	COMPOSITION
Iron-based Metals/Alloys	96.2	0.0	1634.6		Projected	<u>Final Form</u>	Pu239	9.33E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992;		4.0 m3	U235	4.82E-04	Curies/m3
Other Metals	0.1	0.0	22.7	End of 1993;		4.0 m3			
Olher Inorganic Materials	2.4	0.0	24.0	1994;	0.0				
Cellulosics	80.9	0.0	184.8	1995;		0.0 m3/yr			
Rubber	7.3	0.0	16.4	1996;		0.0 m3/yr		-	
Plastics	64.9	0.0	149.0	1997:		0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	_	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0	<u> </u>		TYPICA	L EPA CODE	ES APPLICABLE			
Packaging Material Plastic	37 N				UNK	· · · · · · · · · · · · · · · · · · ·			

000443

SITE NAME IN		WAST		ING CH	GENERATOR SITE	F DC
WASTE STREAM MWIR ID	IN-W336				SENERATOR SITE	- BC
	IN-W336	STREAM NAME	Combustible Debris			
Local ID MATRIX CODE	ID-EGG-288T-202 5300	DESCRIPTION	Unknown (TRU): Combustit	ole Solids		
SITE FINAL FORM IDC	Battelle Columb					
Waste Matrix Code Group	ombustible					
Site Matrix Description Site Matrix	his waste stream, generated at Ba tructures, shoe covers, rubber glo	attelle Columbus La	boratories, contains such cor	mbustible items a	s wood, plastic suit	S, hylon reinforced plastic tent
	tructures, shoe covers, rubber glo	ves, and air nose.	i ne waste is from decontami	nation and deact	vation of the pluton	ium laboratory.
						•
_			·			
NO MIGRATION VARIANCE P			TRUC	CON CODE		
FINAL WASTE FORM DESCRI	PTORS:					
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	F 6	Rearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Invironmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X .

IN-W336 - 1

IN - 231

ENAME IN			WASTE TYPE MTRU HANDLING CH GENERATOR SITE BC							
IN-W336 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	<u> </u>	_	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number St Number Proje	cted: 0	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	_ISOTOPIC CO Activity	MPOSITION	
Iron-based Metals/Alloys	0,0	0.0	0.0		Projected	Final Form	Pu239		Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	4.1	4.1) m3				
Other Metals	0.0	0.0	0.0	End of 1993;	4.1	4.1 m3				
Other Inorganic Materials	2.9	0.0	7.2	1994;	0.0	0.0 m3/yr				
Ceflulosics	575.6	105.8	961.5	1995:	0.0	0.0 m3/yr				
Rubber	55.2	55.2	163.5	1996:	0.0	0.0 m3/yr				
Plastics	165.6	105.8	288.5	1897:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0					
Soils	0.0	0.0	0.0	L		0.0 m3/yr				
Packaging Materials, Steel	131.0	<u> </u>		TYPICAL	EPA CODE	S APPLICABLE				
Packaging Material, Plastic	37.0				UNK	•				
Comments										
The										

The weights per container in the MID for boxes are identical to the weights per container for drums. I'd rather use the same kg/m3. (Chuck Edinborough)

66045

IN-W336 - 2

IN - 232

SITE NAME IN			WA:	STE TYPEMTRU	HANDLING	RH	GENERATOR S	SITE IN	
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code G			DESCRIPTIO	N Unknown (TRU):	Americium Soli				
NO MIGRATION VARIA	NCE PETITION A				TRUCON				
PERMANDE FORM DEFENSE TRU Wast Non-Defense TRU Wast Commercial TRU Wast Unknown	e X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Developerations Waste Residues Decon and Decon Environmental Res From Treatment of Maintenance	mmissioning X storation	TSCA	Asbestos PCBs Other N/A Unknown	×	

IN-W337 - 1

IN - 233

SITE NAME IN			WASTI	TYPEMTRI	HAND	ING RH GEI	NERATOR S	SITE IN
IN-W337 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAI WASTE	Int. Vo	<u> </u>		Liner Type: iner Material:		Number Stored: 1 Number Projected: 0
				RATES C	IRU WASTE	-ESTIMATED GENERATION		ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		<u> </u>	OCITETO HOLE	<u>Nuclide</u>	<u>Activity</u>
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	nd of 1992:	0.2	0.2 m3		
Other Metals	0.0	0.0		nd of 1993:	0.2			
Other Inorganic Materials	0.0	0.0	0.0	<u> </u>		0.2 m3		
Cellulosics	0.0	0.0		1994:	0.0	0.0 m3/yr		
Rubber	0.0	} 	0.0	1995:	0.0	0.0 m3/yr		
Plastics	 	0.0	0.0	1996:	0.0	0.0 m3/yr		
-	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	١.				
Packaging Materials, Steel	131.0	·	<u> </u>	TYPICAL	EPA CODE	S APPLICABLE		
Packaging Material, Plastic	37.0				UNK			

SITE NAME IN		WASTE TYPE MTRU HANDLING CH	GENERATOR SITE AW
MATRIX CODE 82 SITE FINAL FORM IDC AI	J-W338 D-EGG-288T-163 200 NL-W	AM NAME Unknown Solids CRIPTION Unknown (TRU): ANL-W Analytical Che	emistry Laboratory Cold-Line Absorbed Liquid, Misc.,
	re is no content information on this	, which was generated at INEL	
NO MIGRATION VARIANCE PETI FINAL WASTE FORM DESCRIPT Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown		X Rsearch and Devel. Waste X TS Operations Waste X X Residues Decon and Decommissioning X Environmental Restoration From Treatment of Waste	SCA Asbestos PCBs Other N/A Unknown

IN-W338 - 1

IN - 235

TE NAME IN		_	WAS	TE TYPEMTRU	HAND	ING CH GEN	NERATOR S	ITE AW		
IN-W338 CONTAINER: Type/Size:	55-gallon		int,	iner Mati: steel Vol/Ctnr: 0.20	B _{m3} Li	Liner Type: iner Material:		Number Pro	1 1	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORED	TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	Activity		
iron-based Metals/Alloys	0.0	0.0	0.0		rojected	Final Form	Pu239	4.68E-01	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	1.3	1.3 m3	U235	1.17E-04	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	1.3	1.3 m3				
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	TYPICAL						
Packaging Materials, Steel	131.0	- 		ITPICAL		S APPLICABLE				
Packaging Material, Plastic	37 D				UNK					

000450

IN-W338 - 2

IN - 236

SITE NAME IN			WASI	TE TYPE MTRU	HANDLING CH	GENERATOR S	ITE AW, IN	
WASTE STREAM	MWIR ID IN-W33)		Unknown Solids				
MATRIX CODE SITE FINAL FORM ID	Local ID ID-EGG 8200 C ANL-W	-2881-162	DESCRIPTION	Unknown (TRU): Al	NL-W FMF EFL ZF	R-U Fuel Casting Alloys	Residues	
Waste Matrix Code Site Matrix Desc		o content information for	this code, which in	cludes waste from iN	EL.			
NO MIGRATION VAR		ASSIGNMENT			TRUCON COD	E		
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. V Operations Waste Residues Decon and Decommis Environmental Reston From Trealment of Wa Maintenance	X ssioning X ation	TSCA Asbestos PCBs Other N/A Unknown	X	

1,00456

IN-W339 - 1

IN - 237

ATOR SITE AW, IN		
Number Stored: 3 Number Projected: 0 TYPICAL ISOTOPIC COMPOSITION		
Iclide Activity		
239 4.83E+00 Curies/m3		
1240 1.97E-02 Curies/m3		
35 3.63E-04 Curies/m3		
5,05E-04 Culles/m3		

1000 Pag

IN-W339 - 2

SITE NAME IN WASTE TYPE MTRU HANDLING CH GENERATOR SITE AW, IN IN-W339 CONTAINER: Drum Container Matt: steel Liner Type: Number Stored: Type/Size: 55-gailon 30 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: ō TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION **Material Parameters** <u>Average</u> Lower Limit Upper Limit Nuclide Activity Iron-based Metals/Alloys 0,0 0.0 Pu239 0.0 1.10E+01 Curies/m3 **Projected** Final Form Aluminum-Based Metals/Alloys 0.0 0.0 0.0 Pu240 4.49E-02 End of 1992: 6.3 Curies/m3 6.3 m3 Other Metals 0.0 0.0 U235 0.0 End of 1993: 8.29E-04 Curles/m3 6.3 6.3 m3 Other Inorganic Materials 0.0 0.0 0.0 1994; 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 Packaging Malerial, Plastic UNK 37.0

SITE NAME IN	WASTE TYPE MTRU HANDLING RH GENERATOR SITE AW, IN
WASTE STREAM MWIR ID IN-W341 WIPP ID IN-W341 Local ID ID-EGG-288T-160 MATRIX CODE 8200	STREAM NAME Unknown Solids DESCRIPTION Unknown (TRU): ANL-W HFEF Analytical Chemistry and Metallographic Combustibles
SITE FINAL FORM IDC ANL-W	
Waste Matrix Code Group Site Matrix Description There is no content information NO MIGRATION VARIANCE PETITION ASSIGNMENT	
FINAL WASTE FORM DESCRIPTORS:	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	PCBS

IN-W341 - 1

IN - 240

DITE NAME IN			WAST	E TYPE MTRI] HAND	LING RH GEN	NERATOR S	ITE AW, IN	
IN-W341 CONTAINER Type/Size TYPICAL WASTE DENSITI	: 55-gallon	INAL WASTE	Int. V	3) STORED	_ <u>Tru wasti</u>	Liner Type: iner Material: E_ESTIMATED		Number S Number Proj	
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	Activity	OW OSTION
iron-based Metals/Alloys	0.0	0.0	0.0	1	Projected	Final Form	Pu239	9.40E+00	Curles/m3
Aluminum-Based Metals/Alloys	0.0	0.0		End of 1992:	0.2		U235	1.32E-03	Curies/m3
Other Metals	0.0	0.0		End of 1993:		0.2 m3			odiies/iiia
Other Inorganic Materials	0.0	0.0	0,0	1994:	0.2	0.2 m3			
Cellulosics	0.0	0,0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	-	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022: [0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0	<u> </u>		TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material Plactic	37 O				IINK	·			

050460

IN-W341 - 2

SITE NAME IN			WAS	TE TYPE MTRU	HANDLIN	с	GENERATOR	SITE IN	
WIPP Local MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group		8T-157	DESCRIPTION	Unknown Solids Unknown (TRU):					
Site Matrix Description NO MIGRATION VARIANC			the INEL. Addit	lonal Information is		on CODE			
PINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	ste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Dev Operations Waste Residues Decon and Decor Environmental Re From Treatment of Maintenance	nmissioning	X TSO	CA Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN			WA	STE TYPE MTR	U HAND	LING CH GEN	VERATOR S	ITE IN	
	55-gallon		Int.	<u> </u>	08 m3 L	Liner Type: iner Material:		Number ! Number Pro	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED	TRU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	SIL SOTTION
fron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	7.48E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.4 m3	Cf252	5.60E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		0.4 m3	Pu239	6.46E-02	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0,0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	ı					
Packaging Materials, Steel	131.0	<u> </u>		TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				UNK				

00046

SITE NAME IN			WAST	E TYPEMTRU	HANDLING CH	GENERATOR :	SITE IN
	- <u> </u>	345 3G-288T-155	STREAM NAME DESCRIPTION	Debris Waste Unknown (TRU):	TRU Scrap		
	ription This wa pump, c	ste stream, generated a centrifuges, tools, and e	at the Idaho National E. xperimental fuel capsu	Ingineering Laboratoles. The presence	ory, consists of a post of the consists of a post of the consists of the consi	terials is not known, but s	ulic pump containing oil, vacuum ome absorbed oil is likely.
FINAL WASTE FORM Defense TRU Wa Non-Defense TRI Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU	Rsearch and Devel Operations Waste Residues Decon and Decomore Environmental Resi From Treatment of Maintenance	missioning X toration	TSCA Asbestos PCBs Other N/A Unknown	X

000463

IN-W345 - 1

IN - 244

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING CH GEN	IERATOR S	ITE IN	
IN-W345 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	13) STORED	TRU WAST	Liner Type: iner Material: E_ESTIMATED		Number S Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	Olin Collicia
Iron-based Metals/Alloys	96.2	0.0	1634.6		Projected	Final Form	Am241	5.98E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:	14.6	14.6 m3	Pu238	1.66E+00	Curies/m3
Other Metals	0.1	0.0	22.7	End of 1993:	14.6	14.6 m3	Pu239	1.35E+00	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr	Pu240	8.59E-01	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Th232	3.89E-05	Curies/m3
Rubber	7.3	0.0	16.4	1996:	0.0	0.0 m3/yr	U235	1.79E-05	Curies/m3
Plastics	64.9	0,0	149.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37 n				UNK				

000464

SITE NAME IN			WAST	TE TYPE MTRU	HANDLING CH	GENERATOR	SITE AE	
	<u> </u>	88T-102		Absorbed Aqueous				
Site Matrix Description NO MIGRATION VAR			Ional Laboratory	East. It consists of	liquids adjusted to		hich are then absorbed in	vermiculite.
PERMAL WASTE FORM Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decom and Decommental Rest From Treatment of Maintenance	. Waste X X X III III III III III III III III	TSCA Asbestos PCBs Other N/A Unknown	X	

00465

IN-W347 - 1

IN - 246

IN-W347 CONTAINER: Type/Size	Int	ainer Matt:		Number Stored: 4 Number Projected: 0					
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE	FORM (kg/i	RATES	TRU WASTE	ESTIMATED GENERATION			COMPOSITION
fron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 44.2 0.0 0.0 0.0 94.7 0.0	0.0 0.0 44.2 0.0 0.0 0.0 73.7 0.0	0.0 0.0 44.2 0.0 0.0 0.0 113.7 0.0	End of 1992; End of 1993: 1994: 1995; 1996: 1997: 1998-2002: 2003-2022:	9.00 0.0 0.0 0.0 0.0 0.0 0.0	8.0 m3 8.0 m3 8.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu239 Pu240 Th232 U235 U238	1.57E-02 5.36E-01 9.81E-01 8.08E-08 2.61E-07 2.78E-06	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0			TYPICA	L EPA CODE UNK	S APPLICABLE			

pdrums/SVVB.

IN-W347 - 2

SITE NAME IN			WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE AE							
IN-W347 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE FO				Container Mati: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material: RM (kg/m3) STORED TRU WASTE ESTIMATED TRATES OF WASTE GENERATION N				Number Stored: 244 Number Projected: 0 TYPICAL ISOTOPIC COMPOSITION Number Activity			
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	KATES	OF WASIE	GENERATION	Nuclide	<u>Activity</u>			
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	3.58E-02	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		50.8 m3	Pu239	1.22E+00	Curies/m3		
Other Metals	0.0	0.0	0.0	End of 1993:		50,8 m3	Pu240	2.24E+00	Curies/m3		
Other Inorganic Materials	101.0	101.0	101.0	1994:	0.0	0.0 m3/yr	Th232	1.85E-07	Curies/m3		
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	U235	5.97E-07	Curies/m3		
Rubber	0.0	0.0	0.0	1996;	0.0	0.0 m3/yr	U238	6.34E-06	Curies/m3		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry					
Solidified, Inorganic matrix	216.3	168.3	259.6	1998-2002:	0.0	0.0 m3/yr					
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Soils	0.0	0.0	0.0		. =						
Packaging Materials, Steel	131.0			TYPICA		S APPLICABLE					
Packaging Material, Plastic	37.0				UNK						

SITE NAME IN		WASTE TYPE MTRU HANDLING RH GENERATOR SITE AE	
WIPF Loca MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Grou	L	STREAM NAME Unknown Solids DESCRIPTION Unknown (TRU): TRU-Remote Handled Waste on on this code, which was generated at ANL-E.	
NO MIGRATION VARIANC	E PETITION ASSIGNMENT	TRUCON CODE	
PiNAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	X Mixed TRU ste Non-Mixed TRU	- POBS	

SITE NAME IN			WAS	TE TYPE MTR	U HAND	LING RH GEN	VERATOR S	ITE AE	
IN-W349 CONTAINER Type/Size	55-gallon		Int.	iner Matt: steel Vol/Ctnr: 0.2		Liner Type: iner Material:		Number Number Pro	L - 1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	13) STORED	TRU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC (COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	SOUN CONTINU
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final F	Pu239	9.43E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		Final Form	Pu240	6.05E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;		6.4 m3			- 4.760//10
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	6.4 m3			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			•
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0			0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				UNK				

SITE NAME IN	WAST	E TYPEMTRU HAND		GENERATOR SITE AE	
WASTE STREAM MWIR ID IN-W350 WIPP ID IN-W350 Local ID ID-EGG-28 MATRIX CODE 8200 SITE FINAL FORM IDC ANL-E Waste Matrix Code Group Unknown	STREAM NAME BT-108 DESCRIPTION	Unknown Solids Unknown (TRU): Special S	Source Material		
Site Matrix Description There is no co	ntent information on this code, which wa		UCON CODE		
Non-Defense TRU Waste Commercial TRU Waste	Non-Mixed TRU Suspect Mixed TRU Unknown E	Research and Devel. Waste Operations Waste Residues Decon and Decommissionin Invironmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X

000470

IN-W350 - 1

IN - 251

SITE NAME N			WAS	TE TYPE MTR	U HAND	LING CH GEN	ERATOR S	ITE AE	
•	e: 55-gallon		Int.			Liner Type: iner Material:		Number S Number Proj	
TYPICAL WASTE DENSIT	IES FORF	INAL WASTE	FORM (kg/n		TRU WAST	E-ESTIMATED			OMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	<u>Upper Limit</u>	RATES	OF WASTE	GENERATION	Nuclide	Activity	01711 03111014
Iron-based Metals/Alloys	0.0	[0,0]	0.0		Projected	Cinal Carry	Pu239	5.74E+01	Curies/m3
Alumínum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		Final Form	Pu240	1.76E+02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		0.2 m3			11201.110
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.2 m3			
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0			0.0 m3/yr			
Packaging Materials, Steel	131.0	L		TYPICAL	<u>L EPA CODE</u>	S APPLICABLE			
Packaning Material Disette	27.0				TIME				

SITE NAME (N		WASTE	TYPEMTRU	HANDLING CH	GENERATOR SI	TE AE	
WIPP ID Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group		STREAM NAME DO	Inknown (TRU): I				
Site Matrix Description	This waste stream, generated at A	Argonne National Labo	ratory-East, cons	TRUCON CO		rt liquid wastes.	
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	J OI RE	search and Developerations Waste lesidues lecon and Decomination Treatment of faintenance	missioning X	TSCA Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN			WAS	TE TYPE MTR	DIAH U	LING CH GE	NERATOR S	ITE AE	·]
	: 55-gallon		Int.	L		Liner Type: iner Material:		Number S Number Pro		_
TYPICAL WASTE DENSIT	ES FUR F	INAL WASTE	FORM (kg/n	n3) STORED	TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	<u>Average</u>	<u>Lower Limit</u>	Upper Limit	KATES	JF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	4.8	0.0	14,4		Projected	Final Form	Pu239	1.75E+00	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		1.5 m3	Pu240	6.01E+00	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993;		1.5 m3				
Other Inorganic Materials	4.8	0.0	19.2	1994;	0.0	0.0 m3/yr				
Cellulosics	287.7	53.4	432.7	1995:	0.0	0.0 m3/yr				
Rubber	3.3	1.4	8.7	1996:	0.0	0.0 m3/yr				
Plastics	36.0	2.9	60,6	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	L		<u> </u>				
Packaging Materials, Steel	131.0	L		TYPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	37.0				UNK					

050473

IN-W351 - 2

SITE NAME IN		WASTE TYPE TRU HANDLING CH GENERATOR SITE BT	
WIPP II	D IN-W353 D IN-W353 D ID-EGG-158TN-050 Bettis Solidified Inorganics	STREAM NAME Solidified Solutions DESCRIPTION None available. (INEL) content code is also titled "solidified solutions."	
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	TRUCON CODE	
FINAL WASTE FORM DESCI Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	Rsearch and Devel. Waste X TSCA Asbestos Coperations Waste X PCBs Residues Cither Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance	

000474

(N-W353 - 1

IN - 255

SITE NAME IN			PAW	TE TYPE TRU	HAND	ING CH GEN	ERATOR S	ITE BT	
IN-W353 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	iner Matt: steel Vol/Ctnr: 0.20 n3) STORED		Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number : Number Pro	I—
Material Parameters	Average	Lower Limit	Upper Limit	RATES (GENERATION	Nuclide	Activity	JOHN CONTION
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Np237	3.33E-04	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0.2 m3	Pu239	1.20E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3			
Other Inorganic Materials	461.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			•
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	4.2	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0	L—————————————————————————————————————		TYPICAL	<u>L EPA CODE</u>	S APPLICABLE			
Dooleaning Majorial Claute	27.0								

)66475

IN-W353 - 2

IN - 256

SITE NAME IN	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF	
WASTE STREAM MWIR ID IN-W354 WIPP ID IN-W354 Local ID ID-EGG-146TN-412 3140 SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description	STREAM NAME Salt Waste DESCRIPTION Salts (TRU): Gibson Salts	
NO MIGRATION VARIANCE PETITION ASSIGNMENT ID 2244 FINAL WASTE FORM DESCRIPTORS:	TRUCON CODE ID 224A	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown X Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance	

SITE NAME IN			WAS	TE TYPE TRU	HAND	LING CH GEN	JERATOR S	ITE RF		
	55-gallon		int.	<u> </u>	08m3 L	Liner Type: iner Material:		Number S Number Proj		
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/m			E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>		
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	<u>Final Form</u>	Pu52	4.24E+01	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0.2 m3				
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3				
Other Inorganic Materials	298.0	0.0	0.0	199 4 :	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		•		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidifled, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0							
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	37.0									

SITE NAME IN				WAST	E TYPE TRU	IANDLING CH	GENERATOR SITE	≣ RF
WASTE STREAM	MWIR ID			STREAM NAME	Salt Waste			
MATRIX CODE SITE FINAL FORM ID	Local ID	ID-EGG-14 3140 RFP	6TN-411	DESCRIPTION	Salts (TRU): Electron	refining Salt		
Waste Matrix Code Site Matrix Desc		It Waste					·	
NO MIGRATION VAR	RIANCE PE	TITION AS	SIGNMENT ID 114	224A		TRUCON COL	DE ID 114; 224A	
PINAL WASTE FORM Defense TRU WASTE TRU WASTE TRUE Non-Defense TRUE Commercial TRUE Unknown	aste IU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, W Operations Waste Residues Decon and Decommis Environmental Restora From Treatment of Wa Maintenance	sioning X	TSCA Asbestos PCBs Other N/A Unknown	X

M) BMANE			WASTE TYPE TRU HANDLING CH GENERA	TOR SITE RF
IN-W355 CONTAINER: Type/Size:			Container Mati: Liner Type: Int. Vol/Ctnr: 1.9 m3 Liner Material:	Number Stored: 1 Number Projected: 0
TYPICAL WASTE DENSITI Material Parameters	Average	Lower Limit	Poper Limit RATES OF WASTE GENERATION Nu	PICAL ISOTOPIC COMPOSITION clide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellutosics Rubber Plastics Solidified, Inorganic matrix	0.0 0.0 0.0 147.4 0.0 0.0 0.0 0.0	0.0 0.0 0.0 2.9 0.0 0.0 0.0	0.0 Projected Final Form Put 0.0 End of 1992: 0.4 0.8 m3 0.0 End of 1993: 0.4 0.8 m3 193.7 1994: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/ry 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr	52 9.37E+01 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0	0.0	10.0 TYPICAL EPA CODES APPLICABLE	
Comments Number stored (1) is the number drums/SWB.	of SWBs as	a result of overp	ing 4	

ं ≒ IN-W355

IN - 260

			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE RF	_ 	
IN-W355 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	Int.	L		Liner Type: iner Material: E-ESTIMATED		Number S Number Proj	jected: 0	
Material Parameters					OF WASTE	GENERATION			OMPOSITION	
	Average	Lower Limit	<u>Upper Limit</u>				<u>Nuclide</u>	<u>Activity</u>		
fron-based Metals/Afloys	0.0	0.0	0.0		Projected	<u>Final Form</u>	Pu52	2.14E+02	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.9					
Other Metals	0.0	0.0	0.0	End of 1993:		0.9 m3				
Other Inorganic Materials	336.7	6.7	442,3		0.9	0.9 m3				
Cellulosics	0.0	0.0		1994:	0.0	0.0 m3/yr				
Rubber	0.0		0.0	1995:	0.0	0.0 m3/yr				
Plastics	J	0.0	0.0	1996:	0.0	0.0 m3/yr				
	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Solls	0.0	0.0	0.0							
Packaging Materials, Steel	131.0	·		TYPICAL	EPA CODE	S APPLICABLE				
Packaging Material, Plastic	37.0									

SITE NAME IN				WAS	TE TYPE TRU HANDL	ING CH	GENERATOR SIT	TE RF	
WASTE STREAM MATRIX CODE SITE FINAL FORM II		N-W356	46TN-410	STREAM NAME	Salt Waste Salts (TRU); Mollen Salts -	30% Pulveri	ized		
Waste Matrix Cod Site Matrix Des	le Group Sa					·			
NO MIGRATION VA			SSIGNMENT ID 2244		TRU	CON CODE	ID 224A		<u>=</u> _
Defense TRU V Non-Defense Ti Commercial TR Unknown	Vaste RU Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X	SCA Asbestos PCBs Other N/A Unknown	X	

IN-W356 CONTAINER: Type/Size:	L	ack	Container Mati: Liner Type: Number Stored: Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected:
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION Upper Limit TYPICAL ISOTOPIC COMPOSITION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellutosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel	0.0 0.0 197.9 0.0 0.0 0.0 0.0 0.0 210.0 16.0	0.0 0.0 52.5 0.0 0.0 0.0 0.0	0.0 Projected Final Form Am241 6.65E+00 Curies/m3 0.0 End of 1992: 1.3 3.0 m3 9.36E+00 Curies/m3 273.7 1994: 0.0 0.0 m3/yr 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr

IN-W356 - 2

IN - 263

2/2R/Q5

SITE NAME IN			WAS	TE TYPETRU	HAND	LING CH GEN	IERATOR S	ITE RF		
IN-W356 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	int,	n3) STORED	 TRU WASTI	Liner Type: iner Material: E-ESTIMATED		Number S Number Pro	1 1	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>	
fron-based Metals/Alloys	0.0	0.0	0.0		Projected	<u>Final Form</u>	Am241	1.52E+01	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.3	3.3 m3	Pu52	2.14E+01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	3.3	3.3 m3				
Other Inorganic Materials	452.0	120.0	625.0	1994:	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/vr				
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		•		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	L						
Packaging Materials, Steel	131.0		٠	TYPICAL	<u>EPA CODE</u>	S APPLICABLE				
Packaging Material, Plastic	37.0									

SITE NAME IN				WAST	TE TYPE TRU	HANDLING R	н	GENERATOR S	SITE IN	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	C Group He	IN-W358 ID-EGG-1 5000	44TN-152	STREAM NAME DESCRIPTION	Debris Waste Radioactive Source	ıs (TRU): Pu Ne	eutron Sou	urces		
NO MIGRATION VAI			SSIGNMENT			TRUCON C	ODE			
Defense TRU W Non-Defense TR Commercial TRU Unknown	faste RU Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of V Maintenance	X nissioning X oration	TSCA	A Asbestos PCBs Other N/A Unknown	X	

SITE NAME IN			WAS	TE TYPE TRU	HAND	LING RH GEN	IERATOR S	ITE IN	
IN-W358 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon		Int. FORM (kg/n		08m3 L	Liner Type: Iner Material: E ESTIMATED GENERATION	TYPICAL		1 1
iron-based Metals/Alloys	Average	Lower Limit	Upper Limit				<u>Nuclide</u>	Activity	
Aluminum-Based Metals/Alloys	96.2	0.0	1634.6		<u>Projected</u>	Final Form	Pu238	6.64E+02	Curles/m3
Other Metals	 	0.0	1.6	End of 1992:	5.4	5.4 m3	Pu239	3.02E+00	Curies/m3
	0.1	0.0	22.7	End of 1993:	5.4	5.4 m3	Pu240	5.81E+00	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr			4
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr			
Rubber	7.3	0.0	16.4	1996;	0.0	0.0 m3/yr			
Plastics	64.9	0.0	149.0	1997;	0.0	· · · · · · · · · · · · · · · · · · ·			
Solidified, Inorganic matrix	0.0	0.0	0.0	1898-2002:		0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0			0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steet	131.0		L0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								
•									

SITE NAME IN				WAST	E TYPE TRU HA	ANDLING RH	GENER	ATOR SITE	
WASTE STREAM	WIPP ID	IN-W359 IN-W359		STREAM NAME					
MATRIX CODE SITE FINAL FORM ID		ID-EGG-1- 8200	44TN-015	DESCRIPTION	Radioactive Sources (TRU): Neutro	n Sources		
Waste Matrix Code Site Matrix Desc	cription								
NO MIGRATION VAL			SSIGNMENT			TRUCON CO	DDE		
Defense TRU W Non-Defense TF Commercial TRI Unknown	RU Waste	X —	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	v X	Rsearch and Devel, Wa Operations Waste Residues Decon and Decommiss Environmental Restorat From Treatment of Was Maintenance	ioning X	TSCA Asbes PCBs Other N/A Unkno		×

ENAME IN			WASTE TYPE TRU HANDLING RH GENERATOR SITE
IN-W359 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Container Mati: steel Liner Type: Number Stored: 3 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Projected Final Form Pu238 1.40E+02 Curies/m3 0.0 End of 1992: 0.6 0.6 m3 0.0 1994: 0.0 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr 0.0 2003-2022: 0.0 0.0 m3/yr TYPICAL EPA CODES APPLICABLE
Waste material weights are unkno	wn for this w	aste stream.	

95948

IN-W359 - 2

IN - 268

SITE NAME IN				WAS	TE TYPE TRU	HANDLING RH	GENERATOR S	ITE BT	
WASTE STREAM MATRIX CODE			44TN-012		Unknown Solids	es (TRU); Miscelli	aneous Sources		
SITE FINAL FORM IL Waste Matrix Code Site Matrix Des	e Group Ü	nknown							
NO MIGRATION VA		ETITION A	SSIGNMENT			TRUCON CO	ine.		
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	M DESCRII Vaste RU Waste	_	Mixed TRU Non-Mixed TRU Suspect Mixed TRI	v 📙	Rsearch and Devel Operations Waste Residues	. Waste X	TSCA Asbestos PCBs Other	F	
CHRIDWI	·		Unknown	• 	Decon and Decomme Environmental Rest From Treatment of the Maintenance	oration	N/A Unknown	X	

ENAME IN			WAS	WASTE TYPE TRU HANDLING RH GENERATOR SITE BT							
IN-W360 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int. \	L		Liner Type: ner Material:			Number Stored Number Projected	0	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATIO	<u>N</u>	Nuclide	ISOTOPIC COMPO	SITION	
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form					
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0.2	m3				
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2	m3				
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0	m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0	m3/yr		•		
Rubber	0.0	0.0	0.0	1996:	0.0		m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.0		m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0		m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0		m3/yr				
Soils	0.0	0.0	0.0				_				
Packaging Materials, Steel	0.0			TYPICA	L EPA CODE	S APPLICAB	<u>LE</u>				
Packaging Material, Plastic	0.0										
Comments											
Waste material weights and isoto stream.	pic compositi	on are unknown	for this waste								

SITE NAME IN				WAST	E TYPE TRU HAN	DLING CH	GENERATOR SIT	TE RF	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	Group [nor	I-W366 D-EGG-137T	N-370	-	Solid Process Residues Nonmetal Molds and Crud	cibles (TRU): Leco	Crucibles		
NO MIGRATION VAR	RIANCE PET		GNMENT ID 118; 2	22A	<u></u>	RUCON CODE ID	118; 222A		
Defense TRU W. Non-Defense TR Commercial TRU Unknown	asle IU Waste	X Mi	xed TRU on-Mixed TRU ispect Mixed TRU iknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ing X	A Asbestos PCBs Other N/A Unknown	X	

ENAME (N			WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
IN-W366 CONTAINER: Type/Size:			Container Matt: steel Liner Type: Number Stored: 1 Int. Vol/Ctnr: 1.9m3 Liner Material: Number Projected: 0
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys	Average 0.0	Lower Limit	FORM (kg/m3) Upper Limit O.0 STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Projected Final Form TYPICAL ISOTOPIC COMPOSITION Nuclide Activity Am241 6.69E-02 Curies/m3
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidifled, Inorganic matrix	0.0 0.0 128.3 0.0 0.0 0.0	0.0 0.0 21.1 0.0 0.0 0.0	0.0 End of 1992: 0.7 1.6 m3 Pu52 2.33E+01 Curies/m3 0.0 End of 1993: 0.7 1.6 m3 503.2 1994: 0.0 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr 0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/yr 0.0 1998-2002: 0.0 0.0 m3/yr
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 210.0 16.0	0.0 0.0	0.0 2003-2022: 0.0 0.0 m3/yr 0.0 TYPICAL EPA CODES APPLICABLE
Comments 1 in number stored is the number drums/SWB.		result from ove	rpacking 4

SITE NAME IN			WAS	TE TYPE TRU	HAND	LING CH GEN	NERATOR S	ITE RF	
TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) <u>STOREC</u>	D8m3 L	Liner Type: iner Material: E ESTIMATED		Number Pro	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Atloys	0.0	0.0	0.0		Projected	Final Fa	Am241	1.53E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		Final Form	Pu52	5.32E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.8	1.8 m3		•	
Other Inorganic Materials	293.0	48.1	1149.0	1994;	0.0	1.8 m3			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr			
Solidified, inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0	,		0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0					· 			

SITE NAME IN			WAS	TE TYPE TRU HA	ANDLING CH	GENERATOR SIT	re RF
WASTE STREAM	MWIR ID IN-W369 WIPP ID IN-W369 Local ID ID-EGG-			Graphite Debris Nonmetal Molds and C	Crucibles (TRU):	Scarfed Graphite Chunk	ks
MATRIX CODE SITE FINAL FORM II							
Waste Matrix Cod	e Group Graphite			7			
Site Matrix Des							
NO MIGRATION VA	RIANCE PETITION	ASSIGNMENT ID 115			TRUCON COD	FID 115	
FINAL WASTE FOR		Mixed TRU		Rsearch and Devel, W		TSCA Asbestos	
Non-Defense T Commercial TR Unknown		Non-Mixed TRU Suspect Mixed TRU Unknown	×	Operations Waste Residues Decon and Decommiss Environmental Restoral From Treatment of Was Maintenance	sioning X	PCBs Other N/A Unknown	X

IN-W369 CONTAINER: Type/Size:		ick	Container Int. Vol.	Mati: steel Ctnr: 1	.9lm3 LI	Liner Type: iner Material:		Number S Number Proj	
TYPICAL WASTE DENSITIE Material Parameters	S FOR F	INAL WASTE	FORM (kg/m3) Upper Limit	STORED RATES (TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	\
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials	0.0 0.0 0.0 153.7	0.0 0.0 0.0		nd of 1992: nd of 1993:	9.5 3.5 3.5	Final Form 7.9 m3 7.9 m3	Am241 Pu52	6.64E-02 2.20E+01	Curies/m3 Curies/m3
Cellulosics Rubber Plastics	0.0	0.0	0.0	1994: 1995: 1996:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr			·
Solidifled, Inorganic matrix Solidifled, Organic matrix Soils	0.0	0.0 0.0 0.0	0.0	1997: [1998-2002: [2003-2022:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr			
Packaging Materials, Steel Packaging Material, Plastic	210.0 16.0	<u>~</u>		TYPICA	L EPA CODE	S APPLICABLE			

HENAME IN			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE RF		
IN-W369 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAI WASTE	Int.	iner Mati: steel Vol/Ctnr: 0.2	08 m3 L	Liner Type: iner Material: E-ESTIMATED		Number \$	jected: 0	
Material Parameters				RATES	OF WASTE	GENERATION			OMPOSITION	
	Average	Lower Limit	<u>Upper Limit</u>				<u>Nuclide</u>	<u>Activity</u>		
iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	1.52E-01	Curles/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	8.9	8.9 m3	Pu52	5.02E+01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:		8.9 m3				
Other Inorganic Materials	351.0	38.5	418.0	1994:	0.0					
Cellulosics	0.0	0.0	0.0	1995:		0.0 m3/yr				
Rubber	0.0	0.0	——		0.0	0.0 m3/yr				
Plastics	0.0		0.0	1996;	0.0	0.0 m3/yr				
	/	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Solfs	0.0	0.0	0.0							
Packaging Materials, Steel	131.0		L.	TYPICA	L EPA CODE	S APPLICABLE				
Development and a second of the second										

E IN

SITE NAME IN				WAS	TE TYPE TRU	HANDLIN	G СН	GENERATOR S	ITE RF	
WASTE STREAM	WIPP ID	IN-W370 IN-W370		STREAM NAM	Graphite Debris			·		
MATRIX CODE SITE FINAL FORM I		ID-EGG-1: 5340	37TN-115	DESCRIPTION	Nonmetal Molds a	and Crucibles	(TRU): Graph	ite Waste		
Waste Matrix Cod Site Matrix Des	-	raphite					·			
NO MIGRATION VA	RIANCE PE	ETITION A	SSIGNMENT ID 115			TRUCC	N CODE ID 1	15		
PER	Wasle RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decon and Decome Environmental Resi From Treatment of Maintenance	missioning) toration	TSCA	Asbestos PCBs Other N/A Unknown	X	

E NAME IN			WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
IN-W370 CONTAINER: Type/Size:			Container Mati: steel Liner Type: Number Stored: 2 Int. Vol/Ctnr: 1.9 m3 Liner Material: Number Projected:
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
fron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form Pu52 2.69E+01 Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992: 18.7 42.7 m3 U235 5.18E-07 Curies/m3
Other Metals	0.0	0.0	0.0 End of 1993: 18.7 42.7 m3
Other Inorganic Materials	153.7	16.9	183.0 1994: 0.0 0.0 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 0.0 0.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr
Plastics	0.0	0.0	0.0 1997: 0.0 0.0 m3/ry
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.0 0.0 m3/yr
Solldified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Soils	0.0	0.0	0.0
Packaging Materials, Steel	210.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	16.0		
Comments	 _		
23 in number stored is the number drums/SWB.	r of SWBs tha	at result from ove	verpacking 4

IN-W370 - 2

IN - 278

TE NAME IN			WA	STE TYPE TRU	HAND	LING CH GEN	ERATOR S	SITE RF	
IN-W370 CONTAINER Type/Size TYPICAL WASTE DENSIT	55-gallon	INAL WASTE	Int			Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number 8	jected: 0
<u>Material Parameters</u>	Average	Lower Limit	Upper Limi	RATES (OF WASTE	GENERATION	Nuclide	Activity	OMPOSITION
fron-based Metals/Alloys	0.0	0.0	0.0	_	Projected	Final Form	Pu52	6.15E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	48.1	48.1 m3	U235	1.18E-06	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	48.1	48.1 m3			
Other Inorganic Materials	351.0	38.5	418.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solldifled, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0,0	0.0 m3/yr			
Solis	0.0	0.0	0.0	- [· ·			
Packaging Materials, Steel	131.0			TYPICAL	<u> EPA CODE</u>	S APPLICABLE			
Packaging Material, Plastic	37.0								

SITE NAME IN				WAST	TE TYPE TRU	HANDLING [GENERATOR SI	TE RF	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	OC Group Ur	IN-W371 ID-EGG-1: 5100	32TN-416	STREAM NAME DESCRIPTION	Metal Debris Metals (TRU): Zinc	Magnesium All	loy Metal			
	RIANCE PE		SSIGNMENT (ID 217A			TRUCON	CODE ID 2	117A		
Defense TRU W Non-Defense TR Commercial TRU Unknown	U Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of \ Maintenance	nissioning X oration	TSCA	Asbestos PCBs Other N/A Unknown	×	

SITE NAME IN			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE RF	
IN-W371 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	Int.	n3) STORED	08m3 L	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number 9 Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	ON COLUMN
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	5.03E+02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0.2 m3	Pu52	3.43E+02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.2				
Other Inorganic Materials	615.0	0.0	0.0	1994:	0.0	0.2 m3			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		,	
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:		0.0 m3/yr			
Solis	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0	<u>v.v</u>	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Deckseine Meterial Distric	77.0								

60500

IN-W371 - 2

SITE NAME IN			WAS	STE TYPE TRU	HANDLING RH	GENERATO	DR SITE BT
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	820 E	N372 EGG-132TN-081		E Unknown solids N Metals (TRU): Met	Samples Fissile		
Site Matrix Desc		TON ASSIGNMENT			TRUCON CO	DDE .	
FINAL WASTE FORM Defense TRU WASTE FORM Non-Defense TRU Commercial TRU Unknown	aste IU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed Unknown		Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of Mainlenance	missioning X loration	TSCA Asbestos PCBs Other N/A Unknown	

060501

IN-W372 - 1

IN - 282

TE NAME IN			WAS	TE TYPE TRU	HAND	LING RH GE	NERATOR S	ITE BT
IN-W372 CONTAINER Type/Size: TYPICAL WASTE DENSITE	55-gallon	INAL WASTE	Int.	iner Mati: steel Vol/Ctnr: 0.2	08 m3 Li	Liner Type: Iner Material: ESTIMATED		Number Stored: 17 Number Projected: 0
Material Parameters	A <u>v</u> erage	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	ISOTOPIC COMPOSITION Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		O144	= 1 . =	· ·	Activity
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	Projected	Final Form		
Other Metals	0.0	0.0	0.0	End of 1993:	·	3.5 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:		3.5 m3	•	
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996;	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/yr		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0,0 m3/yr		
Soils	0.0	0.0	0.0	2003-2022.	0.0	0.0 m3/yr		
Packaging Materials, Steel	0.0	لتتــــا	4.0	TYPICA	L EPA CODE	S APPLICABLE		
Packaging Material, Plastic	0.0					——————————————————————————————————————		
Comments								

Waste material weights and isolopic activity are unknown for this waste stream.

00000

IN-W372 - 2

IN - 283

SITE NAME IN			WASI	TE TYPE TRU	HANDLING CH	GENERATOR SIT	TE RF
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code Site Matrix Desc	521 C Group Inorga	- W374 EGG-155TN-960		Concrete Debris Concrete-Brick (TF	RU): Concrete, Asph	alt, etc.	
NO MIGRATION VAI					TRUCON COD	E	
Defense TRU W Non-Defense TR Commercial TRU Unknown	RU Waste	X Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Devel. Operations Waste Residues Decomm Environmental Resto From Treatment of W	X hissioning X pration	TSCA Asbestos PCBs Other N/A Unknown	X

IN-W374 - 1

IN - 284

SHENAME IN			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF							
IN-W374 CONTAINER Type/Size TYPICAL WASTE DENSITI	INAL WASTE	Int.	<u> </u>	.9m3 L	Liner Type: iner Material: E-ESTIMATED	TVDICAL	Number S Number Pro	jected: 0			
Material Parameters	A8 A					GENERATION	TYPICAL ISOTOPIC COMPOSITION				
	Average	Lower Limit	<u>Upper Limit</u>	· · ·	OF WASTE		Nuclide	Activity			
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu52	6.19E+00	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		6.2 m3					
Other Metals	0.0	0.0	0.0	End of 1993:		6.2 m3					
Other Inorganic Materials	136,5	3.8	379.1	1994;							
Cellulosics	5.3	5.3	5.3	1995;	0.0	0.0 m3/yr					
Rubber	0.0	0.0	0.0			0.0 m3/yr					
Plastics	5.3	5.3		1996:		0.0 m3/yr					
Solidified, Inorganic matrix	0.0	1	5.3	1997;		0.0 m3/ry					
		0.0	0.0	1998-2002:	0.0	0.0 m3/yr					
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Solls	28.4	4.2	379.1	Tomic 4							
Packaging Materials, Steel	210.0			IYPICA	L EPA CODE	S APPLICABLE					
Packaging Material, Plastic	16.0										

NAME IN			WASTE TYPE TRU HANDLING CH GENERATOR SITE RF						
IN-W374 CONTAINER: Type/Size:	55-gallon		Int.	ner Mati: steel Vol/Ctnr: 0.2		Liner Type: ner Material:		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F Average	INAL WASTE Lower Limit	FORM (kg/m Upper Limit	3) STOREL RATES	TRU WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu52	1.41E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	7.0	7.0 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	7.0	7.0 m3			
Other Inorganic Materials	311.6	8.7	865.8	1994;	0.0	0.0 m3/vr			
Cellulosics	12.0	12.0	12.0	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0				
Plastics	12.0	12.0	12.0	1997:	0.0	0.0 m3/yr			
Solidified, inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	64.9	9.6	865.8	2000-2022.	0.0	0.0 m3/yr			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								
Comments									

Knolls Atomic Power Laboratory - Schnecetedy

KNOLLS ATOMIC POWER LABORATORY (KA) - SCHENECTADY, NY WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the KA waste stream profiles:

 The container numbers in waste stream KA-W016 were changed to match the volumes provided on the form.

SITE NAME KA	WASTE TYPE TRU HANDLING CH GENERATOR SITE KA	-7
WASTE STREAM MWIR ID WIPP ID KA-T001 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Transuranic Debris DESCRIPTION Non-mixed TRU derived from IDB	
Site Matrix Description NO MIGRATION VARIANCE PETITION ASSIGNMENT	IRUCON CODE	
Per	Rsearch and Devel. Waste X TSCA Asbestos X Operations Waste X PCRs	

SITE NAME KA			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE KA								
KA-T001 CONTAINER Type/Size TYPICAL WASTE DENSIT	Int.	iner Mati: steel Vol/Ctnr: 0.2		Number Stored: 12 Number Projected: 0 TYPICAL ISOTOPIC COMPOSITION								
Material Parameters				RATES	OF WASTE	GENERATION	Nuclide	·	OMPOSITION			
	Average	Lower Limit	Upper Limit					Activity				
Iron-based Metals/Alloys	98.2	0.0	1634.6		<u>Projected</u>	Final Form	Pu238	3.10E-01	Curies/m3			
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:	2.4	2.4 m3	Pu239	1.40E-04	Curies/m3			
Other Metals	0.1	0.0	22.7	End of 1993;	2.4	2.4 m3	Pu240	1.60E-04	Curies/m3			
Other Inorganic Materials	2.4	0.0	24.0	1994:			Pu241	8.10E-02	Curies/m3			
Cellulosics	80.0	0.0	184.6	1995:		0.0 m3/yr	Pu242	2.40E-06	Curies/m3			
Rubber	7.3	0.0	16.4	1996:	<u> </u>	0.0 m3/yr	Am241	2.40E-03	Curies/m3			
Plastics	64.9	0.0	149.0	1997:		0.0 m3/ry	Co60	5.00E-02	Curies/m3			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Sr90	9.60E-01	Curies/m3			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;		0.0 m3/yr	Y90	9.60E-01	Curies/m3			
Soils	0.0	0.0	0.0			0.01113/91	Cs137	9.60E-01	Curles/m3			
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	ES APPLICABLE	Ba137m	9.20E+01	Curies/m3			
Packaging Material, Plastic	37.0						MFP	4.60E-01	Curies/m3			

SITE NAME KA			WAST	TE TYPE MTRU HANI	DLING RH	GENERATOR SI	ITE KA	
WASTE STREAM	MWIR ID KA-W016	1	STREAM NAME	Transuranic Debris		-		
MATRIX CODE SITE FINAL FORM ID	L	ted	DESCRIPTION					
		anic mixed waste has heterogeneous waste	Streeting and Dacks	aled. Waste will be segreg ged separately. Homogen is waste stream will not be	any of the week	backages is sure-	ring ALARA) into inorg ly unknown. Details o	anic, f waste
NO MIGRATION VAL	RIANCE PETITION A	SSIGNMENT		<u></u>	RUCON CODE			
FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	taste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioni Environmental Restoration From Treatment of Waste Maintenance	ing X	CA Asbestos PCBs Other N/A Unknown	X	

SITE NAME KA		WASTE	TYPEMTRU HANDI	<u></u>	NERATOR S	ITE KA	-
KA-W016 CONTAINER: Type/Size: TYPICAL WASTE DENSITII Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	S FOR FINAL WASTE	Contained Int. Vol. FORM (kg/m3) Upper Limit 1634.6 1.6 22.7 24.0 184.5 16.4 149.0 0.0	r Mati: Steel/lead I/Ctnr: 0.89 m3 L STORED TRU WASTE RATES OF WASTE Projected and of 1992: 11.23 and of 1993: 11.27 1994: 0.87 1996: 0.87 1997: 0.87 1998-2002: 0.87 2003-2022: 0.87 TYPICAL EPA CODE	Liner Type: iner Material: E_ESTIMATED GENERATION Final Form 11.23 m3 11.27 m3 0.87 m3/yr	TYPICAL Nuclide Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Co60 Sr90 Y90 Cs137 Ma137m	Number S Number Pro	
Packaging Material, Plastic Footnotes The yearly generation rates were a waste reported in the WTWBIR wa	0.0 adjusted to match the 25.2 m3 iste stream profiles and the P	3 of projected hase II MWIR.	D004A D005A D006A D007A D008A D009A D009B D009C D010A D011A D018 D035 D039 D040 F001	•	MFP	4.60E-01	Curies/m3
,			KA - 4				מכור

WASTE TYPE MTRU

HANDLING RH

GENERATOR SITE KA

F003

F005A

000513

KA-W016 - 3

KA - 5

Los Alamos National Laboratory

LOS ALAMOS NATIONAL LABORATORY (LA) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the LA waste stream profiles:

- Final Waste Form Groups were not assigned by LA but by the WTWBIR team in order to permit roll-ups of the data. However, the Final Waste Form Groups are based on the descriptions and parameters provided by LA.
- For the years 1994 to 2022, LA reported cumulative volumes instead of volumes generated per year. The WTWBIR team has modified the site reported data so that volumes can be consistently rolled-up across all the sites.
- Packaging material parameters were incorrectly reported by LA. These were discussed with LA and corrected by the WTWBIR team.

SITE NAME LA	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA
WASTE STREAM MWIR ID WIPP ID LA-T001 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description Mixed metal scrap and in	DESCRIPTION Cidental combustibles.
NO MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	Rsearch and Devel. Waste X TSCA Asbestos TRU X Operations Waste PCRs

LA-T001 - 1

LA - 1

SITE NAME LA			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA								
LA-T001 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	3) STORED	 TRU WASTI	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number 9 Number Pro				
Material Parameters	Average	Lower Limit	Upper Limit	RATES (F WASTE	GENERATION	Nuclide	Activity	Cim Carriola			
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Cinal Care	Cm244	2.33E-04	Curies/m3			
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	72.7	Final Form 72.7 m3	Pu238	9.51E+02	Curies/m3			
Other Metals	302.9	76.9	913.5	End of 1993:	74.6	74.6 m3	Pu239	2.10E+04	Curies/m3			
Other Inorganic Materials	6.8	6.8	6.8	1994:	20.5		Pu52	5.26E+00	Curies/m3			
Cellulosics	64.0	59.2	68.7	1995:	20.0	20.5 m3/yr	Pu53	1.69E+00	Curies/m3			
Rubber	1.1	1.0	1.2	1996:	20.0	20.0 m3/yr	Pu54	8.56E-01	Curies/m3			
Plastics	5.3	4.9	5.7	1997:	20.0	20.0 m3/yr	Pu56	1.82E-01	Curies/m3			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	20.0	20.0 m3/ry	Pu83	9.17E+01	Curies/m3			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	20.0	20.0 m3/yr						
Soils	0.0	0.0	0.0	Ĺ		20.0 m3/yr						
Packaging Materials, Steel	131.0			TYPICAL	EPA CODE	S APPLICABLE						
Packaging Material Disetts												

SITE NAME LA	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA	
WASTE STREAM MWIR ID WIPP ID LA-T004 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description Combustible waste - paper, rags,	STREAM NAME DESCRIPTION	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 116		
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Research and Devel, Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	

LA-T004 CONTAINER	Drum		Conta	iner Mati: Steel		I See To		·	
Type/Size	55-gallon	· · · · · · · · · · · · · · · · · · ·				Liner Type: iner Material:		Number	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		<u> </u>		<u> </u>		Number Pro	ــــا
Material Parameters				RATES	OF WASTE	E ESTIMATED GENERATION		_ISOTOPIC (COMPOSIT
Iron-based Metals/Alloys	Average 257.7	Lower Limit	Upper Limit				Nuclide	Activity	
Aluminum-Based Metals/Alloys	0.4	254.0	265.2		<u>Projected</u>	Final Form	Am241	1.27E+01	Curies/m
Other Metals	18.8	0.4	0.4	End of 1992:	1499.7	1499.7 m3	Am44	1.66E+01	Curies/m
Other Inorganic Materials	6.8	18.8	89.7	End of 1993;	1515,9	1515.9 m3	Am45	4.95E-03	Curies/m
Cellulosics	64.0	6.8 59.2	6.8	1994:	60.0	60.0 m3/yr	Cm243	1.49E+00	Curies/m
Rubber	1.1	1.0	68.7	1995:	60.0	60.0 m3/yr	Cm244 MFP	6.05E+01	Curies/m
Plastics	5.3	4.9	1.2	1996:	60.0	60.0 m3/yr	Np237	4.78 E +02	Curies/m
Solidified, Inorganic matrix	0.0	0.0	5.7	1997:	60.0	60.0 m3/ry	Np82	1.53E-03	Curies/m:
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	60.0	60.0 m3/yr	Pu238	1.62E-03	Curies/m
Solls	0.0	0.0	0.0	2003-2022:	60.0	60.0 m3/yr	Pu239	3.84E+04 3.39E+01	Curies/m
ackaging Materials, Steel	131.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	Pu240	4.00E-04	Curies/m3
ackaging Material, Plastic	0.0						Pu42	3.59E+02	Curies/m: Curies/m:
· '							Pu51	1.93E+01	Curies/m3
							Pu52	3.47E+03	Curies/m3
							Pu53	1.19E+02	Curies/m3
							Pu54	1.14E+03	Curies/m3
•							Pu 5 5	1.77E+01	Curies/m3
							Pu56	1.44E+02	Curies/m3
							Pu57	6.03E+01	Curies/m3
							Pu83	2.06E+04	Curies/m3
							U12	4.82E-03	Curies/m3
							U23	4.11E-05	Curies/m3
							U233	3.23E-02	Curies/m3
							U235	2.65E-03	Curies/m3
							U238	8.39E-06	Curies/m3
							U24	5.48E-06	Curies/m3
							U25	9.33E-06	Curies/m3
							U31	1.26E-04	Curies/m3
							U32	5.59E-06	Curies/m3
							U33	4.19E-06	Curies/m3
							U34	1.64E-06	

CITE MALLE 1 A		==::-= ::: -:: -:: -:: -:: -:: -:: -:: -	IT REPORT			
SITE NAME LA	WASTE TYPE TRU	HANDLING CH	GENERATOR S			
	<u> </u>					
			U35	1.62E-05	Curies/m3	
			U36	1.61E-04	Curies/m3	
			U37	5.21E-05	Curies/m3	
			U38	6.19E-03	Curies/m3	
			U39	4.83E-03	Curies/m3	

000520

LA-T004 - 3

LA-5

SITE NAME LA	THE WALL WALL AND A STATE OF THE STATE OF TH
	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA
WASTE STREAM MWIR ID WIPP ID LA-T005 Local ID MATRIX CODE	DESCRIPTION DESCRIPTION
SITE FINAL FORM IDC	
Waste Matrix Code Group Uncategorized Metal	
Site Matrix Description Non-combustible scrap - small to	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 117	A; 118A TRUCON CODE LA 117A; 118A
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

12000

LA-T005 - 1

LA - 6

LA-T005 CONTAINER Type/Size	55-gallon		Int.			Liner Type: iner Material:		Number Number Pre	
TYPICAL WASTE DENSITY Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic		Lower Limit 254.0 0.0 76.9 6.8 0.0		End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 1433.5 1449.1 40.0 40.0 40.0 40.0 40.0 40.0	E - ESTIMATED GENERATION	TYPICAI Nuclide Ac227 Am241 Am44 Am45 Bk249 Cd109 Cf249 Cm242 Cm244 Co60 MFP Np237 Np82 Pa231 Po210 Pu238 Pu239 Pu242 Pu41 Pu42 Pu51 Pu52 Pu53 Pu55 Pu56 Pu57		ojected: 54

SITE NAME LA		THE WALK TON THE PORT						
	WASTE TYPE TRU	HANDLING CH	GENERATOR	SITE LA				
			U23	7.14E-06	Curies/m3			
			U233	4.08E+01	Curies/m3			
			U235	1.98E-03	Curies/m3			
			U29	3.98E-07	Curies/m3			
			U3f	3.91E-05	Curies/m3			
			U32	2.26E-04	Curies/m3			
			U33	2.99E-06	Curles/m3			
			U34	7.62E-05	Curies/m3			
			U35	6.24E-05	Curies/m3			
			U36	3,72E-04	Curies/m3			
			U37	8.00E-05	Curies/m3			
			U38	1.42E-03	Curies/m3			
			U39	3.34E-03	Curies/m3			
·			U 70	9.47E-03	Curies/m3			
			U81	1.16E-02	Curies/m3			

SITE NAME LA	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA	
WASTE STREAM MWIR ID WIPP ID LA-T006 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Sile Matrix Description Cemented process residues.	DESCRIPTION	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 11 FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TR Unknown Unknown	Rsearch and Devel. Waste X TSCA Asbestos X Operations Waste PCBs	

00052

SITE NAME LA			WAS	TE TYPE TRU	HAND	LING CH GE	VERATOR :	SITE LA	
LA-T006 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	FINAL WASTE	Int. \	ner Mati: /ol/Ctnr:		Liner Type: 1/8" Ric liner Material: HDPE E_ESTIMATED		Number Pro	pjected: 138
Material Parameters	_			RATES	OF WASTE	GENERATION			OMPOSITION
Iron-based Metals/Alloys	Average	Lower Limit	<u>Upper Limit</u>				Nuclide	<u>Activity</u>	
	0.0	0.0	0.0		<u>Projected</u>	Final Form	Np237	7.05E-06	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	4.5	4.5 m3	Pu239	1.38E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		4.5 m3	Pu42	5.43E-01	Curies/m3
Other Inorganic Materials	43.3	38.5	48.1	1994:	1.5	├ ── ─	Pu51	1.04E-02	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:		1.5 m3/yr	Pu52	5.78E+00	Curies/m3
Rubber	0.0	0.0	0.0		1.0	1.0 m3/yr	Pu54	2.41E-03	
Plastics	0.0	0.0		1996:	1.0	1.0 m3/yr	Pu56		Curies/m3
Solidified, Inorganic matrix	961.5		0.0	1997:	1.0	1.0 m3/ry		2.54E+00	Curies/m3
Solidified, Organic matrix	 -	721.0	1057.7	1998-2002:	1.0	1.0 m3/yr	Pu83	6.07E+02	Curies/m3
Soils	0.0	0.0	0.0	2003-2022:	1.0	1.0 m3/yr	U233	9.47E-04	Curies/m3
	0.0	0.0	0.0	TO COLO AL			U238	6.66E-05	Curies/m3
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE	U38	7.49E-05	Curies/m3
Packaging Material Plactic	27.0								

SITE NAME LA	WASTE TYPE	TRU HANDLING CH	GENERATOR SITE LA
WASTE STREAM MWIR ID	STREAM NAME		
WIPP 1D LA-T007	-1442 114 114 114		
Local ID	DESCRIPTION		
MATRIX CODE			
SITE FINAL FORM IDC			
Waste Matrix Code Group Uncategorized Metal			
Site Matrix Description Non-combustible hot-cell waste.			
NO MIGRATION VARIANCE PETITION ASSIGNMENT		TRUCON CODE	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Non-Mixed TRU Suspect Mixed TRU Unknown	X Operations Residues Decon and Environme	Decommissioning ental Restoration transit of Waste	A Asbestos PCBs Other N/A Unknown

)00526

LA-T007 - 1

LA - 11

SITE NAME LA			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE LA	
LA-T007 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gailon	INAL WASTE	Int.	3) STORED	08 m3 L	Liner Type: Iner Material: E_ESTIMATED		Number ! Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit	MIES	OF WASIE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	MFP	2.08E+03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:			Pu238	1.74E+00	Curies/m3
Other Metals	302.9	76.9	913.5	End of 1993:	6.9	6.9 m3	Pu239	4.63E+01	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	2.1	6.9 m3	Pu52	5.28E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:		2.1 m3/yr	Pu83	2.25E+01	Curies/m3
Rubber	0.0	0.0	0.0	1996:	2.0	2.0 m3/yr	U235	3.21E-03	Curies/m3
Plastics	0.0	0.0	0.0	·	2.0	2.0 m3/yr	U38	5.63E-04	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1997:	2.0	2.0 m3/ry		0.032 04	Cories/filo
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	2.0	2.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	2.0	2.0 m3/yr			
Packaging Materials, Steel	131.0		<u> </u>	TYPICA	LEPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0			-					

SITE NAME LA	WASTE TYPE TRU	HANDLING CH	GENERATOR SITE	LA T
WASTE STREAM MWIR ID WIPP ID LA-T008	STREAM NAME			
Local ID MATRIX CODE SITE FINAL FORM IDC	DESCRIPTION			
Waste Matrix Code Group Soils Site Matrix Description Contaminated soil.				
NO MIGRATION VARIANCE PETITION ASSIGNMENT		TRUCON CODE		
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rearch and De Operations Was Residues Decon and Deco Environmental From Treatment Maintenance	ofnmissioning Restoration	A Asbestos PCBs Other N/A Unknown	×

000528

NAME LA			WAST	E TYPE TRU] HAND	LING CH GEI	NERATOR S	ITE LA	
LA-T008 CONTAINER Type/Size TYPICAL WASTE DENSITE	55-gallon	INAL WASTE	Int. V	S) STORED	 TRU WAST	Liner Type: Iner Material: E-ESTIMATED		Number Number Pro	ected: 690
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0		Drain-in-i	-	Am241	6.00E-03	Curinalna
Aluminum-Based Metals/Alloys	0.0	0.0		! End of 1992	Projected 100 d	Final Form	Pu238	6.81E-03	Curies/m3
Other Metals	0.0	0.0		End of 1993:	109.4	109.4 m3	Pu239	2.74E+01	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	L .	109.4	109.4 m3	Pu83	2.14E+01	Curies/m3
Cellulosics	0.0	0.0	0.0	1994:	4.6	4.6 m3/yr	1 400	2.13E+U2	Curies/m3
Rubber	0.0	0.0	0.0	1995:	5.0	5.0 m3/yr			
Plastics	0.0	0.0		1996:	5.0	5.0 m3/yr			-
Solidified, Inorganic matrix	0.0	0.0	0.0	1997:	5.0	5.0 m3/ry			
Solidified, Organic matrix	0.0	ļ	0.0	1998-2002;	5.0	5.0 m3/yr			
Soils	1200.0	0.0	0.0	2003-2022:	5.0	5.0 m3/yr			
Packaging Materials, Steel	131.0	1000.0	1600.0	TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0			-11 (0/16	E, A OODE	MITLICABLE			

SITE NAME LA	WASTE TYPE TRU HANDLING CH GENERATOR SITE LA]
WASTE STREAM MWIR ID WIPP ID LA-T009 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal	STREAM NAME DESCRIPTION	_
Site Matrix Description Metal from gloveboxes & equipme NO MIGRATION VARIANCE PETITION ASSIGNMENT		
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	

000530

LA-T009 - 1

LA - 15

						LING CH GEN		<u> </u>	 -
LA-T009 CONTAINER Type/Size TYPICAL WASTE DENSITE	55 gallon dr		Int.	iner Mati: Steel Vol/Ctnr: 0.2	08 m3 L	Liner Type: iner Material:		Number ! Number Pro	, -·
	LS FUR F	INAL WASTE	FORM (kg/m		TRU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	MILS	OF WASIE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	1.03E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	22.6		Pu52	2.04E+01	Curies/m3
Other Metals	302.9	76.9	913.5	End of 1993:		22.6 m3	Pu54	3.11E+02	Curies/m3
Other Inorganic Materials	6.8	6.8	6.8	- 1	42.4	42.4 m3	Pu83	2.44E+01	
Cellulosics	64.0	59.2	68.7	1994:	1.6	1.6 m3/yr	7 444	2.446401	Curies/m3
Rubber	1.1	1.0	}	1995:	2.0	2.0 m3/yr			
Plastics	5.3	l	1.2	1996:	2.0	2.0 m3/yr			
Solidified, Inorganic matrix		4.9	5.7	1997:	2.0	2.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	2.0	2.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	2.0	2.0 m3/yr			
	0.0	0.0	0.0	757710.4					
Packaging Materials, Steel	131.0			IYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								
Comments	_								

CITE MANE I A			II KEPOKI	
SITE NAME LA	WASTE TYPE TRU	HANDLING RH	GENERATOR SITE LA	
WASTE STREAM MWIR ID	STREAM NAME			
WIPP ID LA-T010	OTTE SHOW MAINE			
Local ID	DESCRIPTION			
MATRIX CODE	DESCRIPTION		-	
SITE FINAL FORM IDC				
Waste Matrix Code Group Combustible				
Site Matrix Description Combustible waste - papers, ra	as plantia			
,	go, pidatio, idober, etc.		···-	
(
NO MIGRATION VARIANCE PETITION ASSIGNMENT		7		***
		TRUCON CODE		
FINAL WASTE FORM DESCRIPTORS:				
Defense TRU Waste X Mixed TRU				
Non-Defense TRU Waste Non-Mixed TRU	Rsearch and Dev	L1	A Asbestos	
Commercial TRU Waste Suspect Mixed TR	Operations Waste	•	PC8s	
Unknown Unknown			Other	
Ottkilowit	Decon and Decor		N/A X	
	Environmental Re	1 1	Unknown	
	From Treatment of	of Waste		•
	Maintenance			

100337

LA-T010 - 1

LA - 17

ITE NAME LA			WAS	TE TYPE TRU	HAND		NERATOR S	ITE LA	·
LA-T010 CONTAINER: Type/Size:			Int.			Liner Type:		Number :	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	13) STORED	TRU WAST	E_ESTIMATED	TYPICAL		OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMFO3111014
Iron-based Metals/Alloys	257.7	254.0	265.2		Projected	Einal Earm	MFP	1.46E+03	Curies/m3
Aluminum-Based Metals/Alloys	0.4	0.4	0.4	End of 1992:		Final Form 14.8 m3	Pu239	4.15E+01	Curies/m3
Other Metals	18.8	18.8	89.7	End of 1993:	14.8	14.8 m3	Pu53	1.49E+00	Curies/m3
Other Inorganic Materials	6.8	6.8	6.8	1994:	0.2	 	Pu55	2.30E+00	Curies/m3
Cellulosics	64.0	59.2	68.7	1995;	0.2	0.2 m3/yr	Pu56	1.09E+00	Curies/m3
Rubber	1.1	1.0	1.2	1996:	0.2	0.2 m3/yr 0.2 m3/yr	P⊔57	1.32E+00	Curies/m3
Plastics	5.3	4.9	5.7	1997:	0.2	0.2 m3/ry	U21	1.67E-05	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.1		U235	4.75E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.1	0.1 m3/yr	U238	2.00E-05	Curies/m3
Soils	0.0	0.0	0.0	1		0.1 m3/yr	U25	2.61E-06	Curies/m3
Packaging Materials, Steel	435.0		<u> </u>	TYPICA	L EPA CODE	S APPLICABLE	U36	2.19E-05	Curies/m3
Packaging Material, Plastic	0.0								

SITE NAME LA	WASTE TYPE TRU HANDLING RH GENERATOR SITE LA	_
WASTE STREAM MWIR ID WIPP ID LA-T011 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal Site Matrix Description Non-combustible scrap - small to	DESCRIPTION Ols, small equipment items, broken glass, etc.	
NO MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS:	TRUCON CODE	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	•

SITE NAME LA			WAS	TE TYPE TRU	HAND		NERATOR S	HTE LA	
LA-T011 CONTAINER Type/Size TYPICAL WASTE DENSITI		INAL WASTE	lnt.	L	.2m3 L	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number S Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	UMPUSITION
Iron-based Metals/Alloys	257.7	254.0	265.2		Deningtod	e	Cs137	3.36E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 51.0	Final Form	Pu55	3.69E-01	Curies/m3
Other Metals	302.9	76.9	913.5	End of 1993:		51.0 m3	Ru106	2.46E-02	Curies/m3
Other Inorganic Materials	6.8	6.8	6.8	1994:	10.0	51.0 m3	Sr90	3.07E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	10.0	10.0 m3/yr	U38	3.45E-05	Curies/m3
Rubber	0.0	0.0	0.0	1996:	10.0	10.0 m3/yr	Y90	3.07E+00	Curies/m3
Plastics	0.0	0.0	0.0	1997:	10.0	10.0 m3/yr		-	
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	2.0	10.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.5	2.0 m3/yr			
Soils	0.0	0.0	0.0	L		0.5 m3/yr			
Packaging Materials, Steel	435.0	 J		TYPICAL	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

196537

SITE NAME LA	WASTE TYPE TRU	HANDLING RH	GENERATOR SITE LA	
WASTE STREAM MWIR ID WIPP ID LA-T012 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal Site Matrix Description Non-combustible hot-cell waste.	STREAM NAME DESCRIPTION			
NO MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rsearch and De X Operations Was Residues Decon and Deco Environmental R From Treatment Maintenance	ommissioning Restoration	A Asbestos PCBs Other N/A Unknown	

STENAME LA			WAS	TE TYPE TRU	HAND	LING RH GEN	VERATOR S	ITE LA		
LA-7012 CONTAINER: Type/Size: TYPICAL WASTE DENSITI		INAL WASTE	Int.	n3) STORED	.2m3 L	Liner Type: iner Material: E_ESTIMATED		Number ! Number Pro	jected:	_
Material Parameters	Average	<u>Lower Limit</u>	<u>Upper Limit</u>	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPOSITION	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steet	0.0 0.0 302.9 0.0 0.0 0.0 0.0 0.0 0.0 435.0	0.0 76.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 913.5 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	10.5 0.5 0.5 0.5 0.5 0.1 0.1	10.5 m3 10.5 m3 0.5 m3/yr 0.5 m3/yr 0.5 m3/yr 0.5 m3/yr 0.1 m3/yr 0.1 m3/yr	MFP Pu239 U235	1.87E+03 3.24E+01 3.36E-03	Curies/m3 Curies/m3 Curies/m3	
Packaging Material, Plastic	0.0					AFFENABLE				

00537

LA-T012 - 2

SITE NAME LA	WASTE	TYPEMTRU HANDLING CH GENERATOR SITE LA
WASTE STREAM MWIR ID LA-W001 WIPP ID LA-W001 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal Site Matrix Description Mixed metal scrap and incidental	STREAM NAME DESCRIPTION combustibles.	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 120	5A	TRUCON CODE LA 125A
PERMANDES TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Defense TRU Waste Unknown Defense TRU Waste Unknown Defense TRU Waste Unknown Defense TRU Waste Unknown	U Ro De Er Fr	search and Devel, Waste X TSCA Asbestos perations Waste PCBs esidues Other econ and Decommissioning N/A X ovironmental Restoration Unknown om Treatment of Waste

000538

LA-W001 - 1

LA - 23

Bittle All Land			CLIVEL OIL			
SITE NAME LA	WASTE TYPE MTRU	HANDLING CH	GENERATOR SITE LA			
				-		
			U35	0.00E+00	Curies/m3	
			U38	4.74E-04	Curles/m3	
			∨on	1.205.00	0.1.1.5	

000540

LA-W001 - 3

LA - 25

SITE NAME LA	THE STATE OF THE PORT	
STERANE LA	WASTE TYPE MTRU HANDLING CH GENERATOR SITE LA	
WASTE STREAM MWIR ID LA-W002 WIPP ID LA-W002 Local ID MATRIX CODE SITE FINAL FORM IDC	DESCRIPTION	
Waste Matrix Code Group Solidified Inorganics		
Site Matrix Description Solidified aqueous waste, cemen		
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 111	A; 211A TRUCON CODE LA 111A; 211A	
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU		
Non-Defense TRU Waste Commercial TRU Waste Unknown Non-Mixed TRU Suspect Mixed TRU Unknown	Research and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown Unknown	•

LA-W002 CONTAINER: Type/Size:				ner Matt: Steel Vol/Ctnr: 0.20)8 m3 Li	Liner Type: Rigid		Number :	Stored: 145
TYPICAL WASTE DENSITI	<u> </u>	INAL WASTE		L		ner Material: HDPE ESTIMATED	TYPICAL	Number Pro	L—
Material Parameters	Average	Lower Limit	Upper Limit	RATES	F WASTE	GENERATION	Nuclide	ISOTOPIC C Activity	OMPOSITIO
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am240	6.39E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3050.1	3050.1 m3	Am241	1.39E+04	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	3053.0	3053.0 m3	MFP	9.47E+00	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	20.0	20.0 m3/yr	Pu238	1.45E+02	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	20.0	20.0 m3/yr	Pu239	8.34E+02	Curies/m3
Rubber	0.0	0.0	0.0	1996:	20.0	20.0 m3/yr	Pu241	2.73E+00	Curies/m3
Plastics	0.0	0.0	0.0	1997:	20.0	20.0 m3/ry	Th88	1.09E-04	Curies/m3
Solidified, Inorganic matrix	1296.0	1090.0	2180.0	1998-2002:	20.0	20.0 m3/yr	U12	5.38E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	20.0	20.0 m3/yr	U233	2.00E-02	Curies/m3
Soits	0.0	0.0	0.0	L			U235	2.40E-02	Curies/m3
Packaging Materials, Steel	131.0			TYPICAL	EPA CODE	S APPLICABLE	U238	1.78E-03	Curies/m3
Packaging Material, Plastic	37.0				D003D		Ų81	4.15E-03	Curies/m3

SITE NAME LA	WASTE TYPE MTRU HANDLING CH GENERATOR SITE LA]
WASTE STREAM MWIR ID LA-W003 WIPP ID LA-W003 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description Dewatered studge.	DESCRIPTION DESCRIPTION	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 1	118; 2118 TRUCON CODE LA 1118; 2118	<u>=</u>
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	RU Research and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	,

SITE NAME LA			WAS	TE TYPE MTR	HAND!	ING CH GEN	ERATOR S	ITE LA	
LA-W003 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	85-gallon ES FOR FI		Int.	13) STORED	08 m3 Li	Liner Type: Rigid iner Material: HDPE EESTIMATED GENERATION	TYPICAL		
Material Parameters	Average	Lower Limit	Upper Limit			OLNEIO HON	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Am241	4.25E+02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		1227.4 m3	MFP	3.18E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1277.4	1277.4 m3	Pu238	1.33E+02	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	20.0	20.0 m3/yr	Pu239	4.29E+02	Curies/m3
Cellulosics	0.0	0.0	0.0	1995;	20.0		Pu241	5.19E-02	Curies/m3
Rubber	0.0	0.0	0.0	1996:	20.0	20.0 m3/yr	U235	1.09E-04	Curies/m3
Plastics	0.0	0.0	0.0	1997:	20.0	20.0 m3/yr			
Solidified, Inorganic matrix	1296.0	1090.0	2180.0	1998-2002:		20.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	20,0	20.0 m3/yr			
Solls	0.0	0.0	0.0	2003-2022;	20,0	20.0 m3/yr			
Packaging Materials, Steel	131.0	<u> </u>	0.0	TYPICAL	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				D004A	-			

00054

SITE NAME LA	WASTE TYPE MTRU HANDLING CH GENERATOR SITE LA	
WASTE STREAM MWIR ID LA-W004 WIPP ID LA-W004 Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Site Matrix Description Combustible Combustible waste - paper, rags,	DESCRIPTION plastic, rubber, etc.	
NO MIGRATION VARIANCE PETITION ASSIGNMENT LA 116	TRUCON CODE LA 116A	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown	-

LA-W004 - 1

LA - 30

2/28/95

EITE NAME LA			WAS	STE TYPE MTR	HAND!	LING CH GE	NERATOR	SITE LA	
LA-W004 CONTAINER: Type/Size:				iner Mati: Steel Vol/Ctnr: 0.2	08 m3 L	Liner Type:		Number Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR FI	NAL WASTE I	FORM (kg/n Upper Limit	RATES	TRU WASTI	E ESTIMATED GENERATION	TYPICA!		COMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	257.7 0.4 18.8 6.8 64.0 1.1 5.3 0.0	254.0 0.4 18.8 6.8 59.2 1.0 4.9 0.0	265.2 0.4 89.7 6.8 68.7 1.2 5.7 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002;	251.8 252.4 24.6 25.0 25.0 25.0 25.0	251.8 m3 252.4 m3 24.6 m3/yr 25.0 m3/yr 25.0 m3/yr 25.0 m3/yr 25.0 m3/yr	Am44 Am45 Cm46 Np82 Pu238 Pu239 Pu42 Pu52	1.78E+01 9.25E-03 2.60E-02 7.75E-04 1.96E+03 2.06E-01 4.92E+01 5.62E+03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Solidmed, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 131.0 0.0	0.0	0.0	2003-2022: [<u>TYPICA</u>	25.0 L EPA CODE D005A	25.0 m3/yr	Pu53 Pu54 Pu56 Pu83 Th88 U12 U18 U34 U35 U36 U38	1.57E+01 2.96E+02 2.78E+01 2.42E+03 1.09E-08 7.78E-06 1.38E-07 3.60E-06 1.29E-05 2.23E-04 1.03E-03 5.80E-03	Curies/m3

SITE NAME LA			WAS	TE TYPE MTRU	HANDLING CH	GENERATOR	SITE LA	
WASTE STREAM	MWIR ID LA-WOOS		STREAM NAM	E				
MATRIX CODE SITE FINAL FORM IC	Local ID		DESCRIPTION	N				
	Group Uncategoriz	zed Metal istible scrap - small tool	s, cans, small equ	ulpment items, broken	glass, etc.			
NO MIGRATION VAI		ASSIGNMENT LA 117A	A; 118A		TRUCON CO	DE[LA 117A; 118A		
Defense TRU W Non-Defense TR Commercial TRU Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. No Operations Waste Residues Decon and Decommit Environmental Restor From Treatment of Williams.	issioning ration	TSCA Asbestos PCBs Other N/A Unknown	X	

000547

SITE NAME LA			WAS	STE TYPE MTRU	HANDLING CH	GENERATOR SIT	E LA	
WASTE STREAM	MWIR ID LA-WO		STREAM NAM	<u>IE</u>				
MATRIX CODE SITE FINAL FORM IC Waste Matrix Code Site Matrix Des	Group Solidified	Inorganics d process residues	DESCRIPTIO	N				
		N ASSIGNMENT LA 114/			TRUCOULOGO			
FINAL WASTE FOR			`	<u> </u>	TRUCON COD	ELA 114A		
Defense TRU W Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Research and Devel Operations Waste Residues Decon and Decome Environmental Resi From Treatment of Maintenance	missioning toration	FSCA Asbestos PCBs Other N/A Unknown	×	

LA-W006 - 1

LA - 34

2/28/95

WASIESIKE	AM PRO	ILE FOR TH	E WIPP TI	RU WASTE I	BASELINE	INVENTORY R	EPORT		
NAME LA				STE TYPE MTR			NERATOR :	SITE LA	
LA-W006 CONTAINER Type/Size TYPICAL WASTE DENSITI Material Parameters	55-gallon	INAL WASTE	int.	n3) STORED	08m3 L	Liner Type: Rigid iner Material: HDPE E-ESTIMATED GENERATION	TYPICAL Nuclide	Number Number Pr	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	0.0	End of 1992:	Projected 422.5	Final Form 422.5 m3	Am241 Am214 Am45	1.32E+03 1.41E+04	Curies/m3
				End of 1993;					Curies/m3 Curies/m3
Cellulosics Rubber Plastics	0.0 0.0	0.0	0.0	1994: _. 1995: 1996:	29.5 30.0 30.0	29.5 m3/yr 30.0 m3/yr 30.0 m3/yr	Cm46 MFP	1.36E-02 0.00E+00	- 4
Solidified, Inorganic matrix Solidified, Organic matrix	961.5 0.0	721.0 0.0	0.0 1057.7 0.0	1997: 1998-2002: 2003-2022:	30.0 30.0 30.0	30.0 m3/ry 30.0 m3/yr 30.0 m3/yr	Pu238 Pu239 Pu41	1.31E+01 1.49E+01 1.80E-01	Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materlals, Steel Packaging Material, Plastic	0.0 131.0 37.0	0.0	0.0	,		ES APPLICABLE	Pu42 Pu51 Pu52	6.87E+02 1.40E+02	Curles/m3
- Garage Market Market	37.0				D007A		Pu53 Pu54	1.53E+04 1.13E+03 1.01E+03	Curies/m3 Curies/m3 Curies/m3
							Pu55 Pu56	2.63E+02 3.08E+02	Curies/m3 Curies/m3
							Pu57 Pu83 Th228	1.50E+02 2.69E+03 0.00E+00	Curies/m3 Curies/m3 Curies/m3
							Th88 U12	2.29E-03 2.47E-01	Curies/m3 Curies/m3
							U15 U22	1.21E-03 1.71E-04	Curies/m3 Curies/m3
							U23 U235 U32	2.70E-03 3.21E-03 7.34E-04	Curies/m3
							U33 U34	4.10E-04 1.36E-04	Curies/m3 Curies/m3 Curies/m3
							U35 U36	1.41E-04 1.63E-03	Curies/m3

060550

LA-W006 - 2

LA - 35

1.90E-04 Curies/m3

U37

SITE NAME LA	WASTE TYPE MTRU HANDLING	G CH GENERATOR	SITE LA	
				J
		U38	1.18E-03 C	ries/m3
		U70	9.47E-02 Cu	ıries/m3
		U81	2.36E-02 C	rice (m)

LA-W006 - 3

LA - 36

2/28/95

SITE NAME LA	WAS	TE TYPE MTRU HANDLING	G CH GENERATOR S	TE LA
WASTE STREAM MWIR ID LA-W009	STREAM NAME			
WIPP ID LA-W009				
Local ID	DESCRIPTION			
MATRIX CODE		•		
SITE FINAL FORM IDC				
Waste Matrix Code Group Uncategorized	Metal	-		
Site Matrix Description Metal waste from				
NO MIGRATION VARIANCE PETITION AS	SIGNMENT	TRUCO	N CODE	
FINAL WASTE FORM DESCRIPTORS:	+			
Non-Defense TRU Wasle Commercial TRU Wasle	Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSCA Asbestos PCBs Other N/A Unknown	×

000553

SITE NAME LA			WAS	TE TYPE MTR	HANDL		NERATOR S	ITE [LA	
LA-W009 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int. 1	ner Mati: Steel Vol/Ctnr: 0.20 (3) STORED	 _TRU WASTE	Liner Type: ner Material: ESTIMATED		Number Stor Number Project ISOTOPIC COM	ted: 1381
Material Parameters	Average	Lower Limit	Upper Limit	RAIES (OF WASTE	GENERATION	Nuclide	Activity	. 55711018
iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 302.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 76.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 913.5 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	F001 F002	9.4 m3 142.7 m3 0.3 m3/yr 10.0 m3/yr	Am44 Pu52		urles/m3 uries/m3
					F005A				

SITE NAME LA			WA	STE TYPE MTRU	HANDI min la				
				E[WIKO]	HANDLING F	к н	GENERATOR SIT	E LA	
WASTE STREAM MATRIX CODE SITE FINAL FORM II	MWIR ID LA-WRO WIPP ID LA-WRO Local ID		STREAM NAM						
Waste Matrix Code Site Matrix Des	e Group Uncategoria cription Mixed meta	zed Metal I scrap and incidental co	ombustibles.						
Waste Matrix Code Group Uncategorized Metal Site Matrix Description Mixed metal scrap and incidental combustibles. WO MIGRATION VARIANCE PETITION ASSIGNMENT TRUCON CODE FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU X Research and Devel. Waste X TSCA Asbestos Non-Defense TRU Waste Non-Defense TRU Waste Suspect Mixed TRU Operations Waste PCBs Commercial TRU Waste Suspect Mixed TRU Residues Other									
Defense TRU W Non-Defense TR Commercial TRU	/aste X	Non-Mixed TRU Suspect Mixed TRU		Operations Waste Residues	issioning pration	TSCA	PCBs	×	

LA-WR01 - 1

LA - 39

2/28/95

SITE NAME LA			WAS	TE TYPE MTRI	IDNAH [LING RH GEN	ERATOR S	ITE LA	
LA-WR01 CONTAINER: LANL RH Canister Container Matti: Steel Liner Type: Number Stored: Type/Size: Int. Vol/Ctnr: 2.1 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity Number Stored: Number Projected: Number Stored: Number Stored: Number Stored: Number Stored: Number Stored: Number Stored: Number Projected: Number	jected: 0								
TIFICAL WASTE DENSIT	ES FUR F	INAL WASTE	FORM (kg/n				TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES (JE WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys		0.0			Projected	Final Form	Co60	3.00E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0					Pu239	1.23E+01	Curies/m3
Other Metals	302.9	76.9							
Other Inorganic Materials	6.8	6.8				 			
Cellulosics	64.0	59.2	68.7						
Rubber	1.1	1.0				 -			•
Plastics	5.2	4.9		1					
Solidified, Inorganic matrix	0.0	0.0							
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	ı					
Packaging Materials, Steel	435.0			TYPICA	L EPA CODE	S APPLICABLE			
Dankerias Meterial Diseita									

SITE NAME LA			WAS	STE TYPEMTRU HA	ANDLING R		GENERATOR	SITE LA	
WASTE STREAM MATRIX CODE	MWIR ID LA-WROS WIPP ID LA-WROS Local ID		STREAM NAM			· · · · · · · · · · · · · · · · · · ·			
Site Matrix Des	e Group Uncategoriz cription Non-combu	slible scrap - small tools	s, cans, equipmen	nt items, broken glass, et	c.				
NO MIGRATION VAI		SSIGNMENT			TRUCON C	ODE			
Defense TRU W Non-Defense TR Commercial TRU Unknown	faste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Wast Maintenance	ioning lion	TSCA	Asbestos PCBs Other N/A Unknown	X	

いいついだい

LA-WR05 - 1

LA - 41

2/28/95

SITE NAME LA			WAS	STE TYPE MTR	U HAND		NERATOR S	ITE LA	
LA-WR05 CONTAINER: Type/Size:			fnt.	iner Mati: Stee Vol/Ctnr:	السيسار	Liner Type: iner Materiat:		Number S	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORE	TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC O	OMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	257.7	254.0	265.2		Projected	Final Form	Ba137m	2.71E+03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0 m3	Cs137	2.89E+03	Curies/m3
Other Metals	302.9	76.9	913.5	End of 1993:		12.9 m3	Eu155	5.40E+01	Curies/m3
Other Inorganic Materials	6.8	6.8	6.8	1994:	1.0	1.0 m3/yr	Pm147	1.65E+02	Curies/m3
Celfulosics	0.0	0.0	0.0	1995:	1.0	1.0 m3/yr	Pu239	1.34E+02	Curies/m3
Rubber	0.0	0.0	0.0	1996:	1.0	1.0 m3/yr	Rh106	2.12E+01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	1.0	1.0 m3/ry	Ru106	2.12E+01	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.2	0.2 m3/yr	Sb125	1.18E+02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.5	0.5 m3/yr	Sr90	2.64E+03	Curies/m3
Soils	0.0	0.0	0.0				Te125m	4.88E+01	Curies/m3
Packaging Materials, Steel	435.0	نــــــــ		TYPICA	L EPA CODI	ES APPLICABLE	Li235	1.14E-04	Curies/m3
Packaging Material, Plastic	0.0						Y90	2.64E+03	Curies/m3

Lawrence Berkeley Laboratory

LAWRENCE BERKELEY LABORATORY (LB) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the LB waste stream profiles:

- LB Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by LB.
- The reported volume for the single LB waste stream was divided equally among the four different isotopic mixtures.

SITE NAME LB	WASTE TYPE TRU HANDLING CH GENERATOR SITE LB
WASTE STREAM MWIR ID WIPP ID LB-T001 Local ID LB-T001 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous Site Matrix Description The LBL is created by U.S. 4- Description	STREAM NAME LBL - Waste DESCRIPTION Non-mixed TRU
NO MIGRATION VARIANCE PETITION ASSIGNMENT	DE and performs multi-disciplinary research in the energy sciences, life sciences, and general sciences. During the vaste is generated. TRUCON CODE
PERMANDES CRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

NAME LB			WASTE TYPE TRU HANDLING CH GENERATOR SITE TO
			WASTE TYPE TRU HANDLING CH GENERATOR SITE LB
LB-T001 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	55-gallon	1NAL WASTE 40.0 0.0 50.0 60.0 150.0 0.0 50.0	Container Mati: Sieel Liner Type: Number Stored: 1
Iron-based metal approx. 5% Other metals approx. 5% Cellulosics - paper approx. 50% Plastics approx. 30% Solidified organic matrix approx. 1 Drum #1	0%		

UUUUU

LB-T001 - 2

ENAME LB		_	WAS	STE TYPE TRU HANDLING CH GENERATOR SITE LB
Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Typical Waste Densiti Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	55-gallon	INAL WASTE Lower Limit 40.0 0.0 50.0 60.0 0.0 150.0 0.0 50.0 0.0	l Int. V	RATES OF WASTE GENERATION
Iron-based metal approx, 5% Other metals approx, 5% Cellulosic - paper approx, 50% Plastics approx, 30% Solidified organic matrix approx, 1 Drum #3	0%			

ENAME LB			WAS	STE TYPE TRU	HAND	ING CH GE	NERATOR :	SITE LB	
LB-T001 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE FO				n3) STORED	OB m3 L	Number Stored: 1 Number Projected: 5 TYPICAL ISOTOPIC COMPOSITION			
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic	390.0 0.0 425.0 0.0 150.0 450.0 0.0 150.0 0.0 131.0	40.0 0.0 50.0 0.0 60.0 0.0 150.0 0.0 50.0	800.0 0.0 850.0 0.0 200.0 0.0 600.0 250.0	RATES End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.210 0.210 0.000 0.105 0.000 0.000 0.040 0.040	GENERATION Final Form 0.210 m3 0.210 m3 0.000 m3/yr 0.000 m3/yr 0.000 m3/yr 0.000 m3/yr 0.040 m3/yr 0.040 m3/yr SAPPLICABLE	Nuclide Am241 Am243 Cf249 Cf250 Cm244 Es253 Es254 Np237 Pu240 Pu242 Ra226 U233	Activity 6.33E-02 4.81E-03 1.20E-03 4.81E-05 1.21E-02 4.81E-04 5.29E-03 5.77E-06 5.05E-03 4.84E-03 2.06E-02 4.81E-03	Curies/m3
Comments fron-based metal approx. 5% Other metals approx. 5% Cellulosics - paper approx. 50% Plastics approx. 30% Solidified organic matrix approx. 1 Drum #4	0%								

Lawrence Livermore National Laboratory

LAWRENCE LIVERMORE NATIONAL LABORATORY (LL) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the LL waste stream profiles:

- Since only current volumes were provided by LL, the final form volumes were assumed to be the same as the current volumes.
- The WTWBIR team had to assign identification numbers (IDs) to those LL waste streams not given an identifier by the site. The assigned identification numbers are consistent with the site reported numbers.
- LL Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by LL.
- The volumes for the year 1993 were changed from an annual rate of generation (m³/year) to a cumulative value (m³).

SITE NAME LL	WAST	E TYPE MTRU HAND	LING CH	GENERATOR SIT	ELL
WASTE STREAM MWIR ID WIPP ID LL-M001 Local ID Form 1 Mixed MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Combustible	DESCRIPTION	R&D Glovebox Waste (For The waste consists of glowe equipment. The waste conshielding. The waste may consulty segregated as waste	ebox bagout waste tains small amoun occasionally includ	ts of RCRA material	nd some contaminated Is such as solvents or lead f solidified liquids, but these are
Site Matrix Description Aquaset is used to liquids. The com-	o solition y striair arrounts of water-base position varies considerably, but it is p als. Typical hazardous materials are	ea liquids; Envirostone or Peredominantly organics (> 90 eaded gloves or materials controls	etroset is used to s Na by weight) - Th	solidify small amount e waste does contai solvents.	to all calcanta and all because
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste	red TRU X In-Mixed TRU Spect Mixed TRU In-Mixed TRU In-Mi	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X

LL-M001 CONTAINER Type/Size	Drum : 55 gallon			ainer Matt: steel i. Vol/Ctnr: 0.20	08 m3 Li	Liner Type: rigid ner Material: HDPE		Number Sto Number Projec	
TYPICAL WASTE DENSIT				RATES C	TRU WASTE	ESTIMATED GENERATION		L ISOTOPIC CO	\
Material Parameters	Average	Lower Limit	<u> Voper Limi</u>	ţ			Nuclide Am241	Activity	
Iron-based Metals/Alloys	5.0	0.0	365.0	ļ	<u>Projected</u>	Einal Form	Cm244		Curies/m3
Aluminum-Based Metals/Alloys	5.0	0.0	365.0	End of 1992:	5.2	5.2 m3			uries/m3
Other Metals	2.0	0.0	365.0	End of 1993;	5.2	5.2 m3	Pu238		Curies/m3
Other Inorganic Materials	1.0	0.0	200.0	1994:	0.0	0.0 m3/yr	Pu239		Curies/m3
Cellulosics	100.0	0.0	365.0	1995:	0.4	0.4 m3/yr	Pu240		ories/m3
Rubber	5.0	0.0	200.0	1996:	0.4	0.4 m3/yr	Pu241	2.83E+01 C	uries/m3
Plastics	100.0	5.0	365.0	1997:	0.4	0.4 m3/ry			
Solidified, Inorganic matrix	5.0	0.0	100.0	1998-2002:	0.4	0.4 m3/yr			
Solidified, Organic matrix	5.0	0.0	100.0	2003-2022:	0.4	0.4 m3/yr			
Soils	0.0	0.0	0.0	(_					
Packaging Materials, Steel	144.0	L	(TYPICAL	<u>EPA CODE</u>	<u>S APPLICABLE</u>			
Packaging Material, Plastic	33.0				D001				
Comments					D002				
Content weight is limited to 76 kg	or 365 kg/m3	 I.		7	D003				
All weights are based on process	knowledge.			ĺ	D006				
Drum weight averages 30kg of sto	eel,			Į					
Liner + liner bag averages 7kg of	polyetnylene.				D008				
					D009				

000567

D040

SITE NAME LL	WAST	TE TYPE TRU HANDLING CH GENERATOR SITE LL
WASTE STREAM MWIR ID WIPP ID LL-T001 Local ID Form 2 No MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inc	on-mixed DESCRIPTION	Solidified Waste (Form 2) More than 50 volume percent of this waste consists of solidified water-based or oil-based liquids or solidified fine particles. The remaining waste consists of glovebox bagout waste, laboratory trash and some contaminated equipment.
Site Matrix Description 50 to 90% o	f this waste matrix consists of liquids solid Envirostone or Petroset for the oil-based liq RCRC listed hazardous materials.	diffed in 1 to 5 gallon plastic containers using Portland cement or Aquaset for the water based quids. The remainder consists of glovebox waste similar to form 1 waste. The waste does not
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Non-Mixed TRU X Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

The TRUCON and NMVP assignments for the waste stream only applies to the solidified inorganics in the waste stream.

E NAME LL			WAS	STE TYPE TRU	HANDI	LING CH GE	VERATOR S	SITE (LL	
LL-T001 CONTAINER: Drum Type/Size: 55-gallon			Int.	iner Mati: steel Vol/Ctnr: 0.2	Number Stored: 60 Number Projected: 287				
TYPICAL WASTE DENSIT	ES FOR F Average	INAL WASTE Lower Limit	FORM (kg/n Upper Limit	RATES	TRU WASTE	E ESTIMATED GENERATION	<u>Nuclide</u>	LISOTOPIC CO Activity	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	30.0 5.0 1.0 1.0 10.0 20.0 100.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 5.0 50.0	100.0 50.0 20.0 20.0 100.0 20.0 100.0 365.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 10.2 12.5 1.5 2.1 2.1 2.1 2.1 2.1	Final Form 10.2 m3 12.5 m3 1.5 m3/yr 2.1 m3/yr 2.1 m3/yr 2.1 m3/yr 2.1 m3/yr 2.1 m3/yr 2.1 m3/yr	Am241 Pu239 Pu240 Pu241	6.32E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	144.0 33.0	0.0	<u> </u>	TYPICA	<u>L EPA CODE</u>	S APPLICABLE			
Comments									
Content weight is limited to 76 kg All weights are estimates based o Drum weight averages 30 kg of st Liner + liner bag averages 7 kg of	n process kno eel.	owledge							

000579

LL-T001 - 2

LL - 4

SITE NAME LL		WAST	TE TYPE TRU HANDLING CH GENERATOR SITE LL
	LL-T002 Form 1 Non-Mixed	DESCRIPTION	R&D Glovebox Waste (Form 1) The waste consists of glovebox bagout waste, laboratory trash and some contaminated equipment. The waste may occasionally include small quantities of solidified liquids, but these are usually segregated as waste form 2.
 	Aquaset is used to solidity small	amounts of water-base considerably, but it is p	n as tissues, paper, assorted plastics, glassware, ceramics, and metals. Portland cement or sed liquids; Envirostone or Petroset is used to solidify small amounts of solvents and oil-based predominantly organics (> 90% by weight). The waste does not contain any RCRA listed TRUCON CODE LL 116
PINAL WASTE FORM DESCRIPTION OF THE PROPERTY O	X Mixed TRU	X X	Rsearch and Devel Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

000571

LL-T002 - 1

LL - 5

2/28/95

										
LL-T002 CONTAINER: Drum Type/Size: 55-gallon		Int.	Container Matt: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE					Number Stored: 21 Number Projected: 173		
TYPICAL WASTE DENSITI	S FOR F	NAL WASTE	FORM (kg/n	3 STORED	TRU WAST	E ESTIMATE	D	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RAIES	JE WASTE	GENERATIO	<u> 2N.</u>	<u>Nuclide</u> Am241	<u>Activity</u> 1.79E+00	A
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	5.0 5.0 2.0 1.0 100.0 5.0 100.0 5.0	0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0	365.0 365.0 365.0 200.0 365.0 200.0 365.0 100.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	945 943.7 11.2 12.5 12.5 12.5 12.5 12.5 12.5	11.2 12.5 12.5 12.5 12.5	m3 m3/yr m3/yr m3/yr m3/ry m3/ry	Pu238 Pu239 Pu240 Pu241	3.24E-01 2.50E+00 1.03E+00 3.17E+01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 144.0 33.0	0.0	0.0	(S APPLICAE	m3/yr BLE			

All weights are estimated based on process knowledge.

Drum weight averages 30 kg of steel. Liner + liner bag averages 7 kg of polyethylene.

LL-T002 ~ 2

LL - 6

2/28/95

SITE NAME LL		WAST	E TYPE TRU HANDLI	NG CH	GENERATOR SI	TE [LL
	D LL-T003	STREAM NAME	Combined metal scrap & incid	dental combust (Form 3)	
Local I MATRIX CODE SITE FINAL FORM IDC	D Form 3 non-mixed	DESCRIPTION	This waste consists of contan drums. This waste does not d	ninated equipme contain RCRA ha	nt and laboratory to azardous materials	rash too bìg to fit into 55 gallon s.
Waste Matrix Code Group						
	it will contain metal components does not contain RCRA listed h	, giassware, ceramics, azardous materials.	plastics, paper, and wood. It w	ds, and other lar will be mostly ino	rganic materials, b	well as laboratory trash. Typically out can vary widely. This waste
FINAL WASTE FORM DESC	RIPTORS:					
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed Ti Unknown	RU I	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X

000573

LL-T003 CONTAINER; Rogers Chem Box #2 Type/Size:] In	tainer Matl: Steel t. Vol/Ctnr: 5.6	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg	m3) STORED	TRU WASTI	E ESTIMATED GENERATION	TYPICAL		OMPOSITION
<u>Material Parameters</u>	Average	Lower Limit	Upper Lim	it	AL MYSTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	100.0	0.0	140.0		Projected	Einal Form	Am241	3.00E-04	Curies/m3
Aluminum-Based Metals/Alloys	15.0	0.0	140.0	End of 1992:	5.6	5.6 m3	Pu239	2.50E-03	Curies/m3
Other Metals	10.0	0.0	30.0	End of 1993;	5.6	5.6 m3	Pu240	6.00E-04	Curies/m3
Other Inorganic Materials	2.0	0.0	10.0	1994:	0.0	0.0 m3/yr	Pu241	1.67E-02	Curies/m3
Cellulosics	5.0	0.0	15.0	1995:	0.0				
Rubber	1.0	0.0	5.0	1996:	0.0	0.0 m3/yr			
Plastics	2.0	0.0	10.0	1997:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	1.0	0.0	3.0	1998-2002:		0.0 m3/ry			
Solidified, Organic matrix	1.0	0.0	3.0		0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0) m3/yr			
Packaging Materials, Steel	146.0		0.0	TYPICA	LEPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

<u>LL-T003</u> <u>CONTAINER</u> Type/Size		ainer Matl: Steel . Vol/Ctnr: 3.8	Number Stored: (
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	. ISOTOPIC (Activity	OMPOSITION
Iron-based Metals/Alloys	200.0	0.0	30.0		Projected	Einal Form	Am241	4.00E-04	Curies/m3
Aluminum-Based Metals/Alloys	3.0	0.0	30.0	End of 1992:	7.6	7.6 m3	Pu239	3.00E-03	Curies/m3
Other Metals	1.0	0.0	30.0	End of 1993:	7.6	7.6 m3	Pu240	7.00E-04	Curies/m3
Other Inorganic Materials	1.0	0.0	5.0	1994:	0.0	0.0 m3/yr	Pu241	1.99E-02	Curies/m3
Cellulosics	1.0	0.0	5.0	1996:	0.0	0.0 m3/yr			
Rubber	1.0	0.0	5.0	1996:	0.0	0.0 m3/yr			
Plastics	1.0	0.0	20.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	5.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	5.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	160.0			<u>TYPICA</u>	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0	•							

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

LL-T003 CONTAINER: Capital indus. Box #2 Type/Size:			Int.	I	03 m3 Li	е	Number Stored: 1 Number Projected:		
TYPICAL WASTE DENS Material Parameters	Average	NAL WASTE Lower Limit	FORM (kg/n Upper Limit	RATES	TRU WASTI OF WASTE	E ESTIMATED GENERATION	TYPICA Nuclide	L ISOTOPIC (Activity	COMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Allo Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	20.0 10.0 10.0 5.0 5.0 2.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	390.0 200.0 40.0 20.0 30.0 10.0 20.0 10.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	Projected 60.1 60.1 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 60.1 m3 60.1 m3 0.0 m3/ , yr yr ry yr	2.90E-03 2.45E-02 5.70E-03 1.99E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3	
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 156.0 0.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE			

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

LL-T003 - 4

LL-T003 CONTAINER Type/Size	· · · ·	Container Matl: Steel Liner Type: None Int. Vol/Ctnr: 4.247 m3 Liner Material:						Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r Upper Limit	RATES (TRU WASTI OF WASTE	E ESTIMATE GENERATION	D DN	TYPICAL Nuclide	<u>ISOTOPIC (</u>	COMPOSITIO
Iron-based Metals/Alloys	100.0	0.0	140.0		Projected	Final Form		Am241	1.45E-02	Curies/m3
Aluminum-Based Metals/Alloys	15.0	0.0	140.0	End of 1992:	4.2	_ ====	m3	Pu239	3.78E-02	Curies/m3
Other Metals	10.0	0.0	30.0	End of 1993:	4.2		m3	Pu240	8.70E-03	Curies/m3
Other Inorganic Materials	2.0	0.0	10.0	1994:	0.0		m3/yr	Pu241	2.54E-01	Curies/m3
Cellulosics	5.0	0.0	15.0	1995:	0.0	f	m3/yr			
Rubber	1.0	0.0	5.0	1996:	0.0		m3/yr			
Plastics .	2.0	0.0	10.0	1997:	0.0		m3/ry			
Solidified, Inorganic matrix	1.0	0.0	3.0	1998-2002:	0.0		m3/yr			
Solidified, Organic matrix	1.0	0.0	3.0	2003-2022;	0.0		m3/yr	۸.		
Soils	0.0	0.0	0.0	ι			•			
Packaging Materials, Steel	109.0	L	TYPICAL EPA CODES APPLICABLE							
Packaging Material, Plastic	0.0									

Comments

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

11 7000										
LL-T003 CONTAINER		m. Box #3		tainer Matt: Steel	Number Stored: 1					
Type/Size:	L		Int. Vol/Ctnr: 5.753 m3 Liner Material:					Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg	/m3) STORED	TRU WASTE	ESTIMATED			OMPOSITIO	
Material Parameters	Average	Lower Limit	Upper Lim	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPOSITIO	
iron-based Metals/Alloys	35.0	0.0	45.0	_	<u>Projected</u>	Final Form	Am241	3.00E-04	Curies/m3	
Aluminum-Based Metals/Alloys	5.0	0.0	45.0	End of 1992:	5.8	5.8 m3	Pu239	2.40E-03	Curies/m3	
Other Metals	3.0	0.0	20.0	End of 1993;	5.8	5.8 m3	Pu240	6.00E-04	Curies/m3	
Other Inorganic Materials	2.0	0.0	10.0	1994:	0.0	0.0 m3/yr	Pu241	1.62 E -02	Curies/m3	
Cellulosics	2.0	0.0	10.0	1995:	0.0	0.0 m3/yr				
Rubber	1.0	0.0	5.0	1996:	0.0	0.0 m3/yr				
Plastics	1.0	0.0	10.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	1.0	0.0	3.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	1.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	-						
Packaging Materials, Steel	158.0			TYPICA	L EPA CODE	<u>S APPLICABLE</u>				
Packaging Material, Plastic	0.0									
Comments										

weight for plastic bags is used in the packaging material/plastic field.

LL-T003 CONTAINER		s. Box #3	Container Matt: Steel Liner Type: None					Number	Stored:
Type/Size	:[Int.	Vol/Ctnr: 6.3		Number Projected: 0			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	13) STORED		ESTIMATED	TYPICAL	_ISOTOPIC (COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	35.0	0.0	45.0		Projected	Final Form	Am2441	4.00E-04	Curies/m3
Aluminum-Based Metals/Alloys	5.0	0.0	45.0	End of 1992:	6.4	6.4 m3	Pu238	3.20E-03	Curies/m3
Other Metals	3.0	0.0	20.0	End of 1993:	6.4	6.4 m3	Pu240	7.00E-04	Curies/m3
Other Inorganic Materials	2.0	0.0	10.0	1994:	0.0	0.0 m3/y	Pu241 r	2.18E-02	Curies/m3
Cellulosics	2.0	0.0	10.0	1995:	0.0	0.0 m3/y			
Rubber	1.0	0.0	5.0	1998:	0.0	0.0 m3/y	r		•
Plastics	1.0	0.0	10.0	1997:	0.0	0.0 m3/r ₃	,		
Solidified, Inorganic matrix	1.0	0.0	3.0	1998-2002:	0.0	0.0 m3/yr	Г		
Solidified, Organic matrix	1.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVDIO	L CDA CADE	•			
Packaging Materials, Steel	111.0		1	ITPICA	LEPA CUPE	S APPLICABLE			
Packaging Material, Plastic	0.0								

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

LL-T003 CONTAINER: Type/Size:	Conta	None	Number Stored: 1 Number Projected: 0							
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/	m3) STORED	TRU WASTE	ESTIMATE GENERATIO	NA.			COMPOSITION
Material Parameters	Average	Lower Limit	<u>Upper Limit</u>					<u>Nuclide</u>	<u>Activity</u>	
iron-based Metals/Alloys	35.0	0.0	45.0		<u>Projected</u>	Final Form		Am241	9.70E-03	Curies/m3
Aluminum-Based Metals/Alloys	5.0	0.0	45.0	End of 1992:	7.5		m3	Pu238	9.40E-03	Curies/m3
Other Metals	3.0	0.0	20.0	End of 1993:	7.5		m3	Pu239	1.40E-02	Curies/m3
Other Inorganic Materials	2.0	0.0	10.0	1994:	0.0	}		[□] u240	7.00E-03	Curies/m3
Cellulosics	2.0	0.0	10.0	1995;	0.0		m3/yr	Pu241	2.11E-01	Curies/m3
Rubber	1.0	0.0	5.0	1996:	0.0		m3/yr			
Plastics	1.0	0.0	10.0	1997:	0.0	 	m3/ry			
Solidified, Inorganic matrix	1.0	0.0	3.0	1998-2002:	0.0	· · · · · · · · · · · · · · · · · · ·	m3/yr			
Solidified, Organic matrix	1.0	0.0	3.0	2003-2022:	0.0	}	m3/yr			
Soils	0.0	0.0	0.0	ı		ــــــــــــــــــــــــــــــــــــــ	•			
Packaging Materials, Steel	145.0		<u> </u>	TYPICA	L EPA CODE	S APPLICAB	LE		-	
Packaging Material, Plastic	0.0									

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

06-530

SITE NAME LL	WASTE TYPE TRU HANDLING CH GENERATOR SITE LL
WASTE STREAM MWIR ID WIPP ID LL-T003 Contd	STREAM NAME Combined metal scrap & incidental combust (Form 3)
Local ID Form 3 non-mixed MATRIX CODE SITE FINAL FORM IDC	DESCRIPTION This waste consists of contaminated equipment and laboratory trash too big to fit into 55 gallon drums. This waste does not contain RCRA hazardous materials.
Waste Matrix Code Group Uncategorized Metal	
This waste consists mostly of rit will contain metal components does not contain RCRA listed it	
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed T Unknown Unknown	Rearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

160581

LL-T003 Confd - 1

LL-T003 Con CONTAINER: Type/Size:	int.	Container Matt: Steel Liner Type: None Int. Vol/Ctnr: 1.9 m3 Liner Material:					Number Stored: Number Projected: 110			
TYPICAL WASTE DENSITI	ES FOR FI	INAL WASTE Lower Limit	FORM (kg/n	RATES	TRU WASTE OF WASTE	ESTIMATI GENERATION	ED. Dn.	TYPICAL Nuclide	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel	150.0 20.0 10.0 5.0 5.0 2.0 3.0 2.0 2.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0	800.0 800.0 800.0 800.0 500.0 100.0 200.0 300.0 300.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	3.8 7.6 7.6 7.6 7.6 7.6 7.6	m3 m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr	Am241 Pu238 Pu239 Pu240 Pu241	1.35E-01 7.02E-02 9.92E-02 8.02E-02 2.45E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

LL-T003 Contd - 2

SITE NAME LL			WAS	TE TYPE TRU	HANDL	ING CH GE	NERATOR S	ITE LL	
LL-T003 Con CONTAINER Type/Size TYPICAL WASTE DENSITI			Int.	iner Matl: Steel Vol/Ctnr: 7.588	m3 Li	Number Stored: 1 Number Projected: 0 TYPICAL ISOTOPIC COMPOSITION			
Material Parameters	<u>Average</u>	Lower Limit	<u>Upper Limit</u>	RATES OF		GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals	35.0 5.0 3.0	0.0 0.0 0.0	45.0 45.0 20.0	End of 1992: End of 1993;	7.6 7.6	Final Form 7.6 m3 7.6 m3	Am241 Pu239 Pu240 Pu241	1.40E-04 1.18E-03 2.70E-04 7.94E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Other Inorganic Materials Cellulosics Rubber	2.0 2.0 1.0	0.0 0.0 0.0	10.0 10.0 5.0	1994: 1995: 1996:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	FUZ41	7.94E-03	Curieshiis
Plastics Solidified, Inorganic matrix Solidified, Organic matrix	1.0	0.0	10.0 3.0 3.0	1997; 1998-2002; 2003-2022;	0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr			
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 110.0 0.0	0.0	0.0	L.		S APPLICABLE			

Comments

LL-T003 Conld - 3

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

LL-T003 Con CONTAINER Type/Size TYPICAL WASTE DENSIT	Int.	L	06 m3 L	Number Stored: Number Projected: (
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	E ESTIMATED GENERATION	<u> 1 YPICAL</u> <u>Nuclide</u>	<u>- ISOTOPIC (</u> Activity	COMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	150.0 20.0 10.0 5.0 5.0 2.0 3.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	200.0 100.0 100.0 20.0 50.0 10.0 10.0	End of 1982: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	24.9 24.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.9 m3 24.9 m3 24.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu239 Pu240 Pu241	3.90E-03 3.28E-02 7.60E-03 2.21E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 132.0 0.0	0.0	0.0	,	لــ	S APPLICABLE			

These estimates are based on the content weight for this container. Approximate weight for plastic bags is used in the packaging material/plastic field.

00058

LL-T003 Con CONTAINER: Type/Size:		m. Box #6		Container Matt: Steel Liner Type: None Int. Vol/Ctnr: 8.92m3 Liner Material:			Number Stored: Number Projected:		
TYPICAL WASTE DENSITIE Material Parameters	ES FOR F	INAL WASTE	FORM (kg/r	RATES		ESTIMATED GENERATION	TYPICAL Nuclide Am241	ISOTOPIC COMPOSITION Activity 1.22E+02 Curies/m3	
fron-based Metals/Alfoys Aluminum-Based Metals/Alfoys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	125.0 20.0 10.0 5.0 5.0 2.0 3.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	170.0 100.0 50.0 20.0 30.0 10.0 30.0	End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002:	8.9 8.9 0.0 0.0 0.0 0.0	8.9 m3 8.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/ry	Pu239 Pu240 Pu241	1.22E+02 Curies/m3 1.02E-01 Curies/m3 2.35E-02 Curies/m3 6.87E-01 Curies/m3	
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	2.0 0.0 126.0 0.0	0.0	0.0	2003-2022: <u>TYPICA</u>	0.0	0.0 m3/yr			

SITE NAME LL				WAST	TE TYPE TRU	HANDLIN	G CH (GENERATOR SI	TE LL		
WASTE STREAM	MWIR ID WIPP ID LL	L-T004		STREAM NAME	Pyrochemical salt	waste (Form	4)				
MATRIX CODE SITE FINAL FORM ID	Local ID Fo	orm 4 non-r	nixed	DESCRIPTION	RIPTION The waste consists of used chloride and fluoride salts from pyrochemical pelectrorefining, molten salt extraction, and direct oxide reduction.						
Waste Matrix Code Site Matrix Desc	cription The	waste cons e reduction	sists primarily of us There may also t d hazardous mate	se up to 20% heterog	ride salls from pyro peneous organic glo	chemical proc vebox bagou	cesses such as I waste packagi	electrorefining, ned with the salt wa	nolten salt extraction, and direct aste. This waste does not contain		
NO MIGRATION VA	RIANCE PET	TITION ASS	SIGNMENT LL 124			IRUC	ON CODE LL 1	24			
FINAL WASTE FOR	M DESCRIPT	ORS:									
Defense TRU W Non-Defense TR Commercial TRU Unknown	RU Waste		Mixed TRU Non-Mixed TRU Suspect Mixed TRO Unknown	J X	Rsearch and Development of Maintenance	nmissioning storation	X TSCA	Asbestos PCBs Other N/A Unknown	X		

う う ! ;

NAME LL		·	WASTE TYPE TRU HANDLING CH GENERATOR SITE LL							
LL-T004 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	IMAL WASTE	Int,	niner Mati: Steel Vol/Ctnr: 0.208	J	Liner Type: rigid iner Material: HDP	E	Number Stored: Number Projected:		
Material Parameters				RATES OF	F WASTE	ESTIMATED GENERATION	TYPICA Nuclide	AL ISOTOPIC COMPOSITION Activity		
Iron-based Metals/Alloys	Average	Lower Limit	Upper Limit				Am241	2.81E+00 Curies/m3		
•	20.0	0.0	100.0	·	rojected	Final Form	Pu238	4.74E-01 Curies/m3		
Aluminum-Based Metals/Alloys	5.0	0.0	80.0	End of 1992:	0.2	0.2 m3	Pu239			
Other Metals	2.0	0.0	50.0	End of 1993;	0.6	0.6 m3		2.06E+00 Curies/m3		
Other Inorganic Materials	290.0	100.0	365.0	1994:	0.0	0.0 m3/y	Pu240	1.66E+00 Curies/m3		
Cellulosics	2.0	0.0	50.0	1995:	0.1	0.1 m3/y	` Pu241 т	5.10E+01 Curies/m3		
Rubber	1.0	0.0	20.0	1996:	0.1	0.1 m3/y				
Plastics	20.0	5.0	100.0	1997;	0.1	0.1 m3/r				
So li dified, Inorganic matrix	1.0	0.0	10.0	1998-2002:	0.1	0.1 m3/y	•			
Solidified, Organic matrix	1.0	0.0	10.0	2003-2022:	0.1	0.1 m3/y				
Soils	0.0	0.0	0.0	k		·	•			
Packaging Materials, Steel	144.0	L	L	TYPICAL	EPA CODE	S APPLICABLE				
Packaging Material, Plastic	33.0									

Comments

Content weight is limited to 76 kg or 365 kg/m3.
All weights are estimates based on process knowledge.
Drum weight averages 30 kg of steel.
Liner + liner bag averages 7 kg of polyethylene.

SITE NAME LL		WASTE TYPE TRU HANDLING CH GENERATOR SITE LL
W	WIR ID IIPP ID LL-T005 ocal ID Form 5 non-mixed	STREAM NAME HEPA filters (Form 5) DESCRIPTION HEPA filters
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gr		
Site Matrix Descrip	The waste matrix is mostly w asbestos making them Califo	ood framed HEPA filters although some small metal cased HEPA filters are also included. Some of the filters contain mixed waste.
FINAL WASTE FORM L	NCE PETITION ASSIGNMENT DESCRIPTORS:	ΤΚΟΦΟΝ ΦΟΡΕ
Defense TRU Wasi Non-Defense TRU Commercial TRU V Unknown	Waste Non-Mixed TR	

000588

TENAME LL			WASTE TYPE TRU HANDLING CH GENERATOR SITE LL							
Type/Size:	Type/Size:))3m3 Li	Liner Type: Niner Material:	one	Number Stored: Number Projected: (
TYPICAL WASTE DENSITI			FORM (kg/n	n3) <u>STORED</u> RATES (TRU WASTE	ESTIMATED GENERATION		CAL ISOTOPIC	COMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit				HARLIN			
Iron-based Metais/Alloys	65.0	0.0	130.0		<u>Projected</u>	Einal Form	Am24	•	Curies/m3	
Aluminum-Based Metals/Alloys	20.0	0.0	40.0	End of 1992:	16.0	16.0 m	Pu239		Curies/m3	
Other Metals	10.0	0.0	20.0	End of 1993;	16.0	16.0 m	Pu240		Curies/m3	
Other Inorganic Materials	20.0	0.0	40.0	1994:	0.0	0.0 m	Pu241 3/yr	4.40E-01	Curies/m3	
Cellulosics	65.0	0.0	130.0	1995:	0.0	0.0 m	-			
Rubber	10,0	0.0	20.0	1996:	0.0	0.0 m				
Plastics	20.0	5.0	40.0	1997:	0.0	0.0 m	-			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m	•			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m	-			
Soils	0.0	0.0	0.0	l	· J	,-	•			
Packaging Materials, Steel	109.0			TYPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	0.0									
Comments										

LL-T005 CONTAINER: Type/Size:	Container Matt: Steel Liner Type: None Int. Vol/Ctnr: 1.9 m3 Liner Material:					Number Stored: 0 Number Projected: 14			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES	TRU WASTE	ESTIMATED GENERATION	<u>TYPICAL</u> Nuclide	. ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys	65.0	0.0	130.0	-	Projected	Final Form	Am241	8.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	20.0	0.0	40.0	End of 1992:	0.0	0.0 m3	Pu239	6.50E-02	Curies/m3
Other Metals	10.0	0.0	20.0	End of 1993:	0.0	0.0 m3	Pu240	1.508-02	Curies/m3
Other Inorganic Materials	20.0	0.0	40.0	1994:	0.0	0.0 m3/yr	Pu241	4.40E-01	Curies/m3
Cellulosics	65.0	0.0	130.0	1995:	1.0	1.0 m3/yr			
Rubber	10.0	0.0	20.0	1996:	1.0	1.0 m3/yr			
Plastics	20.0	5.0	40.0	1997:	1.0	1.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	1.0	1.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	1.0	1.0 m3/yr			
Soils	0.0	0.0	0.0	Ĺ		٠			
Packaging Materials, Steel	153.0		L	TYPIÇA	L EPA CODE	<u>S APPLICABLE</u>			
Packaging Material, Plastic	0.0								

Maximum content weight for a SWB is 1520 kg or 800 kg/m3.

Other metals is based on composition of typical HEPA filter.

Aproximate weight for plastic bags is used for packaging material/plastic field.

LL-T005	CONTAINER: Type/Size:				ner Matt: Steel Vol/Ctnr: 0.2	08 m3 Li	Liner Type: rigid iner Material: HDPE		Number S Number Pro	
TYPICAL WAS		ES FOR F	INAL WASTE	FORM (kg/m	13) STORED RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	JSOTOPIC C	·
Iron-based Metals Aluminum-Based Other Metals Other Inorganic M Cellulosics Rubber Plastics Solidified, Inorganic Soils Packaging Materia Packaging Materia Comments Content weight is I Weights based on Drum weight avera	/Alloys Metals/Alloys aterials ic matrix matrix ls, Steel i, Plastic imited to 76 kg typical HEPA fi	75.0 25.0 10.0 25.0 70.0 10.0 25.0 0.0 0.0 144.0 33.0 or 365 kg/m3	0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0	150.0 50.0 20.0 50.0 100.0 20.0 100.0 0.0 0.0	End of 1892: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022: TYPICA	0.4 0.6 0.2 0.2 0.2 0.2 0.2 0.2	Final Form 0.4 m3 0.6 m3 0.2 m3/yr 0.2 m3/yr 0.2 m3/yr 0.2 m3/yr 0.2 m3/yr 0.2 m3/yr 5 APPLICABLE	Cm244 Am241 Pu238 Pu239 Pu240 Pu241	4.14E+00 5.09E-01 1.68E-01 2.28E-01 1.84E-01 5.64E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

SITE NAME LL	_	WAST	TE TYPE MTRU HANDL	ING CH	GENERATOR SI	TE [U				
WASTE STREAM	MWIR ID LL-W018 WIPP ID LL-W018		EAM NAME Combined metal scrap & incidental combust (Form 3)							
MATRIX CODE SITE FINAL FORM II	Local ID Form 3 mixed	DESCRIPTION	This waste consists of contaminated equipment and laboratory trash too big to fit in 55 gallon drums. This waste does contain RCRA hazardous materials.							
	Group Uncalegorized Metal	tly of metal scrap such as dec	ommissioned glovehoves, hos	ada and other law		rell as laboratory trash. Typically it				
	Trans delinent interes deline	ardous materials such as solw	ents and lead shielding.	ill be mostly inorg	anic material, but	can vary widely. This waste does				
FINAL WASTE FOR	M DESCRIPTORS:			L		The same of the sa				
Defense TRU W Non-Defense TF Commercial TRI Unknown	RU Waste Non-Mixed	ITRU (Interest of the Interest	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X				

LL-W018 CONTAINER Type/Size		aste Box		iner Mati: Steel Vol/Ctnr:	.9 m3 Li	Liner Type: N ner Material:	Vone		Number \$	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/m	13) STORED	TRU WASTE	ESTIMATED	<u>)</u>	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	KALES	UF WASIE	GENERATION	¥. 1	<u>luclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	150.0	0.0	800.0		Projected	Einal Form		Am241	1.04E-02	Curies/m3
Aluminum-Based Metals/Alloys	20.0	0.0	800.0	End of 1992:	1.9	1.9 r	т3	Pu239	8.78E-03	Curies/m3
Other Metals	10.0	0.0	800.0	End of 1993;	1.9	ļ ·	т3	ขน240	2.03E-02	Curies/m3
Other Inorganic Materials	5.0	0.0	800.0	1994:	0.0		n3/yr	Pu241	5.94E-01	Curies/m3
Cellulosics	5.0	0.0	500.0	1995:	1.0		n3/yr		•	
Rubber	2.0	0.0	100.0	1996:	1.0	1.0 n	-			
Plastics	20.0	5.0	200,0	1997:	1.0	1.0 n	,			
Solidified, Inorganic matrix	2.0	0.0	300.0	1998-2002;	1.0	1.0 n	n3/yr			
Solldified, Organic matrix	2.0	0.0	300.0	2003-2022:	1.0	1.0 n				
Søils	0.0	0.0	0.0	=			_			
Packaging Materials, Steel	153.0			TYPICA		S APPLICABL	. <u>E</u>			
Packaging Material, Plastic	0.0				D008C					
Comments										

SITE NAME LL		WAST	E TYPEMTRU HANDLING CH GENERATOR SITE LL					
WASTE STREAM MWIR ID WIPP ID		STREAM NAME	Solidified Waste (Form 2)					
Local ID MATRIX CODE SITE FINAL FORM IDC	Form 2 Mixed		More than 50 volume percent of this waste consists of solidified water-based or oil-based liquids or solidified fine particles. The remaining waste consists of glovebox bagout waste, laboratory trash and some contaminated equipment.					
piil	to 90% of this waste matrix culds and Envirostone or Petro CRA listed hazardous material ETITION ASSIGNMENT	set for the oil-based liq s such as TCE and otl	ified in 1 to 5 gallon plastic containers using Portland cement or Aquaset for the waster based juids. The remainder consists of glovebox waste similar to form 1 waste. The waste does contain her solvents. IRUÇON CODE LL 111					
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU 📙	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown					

Footnotes

The TRUCON and NMVP assignments for this waste stream only applies to the solidified inorganics in the waste stream.

LL-W019 CONTAINER: Type/Size:		Container Mati: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE			Number Stored: 4 Number Projected: 31			
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/n Upper Limit	13) STORED RATES (TRU WASTE DE WASTE	ESTIMATED GENERATION	<u>Nuclide</u>	L ISOTOPIC COMPOSITIO Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	30.0 5.0 1.0 10.0 10.0 20.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 5.0 50.0	100.0 50.0 20.0 20.0 100.0 20.0 100.0 365.0	End of 1992: End of 1993: 1894: 1996: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.6 0.8 0.6 0.2 0.2 0.2 0.2 0.2 0.2	6 m3 m3 m3 m3 m3 m3/yr m	Am241 Pu239 Pu240 Pu241	1.24E+00 Curies/m3 7.89E-01 Curies/m3 6.63E-01 Curies/m3 2.01E+01 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 144.0 33.0	0.0	0.0	TYPICA	EPA CODE D040 F002	S APPLICABLE		

Drum weight averaged 30 kg of steet. Liner + liner bag averages 7 kg of polyethylen

000000

Mound Plant

Information Only 00596

MOUND PLANT (MD) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the MD waste stream profiles:

- MD Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by MD.
- The WTWBIR team had to assign identification numbers (IDs) to those MD waste streams not given an identifier by the site.

SITE NAME MD	WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-M001 Local ID MD-805 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Inorganic non-metal Site Matrix Description (24) Asbestos filters, (1)	STREAM NAME Asbestos Debris DESCRIPTION Asbestos filters glass filter
NO MIGRATION VARIANCE PETITION ASSIGNMEN	TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed Commercial TRU Waste Suspect Mi Unknown Unknown	TRU Operations Waste X PCBs

ENAME MD			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MD
MD-M001 CONTAINER Type/Size TYPICAL WASTE DENSIT	55-gallon	INAI WARTE	Container Mati: steel Liner Type: n/a Number Stored: 1 Int. Vol/Ctnr: 0.208/m3 Liner Material: Number Projected: 0
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	Average 0.0 0.0 0.0 200.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 160.0 0.0 0.0 0.0 0.0 0.0	STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity

MD-M001 - 2

MD - 2

2/28/95

SITE NAME MD			WAS	TE TYPE TRU HANDLI	ING CH	GENERATOR S	ITE	
	MWIR ID WIPP ID MD-T001 Local ID MD-836 3121 DC e Group Solidified Incription WD TRU slo			E Inorganic Process Residues Solidified TRU Sludge				
NO MIGRATION VAI FINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	M DESCRIPTORS: /aste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X	

00900

ENAME MD			WASTE TYPE TRU HANDLING CH GENERATOR SITE
MD-T001 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments There are 23 drums of solidified	0.0 0.0 0.0 0.0 811.3 0.0 0.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Descript

SITE NAME MD			WASTE TY	PETRU HANDLII	NG CH C	BENERATOR SIT	re MD
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	Group Combustible	<u> </u>		tic/Rubber Debris tic, rubber & some metal	debris		
NO MIGRATION VAR	RIANCE PETITION A	ASSIGNMENT MD 116A		TRUC	CON CODE MD	I16A	
PINAL WASTE FORM Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X Opera Resid Deco Enviro	rch and Devel. Waste ations Waste fues n and Decommissioning onmental Restoration Treatment of Waste enance	×	Asbestos PCBs Other N/A Unknown	×

ENAME MD			WAS	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE MD	
MD-T002 CONTAINER: Type/Size:	`\ 			iner Mati: steel Vol/Ctnr: 0.20	8 m3 Li	Liner Type: n/a ner Material:		Number S Number Proj	II
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	7.21E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.5	3.5 m3	Pu239	3.00E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	3.5	3.5 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Celtulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	333.5	193.8	850.5	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0	TVDIC 44	EDA CODE	C ADDI IOADI E			
Packaging Materials, Steel	131.0		L	IYPICAL	EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

SITE NAME MD			WAS	TE TYPE TRU	HANDLING C	H GE	NERATOR SIT	TE MD	
v	Foup Soils	0	STREAM NAMI	E Contaminated soil					
NO MIGRATION VARIA	NCE PETITION A	ASSIGNMENT MD 111B			TRUCON C	ODEMD 11	1B		
FINAL WASTE FORM Defense TRU Wasi Non-Defense TRU Commercial TRU V Unknown	te X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Restrom Treatment of V Maintenance	nissioning X	F C N	Asbestos PCBs Other N/A Unknown	X X	

つつつりょ

MD-T003 - 1

MD - 7

2/28/95

			 _		! 	ING CH GEN	IERATOR S		
MD-T003 CONTAINER: Type/Size:	Туре 005		Int. \	<u> </u>		Liner Type: n/a ner Material:		Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED	TRU WASTE	-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	4.01E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	66.4	66.4 m3			
Other Metals	0.0	0.0	0.0	End of 1993;	66.4	66.4 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	394.4	372.8	415.7	TVDICA	L ERA CORE	C ADDI ICADI E			
Packaging Materials, Steel	0.0			TIFICA	E EFA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								
Comments									
There are approxaimtely 28 boxes hillside hot spot #3.	s of soil gene	rated predomina	tely from the						

903000

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

MD-T003 CONTAINER: Type/Size:	'			niner Matt: steel Vol/Ctnr: 4.2	1m3 Li	Liner Type: n/a		Number :	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/i	m3) STORED	_ TRU WASTE	ESTIMATED	TYPICAL		jected: 0
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RAJES C	F WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0	-	Projected	Final Form	Pu238	2.26E-01	Curles/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	50.5	50.5 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	50.5	50.5 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	387.3	338.9	408.5			<u> </u>			
Packaging Materials, Steel	0.0			TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

There are 12 boxes of soil generated predominately from the hillside hot spot #3.

SITE NAME MD				WAST	E TYPE TRU	HANDLING [СН С	ENERATOR S	SITE MD	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code She Matrix Desc	C Unc	D-826 900 ategorized			Uncategorized un					
NO MIGRATION VAI						TRUCON	CODE			
FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	/aste RU Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Dey Operations Waste Residues Decon and Decor Environmental Re From Treatment of Maintenance	mmissioning X	TSCA	Asbestos PCBs Other N/A Unknown	×	

J. O. C. C. C. C.

E NAME MD			WAS	TE TYPE TRU	HAND	LING CH GE	NERATOR S	ITE MD	
MD-T004 CONTAINER Type/Size TYPICAL WASTE DENSITI	Type 004	INAL WASTE	Int.		21 m3 L	Liner Type: n/a iner Material: E-ESTIMATED		Number :	jected: 0
				RATES	OF WASTE	GENERATION			OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit				<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	358.1	177.6	538.7		Projected	Final Form	Pu238	7.80E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	16.8	16.8 m3	Pu239	1.47E-03	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	F	16.8 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:		0.0 m3/yr			
Saits	0.0	0.0	0.0	2003-2022.	0.0	0.0 m3/yr			
Packaging Materials, Steel	0.0	<u> </u>		TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

ITE NAME MD			WA	STE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE MD		_
	Type 003		Int.	·	32 m3 L	Liner Type: n/a iner Material:		Number S Number Pro	, -,	_
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r		TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity		
Iron-based Metals/Alloys	532.9	451.6	604.1		<u>Projected</u>	Final Form	Pu238	1.38E-01	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	4.6	4.6 m3	Pu239	2.60E-03	Curies/m3	
Other Metals	0.0	0,0	0.0	End of 1993:	4.6	4.6 m3				
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr				
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	T):=====		·	·			
Packaging Materials, Steel	0.0		——————————————————————————————————————	IYPICAL	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	0.0									

SITE NAME MD			WAST	E TYPETRU HANDLE	NG CH	GENERATOR S	ITE MD
WI	PP ID MD-T005 call D MD-842		_	Contaminated solls with debr	is		
MATRIX CODE SITE FINAL FORM IDC	4200			THE SUIT WILL THE RESIDENCE			
Waste Matrix Code Gro Site Matrix Descripti NO MIGRATION VARIAN	SM-10 & Hill			ТРИС	CON CODE MD	1110	
FINAL WASTE FORM DE			<u>-</u>	<u> </u>	SON CODE MD	1118	
Defense TRU Waste Non-Defense TRU W Commercial TRU Wa Unknown	····	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

MD-T005 - 1

MD - 13

2/28/95

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity	ENAME MD			WA	STE TYPE TRU	HAND	ING CH GEN	IERATOR S	ITE MD	
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 0.0 0	Type/Size	Type 005		înt.	Vol/Ctnr: 2.	37 m3 Lí	ner Material:			L 1
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Other Metals Other Inorganic Materials Other Inorganic M	Material Parameters				RATES	TRU WASTE	ESTIMATED GENERATION	<u>Nuclide</u>	Activity	OMPOSITION
Other Metals 0.0 0.0 0.0 0.0 End of 1993: 4.7 4.7 m3 Other Inorganic Materials 0.0 0.0 0.0 1994: 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE	•	II	<u></u>	 		Projected	Final Form	Pu238	7.00E-02	Curies/m3
Other Inorganic Materials 0.0 0.0 0.0 1994: 0.0 0.0 m3/yr Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/ry Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 TYPICAL EPA CODES APPLICABLE	-		<u> </u>	 			<u></u>			
Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Soils 408.0 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE	- · · · - · · · · · · · · · · · · · · ·	H	 	<u></u>						
Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Soils 408.0 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE				<u> </u>			F			
Plastics 0.0 0.0 0.0 1997: 0.0 0.0 m3/ry Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/ry Soils 408.0 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE			1	 						
Solidified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Solidified, Organic matrix O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	• • • • • • • • • • • • • • • • • • • •	l		J						
Solidified, Organic matrix Soils 408.0 Packaging Material, Plastic O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.		<u> </u>	L	ļ	•					
Soils 408.0 408.0 408.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0	·	 _	J	├ ───			F			
Packaging Material, Plastic TYPICAL EPA CODES APPLICABLE TYPICAL EPA CODES APPLICABLE	. •	⊢	<u> </u>	<u> </u>	2003-2022;	0.0	0.0 m3/yr			
Packaging Material, Plastic 0.0			408.0	408.0	TYPICA	L EPA CODE	S APPLICABLE			
There are 2 boxes containing soil mixed with florco absorbent from the hillside hot	Comments									

MD-T005 - 2

MD - 14

2/28/95

MD-T005 CONTAINER:			 	iner Mati: steel		Liner Type: n/a		Number S	Stored: 6
Type/Size:	Type 004	<u> </u>	l Int.	Vol/Ctnr: 4.2	21]m3 Li	ner Material:		Number Proj	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r			-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		DF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	7.00E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	25.3	25.3 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	25.3	25.3 m3			
Other Inorganic,Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	275.3	17.8	403.9	TYPICA	1 FPA CODE	S APPLICABLE			
Packaging Materials, Steel	0,0			111.57		<u>- 147 F.A. P.E.</u>		,	
Packaging Material, Plastic	0.0							,	

SITE NAME MD	WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-T006 Local ID MD-824 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal Site Matrix Description Metal debris from D&D of Bldgs.	STREAM NAME Metal debris w/o lead or cadmium DESCRIPTION D&D metal debris . 38-10 & 13, SM-10 & 25, R-120 & 149 and wts.
NO MIGRATION VARIANCE PETITION ASSIGNMENT MD 1	17A TRUCON CODE MD 117A
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Qperations Waste X PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

000613

SITE NAME MD			WAS	STE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE MD	
MD-T006 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	Туре 008	INAL WASTE	Int.	L	J	Liner Type: n/a iner Material: E -ESTIMATED	TYPICAL	Number:	
Material Parameters				RATES		GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	Average 484.3	Lower Limit 329.4	Upper Limit 654.4		Projected	Final Form	Pu238	5.38E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		6.3 m3			
Other Metals	0.0	0.0	0.0	End of 1993:		6.3 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	(· ·			
Packaging Materials, Steel	0.0		<u>ا</u>	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								

IENAME MD			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR S	ITE MD	
MD-T006 CONTAINER Type/Size TYPICAL WASTE DENSITI	Туре 004	INAL WASTE	(nt.	<u> </u>		Liner Type: n/a iner Material:		Number S Number Pro	jected: 0
Material Parameters	Average	Lower Limit	Upper Limit		F WASTE	E_ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys	508.6	252.0	631.8	<u> </u>	Projected	<u>Final Form</u>	Pu238	4.04E-01	Curies/m3
Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	0.0	End of 1992:	46.3	46.3 m3			
Other Inorganic Materials	0.0	0.0	0.0	End of 1993: 1994:	46.3	46.3 m3 0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber Plastics	0.0	0.0	0.0	1996;	0.0	0.0 m3/yr			
Solidified, Inorganic matrix	0.0	0.0	0.0	1997: 1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr			
Soils	0.0	0.0	0.0	TYPICAL		S APPLICABLE			
Packaging Materials, Steel Packaging Material, Plastic	0.0			111100	CI A GODE	O AFFLICABLE			

MD-T006 - 3

MD - 18

SITE NAME MD			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE MD	·
MD-T006 CONTAINER: Type/Size:	Туре 003		Int.	L	32m3 L	Liner Type: n/a iner Material:		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n		TRU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	<u>RAJES (</u>	DE WASTE	GENERATION	<u>Nuclide</u>	Activity	
fron-based Metals/Alloys	550.2	391.0	680.6		Projected	Final Form	Pu238	4.31E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0:0	End of 1992:	7.0	7.0 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	7.0	7.0 m3			
Other inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TOUNION					
Packaging Materials, Steel	0.0			TYPICA	L EPA COU	ES APPLICABLE			
Dackaging Material Oleotic									

0000

SITE NAME MD	WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-T007 Local ID MD-825 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Uncategorized Metal Site Matrix Description Miscellaneous equipmen	STREAM NAME Uncategorized metal debris DESCRIPTION TRU metal debris t - hood line trash.
NO MIGRATION VARIANCE PETITION ASSIGNMEN	TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed Commercial TRU Waste Unknown Unknown	TRU X Operations Waste X PCBs

190617

MD-T007 - 1

MD - 20

ENAME MD			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE MD	
MD-T007 CONTAINER: Type/Size:			<u> </u>	ner Matt: steel Vol/Ctnr: 0.2	08 m3 Li	Liner Type: n/a ner Material:		Number S Number Proj	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED	TRU WASTE	ESTIMATED			OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	Activity	OMI COLLICIA
Iron-based Metals/Alloys	380.0	0.0	480.0		Projected	Final Form	Pu238	5.00E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	5.0	5.0 m3	Pu239	3.00E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	5.0	5.0 m3	U233	5.00E-02	Curies/m3
Other Inorganic Materials	5.0	0.0	200.0	1994:	0.0	0.0 m3/yr			
Cellulosics	10,0	0.0	340.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soits .	0.0	0.0	0.0	TYDICA	LERA CORE	·			
Packaging Materials, Steel	131.0			TTPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0		•						
Comments		•							
Other inorganic materials - glass Cellulosics - burnable paper & rag Activity on Pu239 is less than this	js ligure								

SITE NAME MD	WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-T008 Local ID MO-804 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Combustible	STREAM NAME Uncategorized plastics/rubber debris DESCRIPTION Uncategorized plastics/rubber debris
Site Matrix Description Plastic and rubber debris from B	IRUCON CODE
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

SITE NAME MD			WASTE TYPE TRU HANDLING CH GENERATOR SITE MD								
MD-T008 CONTAINER: Type/Size	Туре 001		Int.	iner Matt: steet Vol/Ctnr: 0.20		Liner Type: n/a iner Material:		Number S Number Proj			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E-ESTIMATED	TYPICAL	ISOTOPIC CO	OMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>			
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	6.59E+01	Curies/m3		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		1.5 m3					
Other Metals	0.0	0.0	0.0	End of 1993;		1.5 m3					
Other inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr					
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr					
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr					
Plastics	228.1	211.5	246.6	1997:	0.0	0.0 m3/ry					
Solidified, Inorganic matrix	0.0	0,0	0.0	1998-2002:	0.0	0.0 m3/yr					
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Soils	0.0	0.0	0.0	Time t		· ·					
Packaging Materials, Steel	131.0	<u></u>	<u> </u>	IYPICA	L EPA CODE	S APPLICABLE					
Dacksalna Material Disette	- 50										

000620

SITE NAME MD	WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-T009 Local ID MD. 801+804 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Combustible Site Matrix Description Uncategorized combustible debris	STREAM NAME Uncategorized combustible debris DESCRIPTION Uncategorized combustible debris
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown X Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other X Decon and Decommissioning X N/A Environmental Restoration From Treatment of Waste Maintenance

)60621

MD-T009 - 1

MD - 24

SITE NAME MD			WAS	TE TYPETRU	HANDI	LING CH GEN	ERATOR S	ITE MD	
MD-T009 CONTAINER: Type/Size: TYPICAL WASTE DENSITE	Type 001	INAL WASTE	int.	<u> </u>	_,	Liner Type: n/a iner Material: E-ESTIMATED	TYPICAL	Number S Number Proj	ected: 0
	-					GENERATION	Nuclide		OMPOSITION
Material Parameters	Average	Lower Limit	<u>Upper Limit</u>					Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	3.10E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0,2 m3	Pu239	8.84E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	50.0	50.0	50.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0,0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solis	0.0	0.0	0.0	=					
Packaging Materials, Steel	131.0		<u></u>	TYPICA	L EPA CODE	ES APPLICABLE			
Packaging Material, Plastic	0.0								

MD-T009 - 2

SITE NAME MD			WAST	TE TYPE TRU	HANDLING CH	GENERATOR	SITE MD	
	MWIR ID WIPP ID Local ID MD-T01 MD-825 5410 DC Group Heterogen Filters from	eous		Composite filters Glass + metal filte				
NO MIGRATION VA	RIANCE PETITION	ASSIGNMENT			TRUCON CO	ODE		
FINAL WASTE FOR	M DESCRIPTORS:				-	<u> </u>		
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devoloperations Waste Residues Decon and Decon Environmental Re From Treatment of Maintenance	nmissioning X	TSCA Asbestos PCBs Other N/A Unknown	X	

ENAME MD			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE MD
MD-T010 CONTAINER: Type/Size:	·			iner Matt: steel Vol/Ctnr: 0.20	08 m3 Li	Liner Type: n/a ner Material:		Number Stored: 2 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/n Upper Limit			ESTIMATED GENERATION	<u>Nuclide</u>	ISOTOPIC COMPOSITION Activity
iron-based Metals/Alloys Aluminum-Based Metals/Alloys	200.0 100.0	50.0 5.0	350.0 200.0	End of 1992:	Projected 0.4	Final Form	Pu238 Pu238	1.60E+00 Curies/m3 3.00E-02 Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	0.4	0.4 m3 0.4 m3		
Other Inorganic Materials Cellulosics	200.0	50.0 0.0	350.0	1994: 1995:	0.0	0.0 m3/yr 0.0 m3/yr		
Rubber Plastics	0.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry		
Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Soils	100.0	10.0	0.0 150.0	2003-2022: TYPICA	0.0	0.0 m3/yr S APPLICABLE		
Packaging Materials, Steel Packaging Material, Plastic	131.0			11190	<u>CELY OOD</u>	O AFTEIDABLE		
Comments								
fron-based metal - fractions of me Soils - fillers media is used. Activities on Pu238 and Pu239 ar			i					

16(62)

SITE NAME MD		WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group [U]	MD-T011 MD824 5420	STREAM NAME Predominately metal debris DESCRIPTION Sheet metal, piping, chair, conduit, glovebox PP-16, R-149, 38-10
NO MIGRATION VARIANCE P	ETITION ASSIGNMENT MD 11	
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning X N/A X Environmental Restoration From Treatment of Waste Maintenance

ENAME MD			WA	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	SITE MD	
MD-T011 CONTAINER: Type/Size:	·			niner Matt: Steel Vol/Ctnr: 3.	16 m3 Li	Liner Type: n/a ner Material:		Number : Number Pro	<u> </u>
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/ı	m3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	Olin Califoli
Iron-based Metals/Alloys	300.0	200.0	438.0		Projected	Final Form	Pu238	6.00E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.2	3.2 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	3.2	3.2 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVMDA					
Packaging Materials, Steel	0.0			TIPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								
Comments									
iron-based metal - "scrap" unknot Pu238 activity is less than this ап	wn material pa nount.	arameter							

000000

					<u> </u>				
MD-T011 CONTAINER	Вох		Contai	iner Matl: Steel		Liner Type: n/a		Number S	tored:
Type/Size:		Int.	Vol/Ctnr: 4.	21 m3 Li	ner Material:	Number Projected: 0			
TYPICAL WASTE DENSITE	ES FOR F	INAL WASTE	FORM (kg/n	3) STORED	TRU WASTE	E-ESTIMATED	TYPICAL	. ISOTOPIC C	L,
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>
Iron-based Metals/Alloys	250.0	200.0	300.0		Projected	Final Form	Pu238	1.00E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	12.6	12.6 m3			
Other Metals	0.0	0.0	0.0	End of 1993;	12.6	12.6 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		-	
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVDICA					
Packaging Materials, Steel	0.0		,	ITFICA	L EPA CUDE	S APPLICABLE			
Packaging Material, Plastic	0.0								

"Misc. waste" unknown material parameters.

NAME MD			WAS	TE TYPE TRU	HANDL	ING CH GEN	IERATOR S	ITE MD	
MD-T011 CONTAINER: Type/Size:	` 			iner Matl: steel Vol/Ctnr: 0.2	08 m3 Li	Liner Type: n/a ner Material:		Number S Number Proj	1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form	Pu239	4.00E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.4	0.4 m3			
Other Metals	0.0	0.0	0.0	End of 1993;	0.4	0.4 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Solls	0.0	0.0	0.0	TVOICE	. FDA 222	· ·			
Packaging Materials, Steel	131.0			ITPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								
Comments									
Drum weights not known.									

SITE NAME MD			WAS	TE TYPE TRU HANDL	ING CH	GENERATOR SITE	≡ MD
WASTE STREAM MATRIX CODE SITE FINAL FORM ID				E Uncalegorized heterogeneo N Metal, glass, asbestos filters			
Waste Matrix Code Site Matrix Desc NO MIGRATION VAR	ription Bidg. PP-11:	3, R-140			CON CODE	,	
Per	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	\exists	Asbestos PCBs Other N/A Unknown	X

)))

MD-T012 - 1

MD - 32

SITE NAME MD			WASTE TYPE TRU HANDLING CH GENERATOR SITE MD	
			GENERATOR SITE MD	
MD-T012 CONTAINER: Type/Size:			Container Matt: steel Liner Type: unknown Number Stored: 3 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0	
TYPICAL WASTE DENSITION Material Parameters	ES FOR FI	NAL WASTE Lower Limit	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide Activity	-
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	205.0	10.0	400.0 Projected Final Form Pu239 3.00E-02 Curies/m3	
Other Metals	0.0	0.0	0.0 End of 1992: 0.6 0.6 m3 0.0 End of 1993: 0.6 0.6 m3	
Other Inorganic Materials Cellulosics	0.0	0.0	0.0 1994: 0.0 0.0 m3/yr 0.0 1995: 0.0 0.0 m3/yr	
Rubber Plastics	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr 0.0 1997: 0.0 0.0 m3/ry	
Solidified, Inorganic matrix Solidified, Organic matrix	50.0	0.0	0.0 1998-2002: 0.0 0.0 m3/yr 100.0 2003-2022: 0.0 0.0 m3/yr	
Soils Packaging Materials, Steel	0.0 131.0	0.0	0.0 TYPICAL EPA CODES APPLICABLE	
Packaging Material, Plastic	0.0			
Comments	·	- -		
Iron-based metals - average is mi Aluminum-based metals - possible Solidified, organic matrix - "CO3" Pu239 activity is less than this am	e 30 gallon in li	ner		

00000

SITE NAME MD	WASTE TYPE TRU HANDLING CH GENERATOR SITE MD
WASTE STREAM MWIR ID WIPP ID MD-T013 Local ID MATRIX CODE 5311 SITE FINAL FORM IDC	STREAM NAME Leaded gloves/aprons DESCRIPTION Leaded gloves/aprons
Waste Matrix Code Group Combustible	. 38, glass, lead gloves, 4 - 1 litre bottles, 3 - poly bottles from R Bldg.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TR Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other X Decon and Decommissioning X Environmental Restoration From Treatment of Waste Maintenance

00063

MD-T013 - 1

MD - 34

SITE NAME MD			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE MD	
MD-T013 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	Туре 001	INAL WASTE	Int.	n3) STORED	 TRU WASTI	Liner Type: n/a iner Material: E_ESTIMATED	TYPICAL	Number S Number Pro	1
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	1.63E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.4	0.4) m3	Pu239	3.70E+00	Curies/m3
Other Metals	336.1	313.9	358.2	End of 1993:	0.4	0.4 m3			
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0,0	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0	LJ	<u> </u>	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material Blactic	- 00								

00063

MD-T013 - 2

MD - 35

SITE NAME MD			WAS	STE TYPE MTRU HANDL	ING CH	GENERATOR SIT	re MD
	Group Solidified Inc		DESCRIPTIO	E Absorbed Aqueous Liquids N Corrosives - TRU			
NO MIGRATION VAI		SSIGNMENT		TRU	CON CODE		
Defense TRU W Non-Defense TR Commercial TRU Unknown	laste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSC	A Asbestos PCBs Other N/A Unknown	X .

SITE NAME MD			WAS	TE TYPE MTR	HANDL	ING CH GEN	ERATOR S	SITE MD
MD-W002 CONTAINER: Type/Size:				iner Matl: steel Vol/Ctnr: 0.20	08 m3 Lin	Liner Type: r/a ner Material:		Number Stored: 12 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/r			ESTIMATED GENERATION		ISOTOPIC COMPOSITION
Material Parameters Iron-based Metals/Alloys	Average 0.0	Lower Limit	Upper Limit		Projected	Final Form	<u>Nuclide</u> Pu238	<u>Activity</u> 1.63E+00 Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	2.5	2.5 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	2.5	2.5 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0,0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		•
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE		
Packaging Materials, Steel	131.0			111102	D002B	<u>ON, LIONDLE</u>		
Packaging Material, Plastic	0.0				DUVLD			
Comments								
Typical activity is less than 1.63E	+00							

MD-W002 - 2

University of Missouri

UNIVERSITY OF MISSOURI (MU) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the MU waste stream profiles:

- MU Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by MU.
- Since only current volumes were provided by MU, the final form volumes were assumed to be the same as the current volumes.

SITE NAME MU				WAST	E TYPE MTRU HAI	NDLING CH	GENE	RATOR SITE	MU	
WASTE STREAM		MU-W002 MU-W002			Heterogeneous Debris Mixed TRU Waste					
MATRIX CODE SITE FINAL FORM II	DC	5400								
Waste Matrix Cod Site Matrix Des	scription M	ITRU Heter	ogeneous Debris. end of the project.	Radioactive wastes f	 es generated on the proje forn normal operation wil er wipes from periodic cle	I consist of th	ie following: 1) i	IEPA fillers fr	om the glovebox, i	e D&D of the ?) HEPA
NO MIGRATION VA	RIANCE	ETITION A	SSIGNMENT			TRUCON CO	ODE			
FINAL WASTE FOR Defense TRU V Non-Defense T Commercial TR Unknown	Vaste RU Waste	PTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU X	Rsearch and Devel. Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Was Maintenance	oning X	TSCA Asb PCE Othe N/A Unk	s	X	

SITE NAME MU			WASTE TYPE MTRU HANDLING CH GENERATOR SITE MU								
MU-W002 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	Int,	n3) STORED	 TRU WASTE	Liner Type: bag iner Material: 4 ml pla E-ESTIMATED	J	Number : Number Pro	ł /		
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u> Am241	Activity 8,00E-01	Curies/m3		
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	Projected 0.000	Final Form 0.000 m3	Np237	3.00E-03	Curies/m3		
Other Metals Other Inorganic Materials	0.0 25.0	0.0	60.0	End of 1993: 1994:	0.060	0.060 m3 0.080 m3/yr	Pu239 U238	3.40E-01 1.60E-09	Curies/m3 Curies/m3		
Cellulosics	2.5	0.0	10.0	1995;	0.080	0.080 m3/yr					
Rubber Plastics	25.0 37.5	0.0	50.0 80.0	1996: 1997:	0.080	0.080 m3/yr 1.364 m3/ry					
Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1998-2002: 2003-2022:	0.000	0.000 m3/yr					
Soils	0.0	0.0	0.0			0.000 m3/yr					
Packaging Materials, Steel Packaging Material, Plastic	0.0			337.157	D006A	S WIT TINDEE					
					DOLLA						

NEVADA TEST SITE (NT) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the NT waste stream profiles:

- NT Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by NT.
- The material parameters for NT waste streams were added by the WTWBIR team based on volume weighted averages of appropriate waste streams from LL. All of the NT TRU waste is assumed to be waste from LL.
- Final form volumes were not provided by NT for individual years. Based on agreements with the site, the same value for the total projected volume was reported as the final form volume for the years 2003 to 2022.

ENAME NT	WASTE	TYPE MTRU HAND	LING CH GE	NERATOR S	ITE LL	
NT-W001 CONTAINER: SWB Type/Size: TYPICAL WASTE DENSITIES FOR FINAL WASTE FOR	Container		Liner Type: iner Material:		Number Number Pro	ojected:
	### STATE OF THE PROPERTY OF T	Projected d of 1992: 272.0 d of 1993: 272.0 1994: 0.0 1995: 0.0 1996: 0.0 1997: 0.0 998-2002: 0.0 TYPICAL EPA CODE CA181 CA352 D001A D001C D002B D003D D006A D007A D008C D011A F001 F002 F003 P015	Final Form 275.5 m3 275.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	TYPICAL Nuclide AM241 AM243 CF249 CF250 CF252 C14 CS137 CM243 CM244 CM248 EU152 EU154 H3 KR85 MFP NP237 PU238 PU239 PU240 PU241 PU242 PU244 PU231 RA226 SR90 TH228 U232 U233 U234 U235 U238	Activity 4.90E-01 1.99E-03 1.89E-05 5.28E-04 8.94E-03 4.08E-07 6.54E-05 1.10E-06 6.79E-01 1.05E-11 3.32E-03 1.98E-03 2.04E-04 6.53E-04 3.41E-02 7.82E-06 2.41E-01 4.54E+00 3.05E-02 5.60E-01 1.42E-04 1.63E-09 8.16E-07 4.09E-04 2.24E-07 4.03E-06 1.71E-07 5.45E-08	Curies/m3
NT-W001 - 2	NOC 175 SVYDS,	NT - 2				

SITE NAME NT				WAST	E TYPE MTRU HANDI	LING CH	GENERATOR SITI	E LL
	MWIR ID WIPP ID Local ID	NT-W001			Heterogeneous Debris, Uni	·	NL	
MATRIX CODE SITE FINAL FORM ID	2	5490						
Waste Matrix Code Site Matrix Desc	ription The	nis waste st erformed on RU waste: o	ream consists of gl the waste to verify one and 3 drums ar	there are no free lique remote handled. Ti	Jory trash, contaminated equiples present, with the except the waste stream was general The waste was declared as	ion of liquid i ated at Lawre	n aerosol cans. Most of t ence Livermore National I	lime radiaography has been the waste is contact handled Laboratory, Livermore, CA generator in April, 1991.
NO MIGRATION VAR	-		SSIGNMENT NT 1	11; 116; 211;225	ŢŖ	UCON COD	ENT 111; 116; 211;225	
Defense TRU We Non-Defense TR Gommercial TRU Unknown	aste U Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioni Environmental Restoration From Treatment of Waste Maintenance	×	TSCA Asbestos PCBs Other N/A Unknown	×

HANDLING CH

GENERATOR SITE LL.

2) Empty boxes deconned to LLW concentrations, with 1 SWB of decon residue generated.

D38(Du) 1.97E-07 Curies/m3

- Of total volume, 612 m3, and curies for isotopes with > 1 yr T 1/2's, 4,039 curies;
- Drums comprise 55.6% of volume, with 2,245.684 Ci.
- Boxes comprise 44.4% of volume, with 1,793.316 Ci
- Packages (drums & boxes) average 6.593 Ci/m3.

PU-239 total grams, 6,300.5:

- Packages (drums & boxes) average 10.28 g/m3.

00643

NT-W001 - 3

NT - 3

ENAME NT			WAS	TE TYPE MTR	IDNAH [U	LING CH GEN	NERATOR S	SITE [LL	
NT-W001 CONTAINER: Type/Size:	L		 ∣	ner Mati: Steel Vol/Ctnr: 0.20	08 m3 L	Liner Type; Rigid iner Material: HDPE 9	90 mil.	Number Number Pro	1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	 EORM (ka/m	<u> </u>	l	E-ESTIMATED			OMPOSITIO
Malerial Parameters fron-based Metals/Alfoys Aluminum-Based Metals/Alfoys Other Metals Other Inorganic Materials Cellulosics Rubber	9.9 5.2 1.9 3.3 84.9	0.0 0.0 0.0 0.0 0.7 0.0	319.0 310.0 305.0 171.0 318.0 168.0		Projected 340.6 340.6 0.0 0.0 0.0	### GENERATION Final Form 344.0 m3 344.0 m3 0.0 m3/yr 0	Nuclide AM241 AM243 CF249 CF250 CF252 C14	Activity 4.70E-01 1.99E-03 1.89E-05 5.29E-04 8.95E-03 4.08E-07	Curies/m3 Curies/m3 Curies/m3 Curles/m3 Curies/m3
Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	85.9 19.7 19.7 0.0 131.0 37.0	5.1 7.8 7.8 0.0	318.0 139.0 139.0 0.0	1997: 1998-2002: 2003-2022: <u>TYPICA</u>	CA181	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	CS137 Cm243 CM244 CM248 EU152 EU154 H3	6.55E-05 1.10E-06 6.79E-01 1.05E-11 3.32E-03 1.99E-03 2.04E-04	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Comments This waste stream/container of California Hazardous Waste code Most of this waste was packag were imposed; the generator is nearly stream of the content, activity, quant info provided by LLNL.	es CA352 and jed before R0 ot confident a	d CA181. CRA characteriza ibout waste contr	ation requiremen	nts	D001A D001C D002B D003D D006A		KR85 MFP NP237 PU238 PU239 PU240	6.53E-04 3.41E-02 7.82E-06 2.41E-01 4.54E+00 3.05E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Assumptions: - Contents of 1636 55-gal. drums m3 drums Two boxes contain 12 drums, w		_		ĺ	D007A D008C D011A		PUZ41 PUZ42 PUZ44 PAZ31 RAZ26	5.60E-01 1.42E-04 1.63E-09 8.16E-07 4.09E-04	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
- Empty 55-gal, overpacks are de generating 3 drums (0,208 m3/dru clothing, carbon filter vents, and g	ım) ol decon				F001 F002 F003 P015		SR90 TH228 U232 U233	2.24E-07 4.03E-06 2.95E-05 2.94E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3
- Empty 55-gal. drums are decontaminated and/or disposed as LLW, drums (0.208 m3 drum) and 1 SWB of decon residue 58 steel, oversized boxes: 1) Contents are size-reduced to fit inside				}			U234 U235 U238	8.16E-06 1.71E-07 5.45E-08	Curies/m3 Curies/m3 Curies/m3

NT-W001 - 4

NT - 4

SITE NAME NT	WASTE TYPE MTRU	HANDLING CH	GENERATOR SI	LE [T	
Empty boxes deconned to LLW concentrations, with 1 SWB of decogenerated.		· · · · · · · · · · · · · · · · · · ·	D38 (du)	1.97E-07	Curies/m3 Curies/m3
 Of total volume, 612 m3, and curies for isotopes with > 1 yr T 1/2's, 4 Drums comprise 55.6% of volume, with 2,245.684 Ci. Boxes comprise 44.4% of volume, with 1,793.316 Ci Packages (drums & boxes) average 6 593 Ci/m3. 	1.03a cauez				
- PU-239 total grams, 6,300.5: - Packages (drums & boxes) average 10.28 g/m3.					

000647

NT-W001 - 5

OAK RIDGE NATIONAL LABORATORY (OR) WASTE STREAM PROFILES

The following assumptions/modifications were made by the WTWBIR team in developing the OR waste stream profiles:

- OR Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by OR.
- Since only current volumes were provided by OR, the final form volumes were assumed to be the same as the current volumes.
- Based on agreements with OR, the volumes per year for 1998-2002 and 2003-2022 were corrected to reflect the appropriate number of years.
- OR reported all containers for each waste stream on one form. In order to maintain consistency with the other sites, forms for each type of container were developed by the WTWBIR team. All of the information on the container form remained the same as reported by OR, except that the volume information for each container was recalculated. These calculations were based on the total number of each container, the volume of each container, and the total volumes reported by OR. The volumes for three casks were listed as unknown. The volumes were assumed to be an average of the other casks submitted by OR.

SITE NAME OR		WASTE TYPE MTRU HANDLING RH GENERATOR SITE OR
	OR-W040 OR-W040 2039	STREAM NAME RH TRU Heterogeneous Debris DESCRIPTION 5490 Uncategorized Heterogeneous Debris
MATRIX CODE SITE FINAL FORM IDC Wasle Matrix Code Group	5400 2039 Heterogeneous	e vo citouregement de penis
	This waste is categorize	I TRU waste which is classified as contaminated equipment, decontamination debris or dry solids. The physical fo d as heterogeneous debris (matrix code 5400).
NO MIGRATION VARIANCE		TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	Research and Devel, Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A Environmental Restoration From Treatment of Waste Maintenance

ENAME OR			WAST	E TYPE MTR	U HANDI	ING RH GEN	ERATOR S	SITE OR	 ,
OR-W040 CONTAINER Type/Size				ol/Ctnr:		Liner Type: iner Material:		Number S	L
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/m3	STORE	TRU WAST	E-ESTIMATED	TYPICAL	. ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	<u> </u>
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Ac227	1.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0		End of 1992:		5.0lm3	Am241	3.89E+00	Curies/m3
Other Metals	0.0	0.0	<u> </u>	End of 1993:		5.0 m3	Am243	9.99E-05	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:		0.0 m3/yr	Bk249	9.99E-05	Curies/m3
Cellufosics	80.9	0.0	184.8	1995:		0.0 m3/yr	Cf249	3.38E-03	Curies/m3
Rubber	7.4	0.0	17.9	1998:	0.0	0.0 m3/yr	Cf252	2.52E-01	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry	Cm244	1.70E+00	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Co60	3.50E+00	Curles/m3
Solidified, Organic matrix	0.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr	Cs137	3.70E+02	Curies/m3
Soils	0.0	0.0	0.0		L	<u> </u>	Pu238	1.19E+01	Curies/m3
Packaging Materials, Steel	0.0			TYPICA	L EPA CODE	S APPLICABLE	Pu239	4.47E+00	Curies/m3
Packaging Material, Plastic	0.0				D006A		Pu241	4.32E+00	Curles/m3
Comments	L				D008A		Ra223	1.00E-03	Curies/m3
					D009A		Sr90	4.26E+02	Curles/m3
External volume of these casks a	ire unknown.				-		Th232	5.00E-04	Curies/m3
5490 Uncategorized Heterogene	ous Debris inf	omailon and da	ila availahla hae n	not l	D011A		U233	3,95E-01	Curles/m3
been compiled and reduced to pr	ovide a detaik	ed breakdown fo	r the material	i			U235	1.00E-04	Curies/m3
parameters for each waste stream	n and waste r	natrix code, OF	NL is implementing	ng Ì			U238	9.17E-05	Curies/m3
a QAPjP for TRU waste characte data will be used to produce more waste stream. Data submitted up	rization in wh detailed info	ich utilization of , rmation on mate	process knowledg riai parameters po	ie i					

OR-W040 - 2

OR - 2

NAME OR			WAST	E TYPE MTR	IDNAH Ü	LING RH GEN	ERATOR S	ITE OR	
OR-W040 CONTAINER Type/Size	Drum 55-gallon		 1	ner Mall: Bl /ol/Ctnr: 0	21]m3 Li	Liner Type: Iner Material:		Number Pro	
TYPICAL WASTE DENSIT	ES FOR FI	NAL WASTE	FORM (kg/m	3) STORED	TRU WASTI	E ESTIMATED	TYPICAL	ISOTOPIC C	 OMPOSITIC
Malerial Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	031110
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected		Ac227	1.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	I	End of 1992:	0.2	Final Form	Am241	3.89E+00	Curies/m3
Other Metals	0.0	0.0	ļI	End of 1993:	l	0.2 m3	Am243	9.99E-05	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994;	0.2	0.2 m3	Bk249	9.99E-05	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	C/249	3.38E-03	Curies/m3
Rübber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Cf252	2.52E-01	Curles/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/yr	Cm244	1.70E+00	Çuries/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/ry 0.0 m3/yr	Co60	3.50E+00	Curies/m3
Solldified, Organic matrix	0.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr	Cs137	3.70E+02	Curies/m3
Soils	0.0	0.0	0.0		L		Pu238	1.19E+01	Curies/m3
Packaging Materials, Steel	141.8		L	TYPICA	L EPA CODE	S APPLICABLE	Pu239	4.47E+00	Curies/m3
Packaging Material, Plastic	39.4				D006A		Pu241	4.32E+00	Curies/m3
Comments	L				D008A		Ra223	1.00E-03	Curies/m3
				 -	D009A		Sr90	4.26E+02	Curies/m3
5490 Uncategorized Heterogene	ous Debris inf	ormation and da	ita available has i	not			Th232	5.00E-04	Curies/m3
been compiled and reduced to pr parameters for each waste strea	m and waste r	o preskoom fo 30. aboartist	or me materia! RNI is implement	lng	DOLLA		U233	3.95E-01	Curies/m3
a QAPjP for TRU waste characte	rization in whi	ich utilization of	process knowled	lge l			U235	1.00E-04	Curies/m3
data will be used to produce more waste stream. Data submitted w	e delailed info	rmation on mate	rial parameters p	pěr			U238	9,17E-05	Curies/m3

ENAME OR			WAS	TE TYPE MIRE	I HANDL	ING RH GEN	ERATOR S	ITE OR	
OR-W040 CONTAINER: Type/Size:	·———			ner Mati: concr Vol/Ctnr: 1.6		Liner Type: ner Material:		Number S Number Pro	
TYPICAL WASTE DENSITE	ES FOR FI	NAL WASTE	FORM (kg/n			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
iron-based Metals/Alloys Aluminum-Based Metals/Alloys	96.2	0.0	1716.4	End of 1892:	Projected 64.7	Final Form 64.7 m3	Ac227 Am241	1.00E-03 3.89E+00	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	0.0	0.0	21.3 24.0	End of 1993: 1994:	64.7 0.0	64.7 m3 0.0 m3/yr	Am243 Bk249	9.99E-05 9.99E-05	Curies/m3 Curies/m3
Cellulasics Rubber	80.9 7.4	0.0	184.6 17.9	1996: 1996:	0.0	0.0 m3/yr 0.0 m3/yr	C/249 C/252	3,38E-03 2,52E-01	Curies/m3 Curies/m3
Plastics Solidified, Inorganic matrix	64.9 0.0	0.0	149.0	1997: 1998-2002:	0.0	0.0 m3/ry 0.0 m3/yr	Cm244 Co60 Cs137	1.70E+00 3.50E+00 3.70E+02	Curies/m3 Curies/m3 Curies/m3
Solidified, Organic matrix Solis	0.0	0.0	0.0	2003-2022: TYPICA	0.0 L EPA CODE	0.0 m3/yr	Pu238 Pu239	1.19E+01 4.47E+00	Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	0.0				D006A D008A		Pu241 Ra223	4.32E+00 1.00E-03	Curies/m3 Curies/m3
Comments 5490 Uncategorized Heterogener				s not	D009A		Sr90 Th232	4.26E+02 5.00E-04	Curies/m3 Curles/m3
been compiled and reduced to pr parameters for each waste streat a QAPJP for TRU waste characte	m and waste a edzation in wh	matrix code. OF ich utilization of	RNL is implement process knowle	edge	D011A		U233 U235	3.95E-01 1.00E-04	Curles/m3 Curies/m3
dala will be used to produce more waste stream. Data submitted w				per			U238	9,17E-05	Curles/m3

ζ,	\supseteq	
_	\supset	
C	J)	
	Л	
ė	ز	

NAME OR			WASTE	TYPEMTRU	HANDL	ING RH GEN	ERATOR S	ITE OR	
OR-W040 CONTAINER: Type/Size:			Containe Int. Vo	r Matt: concre		Liner Type: ner Material:		Number 5 Number Pro	· · · · · · · · · · · · · · · · · · ·
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/m3)	STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Ac227	1.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	├	End of 1992: (296.4	296.4 m3	Am241	3.89E+00	Curies/m3
Other Metals	0.0	0.0	├	nd of 1993:	296.4	296.4 m3	Am243	9.99E-05	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994;	0.0		Bk249	9.99E-05	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Cf249	3.38E-03	Curles/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Cf252	2.52E-01	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/yr	Cm244	1.70E+00	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1898-2002:	0.0	0.0 m3/ry	Co60	3.50E+00	Curies/m3
Solidified, Organic matrix	0.0	0.0	/			0.0 m3/yr	Cs137	3.70E+02	Curies/m3
Soils	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Pu238	1.19E+01	Curies/m3
Packaging Materials, Steel	0.0	0.0	0.0	TYPICA	<u>L EPA CODE</u>	S APPLICABLE	Pu239	4.47E+00	Curles/m3
Packaging Malerial, Plastic					D006A		Pu241	4.32E+00	Curles/m3
rackaging Waterial, Flastic	0.0				D008A		Ra223	1.00E-03	Curies/m3
Comments							Sr90	4.26E+02	Curies/m3
5490 Uncalegorized Heterogene				ot }	D009A		7h232	5.00E-04	Curies/m3
been compiled and reduced to pr					D011A		U233	3.95E-01	Cuties/m3
parameters for each waste stream							U235	1.00E-04	Curies/m3
a QAPjP for TRU waste characte data will be used to produce more	nzation in Wil e delailed info	ion unitration of tradition on male	process knowledg Fish narameters ne	 			U238	9 17E-05	Curles/m3
waste stream. Data submitted w				.				- ,,	

ENAME OR			WASTE '	TYPEMTR	U HANDL	ING RH GEN	ERATOR S	ITE OR	
OR-W040 CONTAINER: Type/Size:	L		Container Int. Volv	<u> </u>	- 	Liner Type:		Number !	
TYPICAL WASTE DENSITE		NAL WASTE	FORM (kg/m3)	STORE	TRU WASTE	E-ESTIMATED GENERATION	TYPICAL		COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	104150	OF WASIE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
fron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Ac227	1.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	}	nd of 1992:		9.6 m3	Am241	3.89E+00	Curies/m3
Other Metals	0.0	0.0	 	id of 1993:	9.6	9.6 m3	Am243	9.99E-05	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	<u> </u>	Bk249	9,99E-05	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Cf249	3.38E-03	Curles/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	C/252	2.52E-01	Cuties/m3
Plastics	64.9	0.0	149.0	1997:		0.0 m3/yr	Cm244	1.70E+00	Curles/m3
Solidified, Inorganic matrix	0.0	0.0	 	998-2002:	0.0	0.0 m3/ry	Co60	3.50E+00	Curies/m3
Solidified, Organic matrix	0.0	0.0	· · · · · · · · · · · · · · · · · · ·	003-2022:	0.0	0.0 m3/yr	Cs137	3.70E+02	Curles/m3
Soils	0.0	0.0	0.0	003-2022;	0.0	0.0 m3/yr	Pu238	1.19E+01	Curies/m3
Packaging Materials, Steel	141.8		<u>0.0</u>	TYPICA	L EPA CODE	S APPLICABLE	Pu239	4.47E+00	Curies/m3
Packaging Material, Plastic	39.4				D006A		Pu241	4.32E+00	Curies/m3
·					D008A		Ra223	1.00E-03	Curies/m3
Comments	·						Sr90	4.26E+02	Curies/m3
5490 Uncalegorized Heterogeneo	us Debris info	rmation and dat	la available has not]	D009A		Th232	5.00E-04	Curies/m3
been compiled and reduced to pro parameters for each waste stream	ykle s delaile	d breakdown for	the material	ļ	D011A		U233	3.95E-01	Curles/m3
a QAPIP for TRU waste character	ization in whi	raux code. OXI chutilization of s	NL is implementing	ſ			U235	1.00E-04	Curies/m3
gata will be used to produce more	detailed Infor	mation on mater	lal parameters per	1			U238	9.17E-05	· · · · · · · · · · · · · · · · · ·
waste stream. Data submitted wa	s taken from	the BIR databas	e	1		•	U23U	a.11E-03	Curies/m3

OR-W040 - 6

OR - 6

NAME OR			WASTE	TYPEMTR	U HAND	ING RH GEN	IERATOR S	ITE OR	
OR-W040 CONTAINER Type/Size	·			r Mati: stain I/Ctnr: 0.2		Liner Type: Iner Material:		Number S Number Pro	
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/m3)	STORE	TRU WAST	E_ESTIMATED	TYPICAL	. ISOTOPIC C	·
Material Parameters	<u>A</u> verage	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	OMPOSITIO
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Corm	Ac227	1.00E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0		nd of 1992:		Final Form 0.6 m3	Am241	3.89E+00	Curies/m3
Other Metals	0.0	0.0	 	nd of 1993:		}	Am243	9.99E-05	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	6.3	6.9 m3	Bk249	9.99E-05	Curles/m3
Cellulosics	80.9	0.0	184.6	1995:	6.3	6.3 m3/yr	Cf249	3.38E-03	Curies/m3
Rubber	7.4	0.0	17.9	1996:	6.3	6.3 m3/yr 6.3 m3/yr	Cf252	2.52E-01	Curies/m3
Plastics	64.9	0.0	149.0	1997:	6.3	6.3 m3/ry	Cm244	1.70E+00	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	6.3	6.3 m3/yr	Ca 60	3.50E+00	Curies/m3
Solidified, Organic matrix	0.0	0.0	├ ──	2003-2022:	6.3	6.3 m3/yr	Cs137	3.70E+02	Curies/m3
Soils	0.0	0.0	0.0				Pu238	1.19E+01	Curies/m3
Packaging Materials, Steel	141.8		L	TYPICA	LL EPA CODE	S APPLICABLE	Pu239	4.47E+00	Curies/m3
Packaging Material, Plastic	39.4				D006A		Pu241	4.32E+00	Curles/m3
Comments					D008A		Ra 223	1.00E-03	Curies/m3
	nua Dabda la	(A- 0 - 4	71	D009A		Sr90	4.26E+02	Curies/m3
5490 Uncategorized Heterogener been compiled and reduced to pr	ous Deons m ovide a detail	iormation and da led breakdown to	ita available has no it the material	^{){}			Th23	5.00E-04	Curies/m3
parameters for each waste stream	m and waste	matrix code. OR	INL is implementing	ما	DOTTA		U233	3.95E-01	Curies/m3
a QAPjP for TRU waste characte	rization in wh	ich utilization of r	process knowledge	<u> </u>			U235	1.00E-04	Curles/m3
data will be used to produce more waste stream. Data submitted we	e detailed info as taken from	imation on mater	rial parameters pe	r			U238	9.17E-05	Curies/m3

SITE NAME OR			WAS	TE TYPE MTRU HANDL	ING CH	GENERATOR S	ITE OR	
WASTE STREAM	MWIR ID OR-W WIPP ID OR-W		STREAM NAM	Inactive Storage Tank Conte	ents - MTRU Si			
MATRIX CODE SITE FINAL FORM I	e Group Solidified			3129 Uncategorized Inorgan	-			·
Site Matrix Des	undergo such are	ng RI/FS as part of a CE not technically a RCRA	ERCLA program inve	ch has settled and separated f DRNL involving various nuclea olving these tanks and content ever, since the waste has been	or research and	radioisotope fabric	ation processes and is curr.	rently
FINAL WASTE FOR	RM DESCRIPTOR:			180	CONCODE			
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	u X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X	

でつつではい

ENAME OR		WASTE TYPE MTRU HANDLING CH GENERATOR SITE OR
Type/Size:	<u> </u>	Container Matl: Variable Liner Type: Number Stored: 11 int. Vol/Ctnr: m3 Liner Material: Number Projected: 0
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments External volume of the single she	Average Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 793.3 346.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Isotopic composition is unknown 3129 Uncategorized Inorganic Sit compiled and reduced to provide parameters for each waste stream a QAPJP for TRU waste character data will be used to produce more waste stream. Data submitted was	idge information and data as a detailed breakdown for the n and waste matrix code. O dization in which utilization on detailed information on mat	ematerial RNL is implementing f process knowledge

OR-W042 - 2

OR - 9

SITE NAME OR			WAST	E TYPE MTRU HAND	LING CH	GENERATOR SI	TE OR
WASTE STREAM	MWIR ID OR-W044 WIPP ID OR-W044 Local ID 2043			CH TRU Heterogeneous D			
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	5400	Dus	DESCRIPTION	5490 Uncategorized Heter	ogeneous Debris		
	debris (matri	tream consists of CH T se wastes have been e x code 5400).	Admined by VILA	and do not contain free or	containerized liqu	ilds. This waste is	s or dry solids. The physical form s categorized as heterogeneous
FINAL WASTE FORM Defense TRU W. Non-Defense TR Commercial TRU Unknown	M DESCRIPTORS: Aaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X I	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance			×

TENAME OR			WASTE	TYPEMTR	U HANDL	ING CH GE	VERATOR S	ITE OR	
OR-W044 CONTAINER: Type/Size:			Int. Vot	<u> </u>	 -	Liner Type:		Number Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m3)	STOREC	TRU WASTE	ESTIMATED GENERATION	TYPICAL	. ISOTOPIC (COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	IOTICS	OF WASIE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Am241	2.61E+00	Curies/m3
Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	1.6 Er	nd of 1992:	118.5	118.5 m3	Am243	9.81E-02	Curies/m3
	0.0	0.0	21.3 Er	nd of 1993;	118.5	118.5 m3	Bk249	2.28E+01	
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr	Cfr249	5.03E-03	Curles/m3
Cellulosics	80.9	0.0	184.8	1995;	0.0	0.0 m3/yr	Cf252	1.38E-02	Curies/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Cm244	3.47E+00	Curles/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry	Cm248	5.07E-03	Curies/m3
Solidified, Inorganic matrix	0.0	0.0		1998-2002:	0.0	0.0 m3/yr	Co60	1.03E-06	Curies/m3
Solidified, Organic matrix Soils	0.0	0.0	<u> </u>	2003-2022:	0.0	0.0 m3/yr	Cs137	2.01E-02	Curles/m3
	0.0	0.0	0.0	TYPICA	L EDA CODE	S APPLICABLE	Es254	0.00E+00	Curies/m3
Packaging Materials, Steel	0.0			THOM	D006A	2 APPLICABLE	Fe59	4.00E+00	Curies/m3
Packaging Material, Plastic	0.0						Gd153	0.00E+00	Curles/m3
Comments					D008A		Np237	3.96E-02	Curies/m3
5490 Uncategorized Heterogeneo	us Debris in	formation and da	ila available has not	n .	D009A		Pm147	7.73E-01	Curies/m3
Incert combined and tearited to but)vide a detail	ed breakdown fo	r ihe malerial		D011A		Pu238	6.82E+01	Curies/m3
parameters for each waste stream	n and waste i	matrix code. OR	NL is implementing	1			Pu239	6.23E-01	Curies/m3
a QAPjP for TRU waste character data will be used to produce more	detailed info	irmalion on mate	process knowledge				Pu240	1.34E+01	Curies/m3
waste stream. Data submitted wa	s taken from	the BIR databas	na parameters per se.	ŀ			Pu241	2.02E+03	Curies/m3
				1			Pu242	4.89E-03	Curies/m3
							Ra226	9.27E-01	Curies/m3
							Sr90	1.60E-02	Curies/m3
							Tc99	6.84E-01	Curies/m3
							Th232	5.40E-05	Curies/m3
							U232	2.04E-02	Curies/m3
							U233	1.69E-01	Curies/m3
							U234	1.28E-04	Curies/m3
							U235	5.90E-05	Curies/m3
							U236	4.35E-05	Curies/m3
							U238	5.35E-04	Curies/m3
							Y90	3.40E-06	Curies/m3

\$ 100°C

OR-W044 CONTAINER: Type/Size	-			iner Matt: wood		Liner Type:		Number	
				L	1.8 m3 L	iner Material:		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	13) STOREC	TRU WAST	E-ESTIMATED	TYPICAL	ISOTOPIC C	COMPOSITION
Material Parameters	Average	Lower Limit	<u>Upper Limit</u>	RATES	OF WASTE	GENERATION	Nuclide	Activity	
ron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Am241	2.61E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:		70.8 m3	Am243	9.81E-02	Curies/m3
Other Metals	0.0	0.0	21.3	End of 1993:		70.8 m3	Bk249	2.28E+01	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:		0.0 m3/yr	Cf249	5.03E-03	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:		0.0 m3/yr	Cf252	1.38E-02	Curles/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Cm244	3.47E+00	Cuties/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry	Cm248	5.07E-03	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Co60	1.83E-06	Curies/m3
Solidified, Organic matrix	0.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr	Cs137	2.01E-02	Curies/m3
ioils	0.0	0.0	0.0				Es254	0.00E+00	Curies/m3
ackaging Materials, Steel	0.0			TYPICA		S APPLICABLE	Fe59	4.00E+00	Curies/m3
ackaging Material, Plastic	0.0				D006A		Gd153	0.00E+00	Curies/m3
Comments					D008A		Np237	3.96E-02	Curies/m3
	aus Debris in	formalian and de	4				Np237 Pm147	3.96E-02 7.73E-01	
490 Uncategorized Heterogene	ous Debris in	formation and da	ta available has	not	D009A		•		Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear	ovide a detail m and waste	led breakdown fo matrix code. OR	r the material NL is implemen	nting			Pm147	7.73E-01	Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte	ovide a detail m and waste rization in wi	led breakdown fo matrix code. OR nich utilization of :	r the malerial INL is implement process knowle	nting dae	D009A		Pm147 Pu238	7.73E-01 6.82E+01	Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A	÷	Pm147 Pu238 Pu239	7.73E-01 6.82E+01 6.23E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240	7.73E-01 6.82E+01 6.23E-01 1.34E+01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03	Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99 Th232	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99 Th232 U232	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05 2.04E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99 Th232 U232	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05 2.04E-02 1.69E-01 1.28E-04	Curies/m3
Comments 490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte lata will be used to produce more raste stream. Data submitted wi	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99 Th232 U232 U233 U234	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05 2.04E-02 1.69E-01 1.28E-04 5.90E-05	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
490 Uncategorized Heterogener een compiled and reduced to pr arameters for each waste strear QAPjP for TRU waste characte ata will be used to produce more	ovide a detail m and waste crization in wi e detailed info	led breakdown for matrix code. OR nich utilization of portantion on mate	r the malerial INL is implemen process knowle rial parameters	nting dae	D009A		Pm147 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226 Sr90 Tc99 Th232 U232 U233 U234 U235	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03 4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05 2.04E-02 1.69E-01 1.28E-04	Curies/m3

00659

OR-W044 - 3

OR - 12

TENAME OR			WAS	TE TYPE MTR	U HANDL	ING CH GEI	NERATOR S	ITE OR	
OR-W044 CONTAINER: Type/Size:	30-gallon		Int.	<u> </u>	11 m3 LI	Liner Type: Iner Material:		Number Number Pro	L
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	Average 96.2	Lower Limit	Upper Limit 1716.4	RATES	Projected	ESTIMATED GENERATION Final Form	TYPICAL Nuclide Am241 Am243	Activity 2.61E+00	
Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solids	0.0 0.0 2.4 80.9 7.4 64.9 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.6 21.3 24.0 184.8 17.9 149.0 0.0 3.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002; 2003-2022:	1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0	1.1 m3 1.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/yr	Bk249 Cf249 Cf252 Cm244 Cm248 Co60 Cs137 Es254	9.81E-02 2.28E+01 5.03E-03 1.38E-02 3.47E+00 5.07E-03 1.83E-06 2.01E-02 0.00E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0			TYPICA	D006A D008A	S APPLICABLE	Fe59 Gd153 Np237	4.00E+00 0.00E+00 3.96E-02	Curies/m3 Curies/m3 Curies/m3
5490 Uncategorized Heterogeneous been compiled and reduced to proparameters for each waste stream a QAPjP for TRU waste character data will be used to produce more	ovide a detaili n and waste r rization in whi e detailed info	ed breakdown fo natrix code. OR ch utilization of mation on mate	r the material INL is implement process knowle rial parameters	nting	D009A D011A		Pm147 Pu238 Pu239 Pu240 Pu241	7.73E-01 6.82E+01 6.23E-01 1.34E+01 2.02E+03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
waste stream. Data submitted wa	as (aken rom	ine BIK databa	5 e .				Pu242 Ra226 Sr90 Tc99 Th232 U232 U233 U234 U235 U236 U238	4.89E-03 9.27E-01 1.60E-02 6.84E-01 5.40E-05 2.04E-02 1.69E-01 1.28E-04 5.90E-05 4.35E-05 5.35E-04	Curies/m3
							Y90	3.40E-06	Curies/m3

3000

WASTE TYPE MTRU HANDLING CH

GENERATOR SITE OR

				
<u>OR-W044</u>	CONTAINER: Drum Type/Size: 55-gallon	Container Matt: BI Int. Vol/Ctnr: 0.21 m3	Liner Type:	Number Stored: 164 Number Projected: 0

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)
--

Material Parameters	Average	Lower Limit	Upper Limit
fron-based Metals/Alloys	96.2	0.0	1716.4
Aluminum-Based Metals/Alloys	0.0	0.0	1.6
Other Metals	0.0	0.0	21.3
Other Inorganic Materials	2.4	0.0	24.0
Cellulosics .	80.9	0.0	184.8
Rubber	7.4	0.0	17.9
Plastics	64.9	0.0	149.0
Solidified, Inorganic matrix	0.0	0.0	0.0
Solidified, Organic matrix	0.0	0.0	3.0
Solls	0.0	0.0	0.0
Packaging Materials, Steel	141.8		L

STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

	Projected	Final Form
End of 1992:	34.4	34.4 m3
End of 1993;	34.4	34.4 m3
1994:	0.0	0.0 m3/yr
1995:	0.0	0.0 m3/yr
1996:	0.0	0.0 m3/yr
1997:	0.0	0.0 m3/ry
1998-2002:	0.0	0.0 m3/yr
2003-2022:	0.0	0.0 m3/yr

TYPICAL EPA CODES APPLICABLE

D006A D008A D009A D011A

Comments

Packaging Material, Plastic

5490 Uncalegorized Heterogeneous Debris Information and data available has not been compiled and reduced to provide a detailed breakdown for the material parameters for each waste stream and waste matrix code. ORNL is implementing a QAPjP for TRU waste characterization in which utilization of process knowledge data will be used to produce more detailed information on material parameters per waste stream. Data submitted was taken from the BIR database.

39.4

TYPICAL ISOTOPIC COMPOSITION

Nuclide	<u>Activity</u>	
Am241	2.61E+00	Curies/m3
Am243	9.81E-02	Curies/m3
Bk249	2.28E+01	Curies/m3
Cf249	5.03E-03	Curies/m3
C/252	1.38E-02	Curies/m3
Cm244	3.47E+00	Curies/m3
Cm248	5.07E-03	Curles/m3
Co60	1.83E-06	Curles/m3
Cs137	2.01E-02	Curies/m3
Es254	0.00E+00	Curies/m3
Fe59	4.00E+00	Curies/m3
Gd153	0.00E+00	Curies/m3
Np237	3.96E-02	Curies/m3
Pm147	7.73E-01	Curies/m3
Pu238	6.82E+01	Curies/m3
Pu239	6.23E-01	Curles/m3
Pu240	1.34E+01	Curles/m3
Pu241	2.02E+03	Curies/m3
Pu242	4.89E-03	Curies/m3
Ra226	9.27E-01	Curles/m3
Sr90	1.60E-02	Curles/m3
Tc99	6,84E-01	Curles/m3
Th232	5.40E-05	Curies/m3
U232	2.04E-02	Curles/m3
U233	1.69E-01	Curles/m3
U234	1.28E-04	Curies/m3
U235	5.90E-05	Curies/m3
U236	4.35E-05	Curies/m3
U238	5.35E-04	Curies/m3
Y90	3.40E-06	Curies/m3

ENAME OR			WAS	TE TYPE MIR	U HANDL	ING CH GE	NERATOR S	ITE OR	
OR-W044 CONTAINER: Type/Size:	30-gallon		Int.	<u> </u>		Liner Type: Iner Material:		Number Number Pro	1 1
TYPICAL WASTE DENSITI Material Parameters	ES FOR FI Average	INAL WASTE Lower Limit	FORM (kg/n Upper Limit	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	. ISOTOPIC (COMPOSITION
Iron-based Melais/Alloys	96.2	0.0	1716.4				Am241	2.61E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 4005.	Projected	Final Form	Am243	9.81E-02	Curies/m3
Other Metals	0.0	0.0	21.3	End of 1992;	7.7	7.7 m3	Bk249	2.28E+01	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	End of 1993:	7.7	7.7 m3	Cf249	5.03E-03	Curies/m3
Cellulosics	80.9	0.0	184.8	1994;	0.0	0.0 m3/yr	Cf252	1,38E-02	Curies/m3
Rubber	7.4	0.0	17.9	1995: 1996:	0.0	0.0 m3/yr	Cm244	3.47E+00	Curies/m3
Plastics	64.9	0.0	149.0	1996:	0.0	0.0 m3/yr	Cm248	5.07E-03	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002;	0.0	0.0 m3/ry	Co60	1.83E-06	Curies/m3
Solidified, Organic matrix	0.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr	Cs137	2.01E-02	Curies/m3
Soils	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Es254	0.00E+00	Curies/m3
Packaging Materials, Steel	0.0		0.0	TYPICA	L EPA CODE	S APPLICABLE	Fe59	4.00E+00	Curles/m3
Packaging Material, Plastic	0.0				D006A		Gd153	0.00E+00	Curies/m3
Comments					D008A		Np237	3.96E-02	Curies/m3
	sua Dabala la f				D009A		Pm147	7.73E-01	Curles/m3
5490 Uncategorized Heterogeneo been compiled and reduced to pro	ovide a detaile	ormation and da	ila available has	s not			Pu238	6.82E+01	Curies/m3
jparameters for each waste stream	n and waste n	natrix code OR	NI Is implemen	etina	D011A		Pu239	6.23E-01	Curles/m3
Ja QAP)P for TRU waste characte	rization in whi	ich utilization of a	orocess knowle	doe			Pu240	1.34E+01	Curles/m3
lagia will be used to produce more	e detailed info	rmation on mate	rial parameters	per			Pu241	2.02E+03	Curies/m3
waste stream. Data submitted wa	s taken from	the BIR databas	5 e .				Pu242	4.89E-03	Curies/m3
							Ra226	9.27E-01	Curles/m3
							Sr90	1.60E-02	Curies/m3
							Tc99	6.84E-01	Curies/m3
							Th232	5.40E-05	Curies/m3
							U232	2.04E-02	Curies/m3
							U233	1.69E-01	Curies/m3
							U234	1.28E-04	Curies/m3
							U235	5.90E-05	Curies/m3
							U236	4.35E-05	Curies/m3
							U238	5.35E-04	Curies/m3
							Y90	3.40F-06	Curies/m3

0000

OR-W044 - 6

OR - 15

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE OR

OR-W044

CONTAINER: Drum Type/Size: 55-gallon

Container Matt: stainless steel Int. Vol/Ctnr: 0.208 m3

Liner Type: Liner Material:

Number Stored: 1370 Number Projected: 1268

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

Material Parameters	<u>Average</u>	Lower Limit	Upper Limit
fron-based Metals/Alloys	96.2	0.0	1716.4
Aluminum-Based Metals/Alloys	0.0	0.0	1.6
Other Metals	0.0	0.0	21.3
Other Inorganic Materials	2.4	0.0	24.0
Cellulosics	80.9	0.0	184.8
Rubber	7.4	0.0	17.9
Plastics	64.9	0.0	149.0
Solidified, Inorganic matrix	0.0	0.0	0.0
Solldified, Organic matrix	0.0	0.0	3.0
Soils	0.0	0.0	0.0
Packaging Materials, Steel	141.8	-	

STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

	Projected	Final Form	
End of 1992:	275.8	275.8	m3
End of 1993:	284.9	284.9	m3
1994:	9.1	9.1	m3/yr
1995:	9.1	9.1	m3/yr
1996:	9.1	9.1	m3/yr
1997:	9.1	9.1	m3/ry
1998-2002:	9.1	9.1	m3/yr
2003-2022:	9.1	9.1	m3/yr

TYPICAL EPA CODES APPLICABLE

D006A D008A D009A

D011A

Comments

Packaging Material, Plastic

5490 Uncategorized Heterogeneous Debris information and data available has not been compiled and reduced to provide a detailed breakdown for the material. parameters for each waste stream and waste matrix code. ORNL is implementing a QAPjP for TRU waste characterization in which utilization of process knowledge data will be used to produce more detailed information on material parameters per waste stream. Data submitted was taken from the BIR database,

0.0

TYPICAL ISOTOPIC COMPOSITION Activity

Nuclide	Activity	
Am241	2.61E+00	Curies/m3
Am243	9.81E-02	Curies/m3
3k249	2.28E+01	Curies/m3
Cf249	5.03E-03	Curies/m3
Cf252	1.38E-02	Curies/m3
Cm244	3.47E+00	Curies/m3
Cm248	5.07E-03	Curies/m3
Co60	1.83E-06	Curies/m3
Cs137	2.01E-02	Curles/m3
s254	0.00E+00	Curies/m3
e59	4.00E+00	Curles/m3
3d153	0.00E+00	Curies/m3
√p237	3.96E-02	Curies/m3
m147	7.73E-01	Curies/m3
2 u238	6.82E+01	Curles/m3
²u239	6.23E-01	Curles/m3
ຳນ240	1.34E+01	Curles/m3
ຳນ241	2.02E+03	Curies/m3
² u242	4.89E-03	Curies/m3
Ra226	9.27E-01	Curies/m3
Sr90	1.60E-02	Curies/m3
t99	6.84E-01	Curies/m3
h232	5.40E-05	Curies/m3
J232	2.04E-02	Curies/m3
J233	1.69E-01	Curies/m3
J234	1.28E-04	Curies/m3
J235	5.90E-05	Curies/m3
J236	4.35E-05	Curies/m3
J238	5.35E-04	Curies/m3
′90	3.40E-06	Curies/m3

SITE NAME OR		WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE OR	$\overline{}$
	OR-W045 OR-W045	STREAM NAME	CH TRU Uncategorized	
Local ID		DESCRIPTION	5490 Uncategorized Heterogeneous Debris	
MATRIX CODE SITE FINAL FORM IDC	8000 2044			
Waste Matrix Code Group	lelerogeneous		 	
NO MIGRATION VARIANCE F	inknown. This waste is calegoriz	ed as unknown (ma	is not classified. The physical form is either solid, liquid, mixed (both solid and liquid), or atrix code 8000). TRUCON CODE	
FINAL WASTE FORM DESCR	HPTORS:			
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	,	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A Environmental Restoration Unknown X From Treatment of Waste Maintenance	

000055

Container Material Contain	TE NAME OR			WAST	E TYPEMTR	U HANDI	LING CH GEN	ERATOR S	ITE OR	
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 96.2 0.0 1716.4 End of 1992: 2.4 2.4 m3 Pu239 4.26E+00 Curies/m3 Other Metals 0.0 0.0 184.8 1995: 0.0 0.0 m3/yr Pu241 1.24E+02 Curies/m3 Cellulosics 80.9 0.0 149.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Plastics 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 0.0 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0		·			<u> </u>					- 1
5490 Uncategorized Heterogeneous Debris information and data available has not	Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	Average Lo 96.2 0.0 0.0 2.4 80.9 7.4 64.9 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upper Limit 1716.4 1.6 21.3 24.0 184.8 17.9 149.0 0.0 3.0 0.0	3) STORES RATES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	E-ESTIMATED GENERATION Final Form 2.4 m3 2.4 m3 0.0 m3/yr	Nuclide Pu238 Pu239 Pu240	Activity 6.10E+00 4.26E+00 6.58E+00	Curies/m3 Curies/m3 Curies/m3

OR-W045 - 2

WAS	TE TYPI	EMTRU

HANDLING CH

GENERATOR SITE OR

GENERATOR SITE OR

Nuclide

Pu238

Pu239

Pu240

Pu241

OR-W045

CONTAINER: Drum
Type/Size: 55-gallon

Container Matt: stainless steel Int. Vol/Ctnr: 0.208 m3

Liner Type: Liner Material: Number Stored: 6 Number Projected: 0

6.10E+00 Curies/m3

4.26E+00 Curies/m3

6.58E+00 Curies/m3

1.24E+02 Curies/m3

TYPICAL ISOTOPIC COMPOSITION

Activity

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

Material Parameters	Average	Lower Limit	Upper Limit
Iron-based Metals/Alloys	96.2	0.0	1716.4
Aluminum-Based Metals/Alloys	0.0	0.0	1.6
Other Metals	0.0	0.0	21.3
Other Inorganic Materials	2.4	0.0	24.0
Cellulosics	80.9	0.0	184.8
Rubber	7.4	0.0	17.9
Plastics	64.9	0.0	149.0
Solidified, Inorganic matrix	0.0	0.0	0.0
Solidified, Organic matrix	0.0	0.0	3.0
Soils	0.0	0.0	0.0

STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

	<u>Projected</u>	Final Form
End of 1992:	1.3	1.3 m3
End of 1993:	1.3	1.3 m3
1994:	0.0	0.0 m3/yr
1995;	0.0	0.0 m3/yr
1998:	0.0	0.0 m3/yr
1997:	0.0	0.0 m3/ry
1998-2002:	0.0	0.0 m3/yr
2003-2022;	0.0	0.0 m3/yr

TYPICAL EPA CODES APPLICABLE

D006A

D008A

D009A

D011A

Comments

Packaging Materials, Steet

Packaging Material, Plastic

5490 Uncategorized Heterogeneous Debris information and data available has not been compiled and reduced to provide a detailed breakdown for the material parameters for each waste stream and waste matrix code. ORNL is implementing a QAPJP for TRU waste characterization in which utilization of process knowledge data will be used to produce more detailed information on material parameters per waste stream. Data submitted was taken from the BIR database.

141.8

0.0

00000

SITE NAME OR		WASTE TYPE MTRU HANDLING RH GENERATOR SITE OR
WIP	RID OR-W046 PID OR-W046 IID 2045 3000 2045	STREAM NAME Liquid Low Level Waste Storage Tanks - Sludge DESCRIPTION 3129 Uncategorized Inorganic Sludges, 3229 Organic Solids
Waste Matrix Code Grou Site Matrix Descriptio	This waste stream is compris- tanks. The waste is generate are collected centrally and the	ed of LLLW waste that has been concentrated by evaporation and subsequently stored in large underground storage d as relative dilute tow level waste in various nuclear research and radioisotope fabrication processes. These streams evolumes reduced in an evaporation facility. After the waste has been stored, it separates into phases. The resulting homogeneous chemically and radiochemically. Since the sludge is a porduct of solids concentration, it has been
NO MIGRATION VARIANCE	E PETITION ASSIGNMENT	TRUCON CODE
Defense TRU Waste Non-Defense TRU Was Commercial TRU Was Unknown	X Mixed TRU ste Non-Mixed TRU	operations visite A reas

TENAME OR			WASTE TYPE MTRU HANDLING RH GENERATOR SITE OR	
OR-W046 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	Single Shell			12 0
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 3129 Uncategorized Inorganic Steel data available has not been components	0.0 0.0 0.0 0.0 0.0 0.0 0.0 793.3 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upper Limit	<u>ON</u>
code. ORNL is Implementing a Quilization of process knowledge of information on material parameter from the BIR database. Isotopic composition is unknown for the Isotopic composition composition is unknown for the Isotopic composition compositio	lata will be us 8 per waste s	ed to produce mod tream. Data subn	nelistah ere	

OR-W046 - 2

OR - 21

ENAME OR		ILL TOK III	WASTE TYPE MTRU HANDLING RH GENERATOR SITE OR
OR-W046 CONTAINER: Type/Size:			Container Mail: stainless steel Liner Type: Number Stored: 29 Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 636
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992: 0.0 0.0 m3
Other Metals	0.0	0.0	0.0 End of 1893: 6.0 6.0 m3
Other Inorganic Materials	0.0	0.0	0.0 1894: 6.0 6.0 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 6.0 6.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 6.0 6.0 m3/yr
Plastics	0.0	0.0	0.0 1997: 5.0 6.0 m3/ry
Solldified, Inorganic matrix	793.3	346.2	1057.7 1898-2002: 6.0 6.0 m3/yr
Solldified, Organic matrix	0.0	0.0	0.0 2003-2022: 6.0 6.0 m3/yr
Soils	0.0	0.0	ää
Packaging Materials, Steel	141.8	<u> </u>	TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	0.0		D006A
Comments			D007A
3129 Uncalegorized Inorganic SI	udges and 3	229 Organic Solic	ds information and D008A
data available has not been comp breakdown for the material param code. ORNL is implementing a C utilization of process knowledge of information on material parameter	piled and red neters for eac ΔΑΡΙΡ for TR data will be u	uced to provide a ch waste stream U waste characte sed to produce n	a detailed D009A and waste matrix derization in which more detailed
from the BIR database.			

OR-W046 - 3

Isotopic composition is unknown for this waste stream.

OR - 22

SITE NAME OR	_	•		WA	STE TYPE MTRU	HANDLING		GENERATOR S	SITE OR	
WASTE STREAM	MWIR ID	OR-W047			ME CH TRU Heteroge		(with liquids)			
MATRIX CODE SITE FINAL FORM I	10	2046 5400 2046	DESCRIPTION 5400 Heterogeneous Waste							
Waste Matrix Cod Site Matrix Des	scription Th	is waste stre solid. These	am consists of CH T	vormited by the	h is classified as conta AF and found to conta	amination equi ain free and/or	pment, deco containerize	ntaminated debr d liquids. This t	is or dry solids. The phy waste is categorized as	sical form
NO MIGRATION VA	RIANCE PE	TITION ASS	IGNMENT			TRUCON	CODE			
FINAL WASTE FOR Defense TRU V Non-Defense T Commercial TR Unknown	Naste RU Waste	X A	Alxed TRU Ion-Mixed TRU Suspect Mixed TRU Inknown	×	Rsearch and Devel Operations Waste Residues Decom and Decome Environmental Resi From Treatment of the	nissioning oration	TSCA	Asbestos PCBs Other N/A Unknown	X	

000670

OR-W047 CONTAINER	Orum								
Type/Size:	` 		{	iner Mati: Bi Vol/Ctnr: 0		Liner Type:		Number :	L
-	<u> </u>	····		`L	11 m3 L	iner Material:		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	13) STORE	TRU WAST	E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Pu239	2 33E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	1.6	End of 1992:		0.6 m3	Pu240	3.81E-01	Curies/m3
Other Metals	0.0	0.0	21.3	End of 1993:		0.6 m3	Pu241	3.08E+02	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr	Pu242	1.43E-02	Curies/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Ra226	5.85E-03	Curies/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Th230	1.20E-05	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry	Th232	1.50E-05	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr	U232	4.71E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	3.0	2003-2022:	0.0	0.0 m3/yr	U233	1.91E-01	Curies/m3
Soils	0.0	0.0	0.0	TYDICA	L EDA CODE		U235	3.80E-05	Curies/m3
Packaging Materials, Steel	0.0			TTPICA	•	S APPLICABLE	U238	5.00E-07	Curies/m3
Packaging Material, Plastic	0.0				D006A				
Comments					D008A				
5400 Heterogeneous Debris Info	mation and d	lata available has	not been come	oiled	D009A				
and reduced to provide a detailed	l breakdown i	for the material p	arameters for e	ach I	D011A				
waste stream and waste matrix c waste characterization in which u	ode. ORNLi	is implementing a	QAPJP for TRU	u					

OR-W047 - 2

OR - 24

OR-W047 CONTAINER: Drum Type/Size: 55-gallon			Container M			Number Stored: 96 Number Projected: 0		
TYPICAL WASTE DENSITION Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	96.2 0.0 0.0 2.4 80.9 7.4 64.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upper Limit 1716.4 1.6 End 21.3 End 24.0 184.8 17.9 149.0 0.0 19 3.0 20	Projecte 1 of 1992: 2 1 of 1993: 2 1 994: 1995: 1996: 1997: 1997: 1988-2002: 2	STE ESTIMATED TE GENERATION	Nuclide Pu239 Pu240 Pu241 Pu242 Ra226 Th230 Th232 U232	2.33E-01 3.81E-01 3.08E+02 1.43E-02 5.85E-03 1.20E-05 1.50E-05 4.71E-04 1.91E-01 3.80E-05	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soits Packaging Materials, Steel Packaging Material, Plastic Comments 5400 Heterogeneous Debris informand reduced to provide a detailed waste stream and waste matrix of waste characterization in which to produce more detailed information and submitted was taken from the	l breakdown ode. ORNL dilization of p tion on male	for the material p is implementing a rocess knowledg rial parameters p	arameters for each a QAPjP for TRU se data will be used	TYPICAL EPA C D006 D008 D009 D011	Λ Λ	U238 U238	5.00E-07	Curies/m3 Curies/m3

			WASTE T			ING CH GEN	ERATOR S	TE OK	
OR-W047 CONTAINER:	Drum		Container N	Aati: staini	ess steel	Liner Type:		Number S	Stored: 22
Type/Size:	30-gallon		Int. Vol/C	itnr: 0.	11]m3 Li	ner Material:		Number Pro	J—
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/m3)			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	96.2	0.0	1716.4		Projected	Final Form	Pu239	2.33E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	}	d of 1992:	2.4	2.4 m3	Pu240	3.81E-01	Curies/m3
Other Metals	0.0	0.0	—	d of 1993:	1	2.4 m3	Pu241	3.08E+02	Curies/m3
Other Inorganic Materials	2.4	0.0	24.0	1994:	0.0	0.0 m3/yr	Pu242	1.43E-02	Curles/m3
Cellulosics	80.9	0.0	184.8	1995:	0.0	0.0 m3/yr	Ra226	5.85E-03	Curies/m3
Rubber	7.4	0.0	17.9	1998:	0.0	0.0 m3/yr	Th230	1.20E-05	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/ry	Th232	1.50E-05	Curies/m3
Solidified, Inorganic matrix	0.0	0.0		998-2002:	0.0	0.0 m3/yr	U232	4.71E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	 	003-2022;	0.0	0.0 m3/yr	U233	1.91E-01	Curles/m3
Soils	0.0	0.0	0.0	,,	L	O.O Mary	U235	3,80E-05	Curles/m3
Packaging Materials, Steel	0.0			TYPICA	L EPA CODE	S APPLICABLE	U238	5.00E-07	Curies/m3
Packaging Material, Plastic	0.0				D006A				
Comments					D008A	•			
5400 Helerogeneous Debris infor	mation and d	ala avallable bas	not been semalled	l	D009A				
and reduced to provide a detailed	breakdown f	or the material b	arameters for each		D011A				
waste stream and waste matrix co	ode, ORNL	s implementing a	QAPIP for TRU		DOTTA				
waste characterization in which of	tilization of pr	ocess knowledg	e data will be used						
to produce more detailed informat Data submitted was taken from th	llon on materi	ial parameters p	er waste stream.						

NAME OR		 .	WASTE TY	PE MTR	HANDI	ING CH GE	IERATOR S	ITE OR	
OR-W047 CONTAINER: Type/Size:	55-gallon		Container Ma			Liner Type; iner Material;		Number :	
TYPICAL WASTE DENSITIE		NAL WASTE	FORM (kg/m3)	STORED	TRU WASTE	E-ESTIMATED GENERATION			OJected: 0
Material Parameters Iron-based Metals/Alloys	Average 96.2	Lower Limit	opper Limit			GENERATION	<u>Nuclide</u>	Activity	
Aluminum-Based Metals/Alloys	0.0	0.0	1716.4		Projected	Final Form	Pu239 Pu240	2.33E-01	Curies/m3
Other Metals	0.0	0.0		of 1992:	129.0	129.0 m3	Pu240 Pu241	3.81E-01	Curies/m3
Other Inorganic Materials	2.4	0.0	21.3 End (of 1993;	129.0	129.0 m3	Pu242	3.08E+02 1.43E-02	
Cellulasics	80.9	0.0	184.8	1994: 1995:	0.0	0.0 m3/yr	Ra226	5.85E-03	Curies/m3 Curies/m3
Rubber	7.4	0.0	17.9	1996:	0.0	0.0 m3/yr	Th230	1.20E-05	Curies/m3
Plastics	64.9	0.0	149.0	1997:	0.0	0.0 m3/yr	Th232	1.50E-05	Curies/m3
Solidified, inorganic matrix	0.0	0.0	0.0 199	B-2002:	0.0	0.0 m3/ry 0.0 m3/yr	U232	4.71E-04	Curles/m3
Solidified, Organic matrix	0.0	0.0	3.0 200	3-2022:	0.0	0.0 m3/yr	U233	1.91E-01	Curles/m3
Soils	0.0	0.0	0.0				U235	3.80E-05	Curies/m3
Packaging Materials, Steel	141.8			IYPICA		S APPLICABLE	U238	5.00E-07	Curies/m3
Packaging Material, Plastic	0.0				D006A				
Comments					D008A				
5400 Heterogeneous Debris inform	nation and da	ta avallable has	not been complied		D009A				
and reduced to provide a detailed t waste stream and waste matrix co	xeakdown in	t the malerial na	ramalam for each		D011A				
waste characterization in which util	ization of pro	cese knowledos	dala will be well						
o produce more detailed information. Data submitted was taken from the	on on maleria	i parameters per	waste stream.						

Paducah Gaseous Diffusion Plant

PADUCAH GASEOUS DIFFUSION PLANT (PA) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the PA waste stream profiles:

- PA submitted a new waste stream with the WTWBIR ID PA-015A. In order to be consistent
 with the way ID's are assigned this was changed to PA-W016.
- The volumes for the year 1993 were changed from an annual rate of generation (m³/year) to a cumulative value (m³).

SITE NAME PA			WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE PA
				Transuranic Waste Liquid This stream is liquid generated from the shutdown of the C-400 neptunium/technietium recovery system.
	Aqueous Sli	irries - Basic		TRUCON CODE
FINAL WASTE FORM Defense TRU Wa Non-Defense TRU	DESCRIPTORS:	Mixed TRU Non-Mixed TRU	X	Rsearch and Devel, Waste TSCA Asbestos - Operations Waste X PCBs
Commercial TRU Unknown	Waste	Suspect Mixed TRU Unknown		Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

ENAME PA			WASTE TYPE MTRU HANDLING CH GENERATOR SITE PA
PA-W014 CONTAINER: Type/Size:	Drum 55 gal in ove	rpack	Container Mati: Steel Liner Type: Number Stored: 1 Int. Vol/Cinr: 0.3 m3 Liner Material: Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit RATES OF WASTE GENERATION Nuclide Activity
Iron-based Metals/Alloys	0.0	0.0	0.0 Projected Final Form
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End of 1992; 0.3 0.8 m3
Other Metals	0.0	0.0	0.0 End of 1993: 0.3 0.8 m3
Other Inorganic Materials	0.0	0.0	0.0 1994: 0.0 0.0 m3/yr
Cellulosics	0.0	0.0	0.0 1995: 0.0 0.0 m3/yr
Rubber	0.0	0.0	0.0 1996: 0.0 0.0 m3/yr
Plastics	0.0	0.0	0.0 1997: 0.0 0.0 m3/ry
Solidified, Inorganic matrix	0.0	0.0	0.0 1998-2002: 0.0 0.0 m3/yr
Solldified, Organic matrix	0.0	0.0	0.0 2003-2022: 0.0 0.0 m3/yr
Soils	0.0	0.0	0.0
Packaging Materials, Steel	0.0		TYPICAL EPA CODES APPLICABLE
Packaging Material, Plastic	0.0		
Comments			D002B
Waste material parameters not av Isotopic composition not available	railable.		

PA-W014 - 2

PA - 2

0000573

SITE NAME PA			WAST	TE TYPE MTRU HANDL	ING CH	GENERATOR SIT	TE PA
	<u> </u>				eam consists of s	pill cleanup and re	of the Neptunium/Technetium esidue. Past analytical data
Site Matrix Descri	Other Inorgation Other Inorgation			TRU	CON CODE		
FINAL WASTE FORM Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	DESCRIPTORS: aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSCA	Asbestos PCBs Other N/A Unknown	- X

ENAME PA			WASTE TYPE MTRU HANDLING CH GENERATOR SITE PA
PA-W015 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55 gal in ove		Container Matt: Steel Liner Type: Number Stored: Number Stored: Number Projected: Number Projected: FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Nuclide Activity Nuclide Activity
Comments Waste material parameters not av Paducah personnel reported the f waste stream: Tc99 40-950 m Ct/kg Np237 6-14 m Ct/kg Pu239 18-91 m Ct/kg Th230 .01-62 m Ct/kg U (enr) 900-2400 m Ct/kg		es for several is	otopes in this

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT SITE NAME PA WASTE TYPE MTRU HANDLING CH GENERATOR SITE PA WASTE STREAM MWIR ID PA-W015A STREAM NAME TRU and Technetium Waste - Liquid WIPP ID PA-W015A Local ID PA-W015A DESCRIPTION This stream includes waste generated from the shuldown of the neptunium/lechnetium recovery system. Post analytical data indicates the presence of chromium in the stream. MATRIX CODE 1190 SITE FINAL FORM IDC Waste Matrix Code Group Solidified Inorganics Site Matrix Description Unknown solids. Other waste waters. **NO MIGRATION VARIANCE PETITION ASSIGNMENT** TRUCON CODE

FINAL WASTE FORM DESCRIPTORS:

Defense TRU Waste	X
Non-Defense TRU Waste	
Commercial TRU Waste	
Unknown	

Mixed TRU
Non-Mixed TRU
Suspect Mixed TRU
Unknown

X	Rsearch and Devel. Waste
_	Operations Waste
_	Residues
	Decon and Decommissionin
	Environmental Restoration
	From Treatment of Waste
	Maintenance

TSCA	Asbesto
	PCBs
	Other
	N/A

Unknown

ENAME PA		· · · · · · · · · · · · · · · · · · ·	WASTE TYPE MTRU HANDLING CH GENERATOR SITE PA	
PA-W015A CONTAINER: Type/Size:	Drum 55-gallon in	overpacks	Container Mati: steel Liner Type: Number Int. Vol/Ctnr: 0.3 m3 Liner Material: Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	——————————————————————————————————————	·
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	O.0	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Comments Activities for Th230 and U are not Ranges of activities reported by P Tc99 4500-5400 m Cl/kg Np237 28-90 m Ci/kg Pu239 108-325 m Ci/kg		otopes in this w	vaste stream:	

PANTEX (PX) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the PX waste stream profiles:

- Final Waste Form Groups were not provided by PX. In order to permit roll-ups of the data, the WTWBIR team assigned Final Waste Form Groups based on the descriptions and parameters provided by PX.
- The drum volume listed on page 1 of the waste stream form was corrected to 0.208 m³.
- The number of containers was changed to three to match the volume for the one PX waste stream.

SITE NAME PX	WAS	STE TYPE TRU HANDLING	GENERATOR SITE	E PX
WASTE STREAM MWIR ID WIPP ID PX-T001 Local ID 48 MATRIX CODE 5330 SITE FINAL FORM IDC	DESCRIPTION	Pantex N Weapons dismantlement suppo	ert material.	
Waste Matrix Code Group Heterogene	ous			
NO MIGRATION VARIANCE PETITION	ASSIGNMENT	TRUCO	ON CODE	
FINAL WASTE FORM DESCRIPTORS:				
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSCA Asbestos X PCBs Other N/A Unknown	X

30003

SITE NAME PX			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR S	SITE PX	
	55-gallon		Int,	<u> </u>		Liner Type: bag iner Material: 6 ml pla	stic	Number S Number Proje	
TYPICAL WASTE DENSITI	ES FOR F	<u>INAL WASTE</u>	FORM (kg/n			E ESTIMATED	TYPICAL	ISOTOPIC CO	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	7.64E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0lm3			
Other Metals	0.0	0.0	0.0	End of 1993:		0.6 m3			
Other Inorganic Materials	87.0	78.4	95.8	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:		0.0 m3/yr			
Rubber	11.3	10.2	12.4	1996;	l	0.0 m3/yr			
Plastics	11.3	10.2	12.4	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	Torono					
Packaging Materials, Steet	131.0			IYPICA	L EPA CODE	ES APPLICABLE			+
Packaging Material, Plastic	0.0								

ROCKY FLATS PLANT (RF) WASTE STREAM PROFILE METHODOLOGY

The approach used and the assumptions made in preparing the RF waste stream profiles are as follows:

- End of 1992 and end of 1993 inventory volumes for TRU-mixed and mixed residues were taken from the Interim Mixed Waste Inventory Report (IMWIR) and the Mixed Waste Inventory Report (MWIR), respectively.
- Projection volumes were taken from the Comprehensive Waste Management Plan (CWMP) with the exception of Solid Stabilization (formerly Residue Elimination). The program projection available for Solid Stabilization at the time the CWMP was being drafted was a "not to exceed" volume. The volume and breakdown of final form waste streams used in preparing the WTWBIR was an updated, projected volume taken from the Conceptual Design Report for Residue Elimination at Rocky Flats, RES-005-001, May 1994.
- The planned treatment for waste streams requiring treatment to meet WIPP WAC and TRAMPAC requirements are taken from the Draft Site Treatment Plan (DSTP) and the Treatment System Definition Report (TSDR) published by the Waste Compliance Programs.
- In the case where the waste stream or some portion of the waste stream requires treatment
 to change to the final waste form, the volume of waste resulting from the treatment of the
 original waste stream is included in the final waste form volume of the resulting waste
 stream. For example, the volume of waste resulting from treatment of Incinerator Ash is
 included in the final waste form volumes of the resulting waste stream; Solidified Process
 Solids.
- The following expansion factors were used to determine final waste form volumes resulting
 from treatment: immobilization of ash, 2.11; immobilization of sludges, 2.21; and all other
 immobilization treatment, 2.16. These factors were derived from the Technology Evaluation
 Framework (TEF) published by Waste Compliance Programs. The specific immobilization
 technology assumed for this purpose was cementation.
- Volume increases due to repackaging waste that exceed the current decay heat limit when
 no other treatment is required were not included. Waste Characterization Reassessment
 activities in 1994 resulted in the recharacterization of some waste. Significant changes are
 noted in the comments field of the affected waste streams.
- To remain consistent with the volumes reported in the IMWIR and the MWIR, 0.21 m³ was used as the container volume of a standard DOT-17C 55-gallon drum. The volume used for other containers was as specified on the data forms.
- Waste in boxes other than standard waste boxes (SWB) are assumed to be repackaged into SWBs, such that the waste from one 4'x4'x7' box is repacked into two SWBs. Therefore, the final waste form volumes for SWBs include the projected volume increase resulting from such repackaging activities.
- The values for the Typical Waste Material Weights for Final Waste Form data for the TRU
 waste streams are the same as the corresponding TRU mixed waste streams.

Information Only 688

ROCKY FLATS PLANT (RF) WASTE STREAM PROFILE METHODOLOGY (continued)

 The waste generation rates for each waste form were prorated based on the fraction represented by the waste form on a Waste and Environmental Management System (WEMS) generation report showing actual generation during the period January 1, 1992 through June 30, 1993.

SITE NAME RF	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID WIPP ID RF-M001 Local ID RF-806 MATRIX CODE 3150 SITE FINAL FORM IDC 806 Waste Matrix Code Group Solidified Inorganic	STREAM NAME Solidified Process Solids/TRM DESCRIPTION Solidified Homogeneous Solids
Site Matrix Description This waste stream immobilized with P form for Firebrick, Crucible/TRM (RF as IDC 806.	represents the solidified final form of all particulate and sludge type materials. Particulates and sludge type materials are ortland cement. The cemented wastes are cast into 1-gallon molds and allowed to cure prior to packaging. This is the final waste Pulverized or Fines/TRM (RF-W036), Incinerator Ash/TRM (RF-W040), Particulate Sludge/TRM (RF-W068), and Sand, Siag, and W059). IDC 806 - All inorganic particulate and inorganic sludge waste must be immobilized by processing into a solid and identified
NO MIGRATION VARIANCE PETITION ASSIG	NMENT RF 114 TRUCON CODE RF 114
Non-Defense TRU Waste Non-Commercial TRU Waste Sus	Red TRU -Mixed TRU -Mixed TRU -Mixed TRU -Mixed TRU -Mixed TRU

Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	gallon	Upper Limit 68.3 0.0 End 0.0 End	STORED TRU WARATES OF WAS	Liner Type: rigid Liner Material: HDPE STE ESTIMATED IE GENERATION d Final Form		Number Stored: 34 Number Projected: 1328 ISOTOPIC COMPOSITION Activity
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	verage Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 489.0 376.2	Upper Limit 68.3 0.0 End 0.0 End	RATES OF WAS	TE GENERATION	TYPICAL	ISOTOPIC COMPOSITIO
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	verage Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 489.0 376.2	Upper Limit 68.3 0.0 End 0.0 End	RATES OF WAS	TE GENERATION		
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	0.0 0.0 0.0 0.0 0.0 0.0 489.0 376.2	68.3 0.0 End		<u> 1 Final Form</u>		
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	0.0 0.0 0.0 0.0 489.0 376.2	0.0 End		<u> Final Form</u>		
Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	0.0 0.0 489.0 376.2	0.0 End		0.0 82.7 m3		
Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls	489.0 376.2		\ <u>.</u>	0.0 82.7 m3 0.0 72.5 m3		
Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls		635,7		0.0 m3/yr		
Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls		0.0	 	0.0 m3/yr		
Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 0.0	0.0		0.0 m3/yr		
Solidified, Organic matrix Solls	0.0	0.0		0.0 m3/ry		
Soils	208.9 160.7	271.6 199	 	0.0 m3/yr		
	0.0 0.0	0.0 200	13-2022: 47	7.7 139.5 m3/yr		
Packaging Materials, Steel	0.0	0.0	TODICAL EDA CA			
	132.0			DDES APPLICABLE		٠
Packaging Material, Plastic	51.9		D002			
Comments			D003			
Final waste form volumes include trea	ated waste from Firebric	k. Pulverized or	D004			
Fines/TRM, Incinerator Ash/TRM, Par Crucible/TRM.	rticulate Sludge/TRM an	nd Sand, Slag and	D005 D006			
Footnotes						
1. The number of containers stored is	s for the year 1993. The	number of	D007			
containers projected is for the years 1	1994 - 2022.		D008			
The "Number Stored" field may not storage at Rocky Flats, but the number			D009			
waste streams that feed into RF-M001		aid be generated it ail	D010			
			D011			
			D018			
			D019			
			D035			
			D040			
			F001			
			F002			
			PINIT			

SITE NAME RF WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF

F003
F005

プランプレン

RF-M001 - 3

RF-3

2/28/95

SITE NAME RF.					E TYPE MTRU	HANDLING		GENERATOR S	ITE RF	
WASTE STREAM	MWIR ID	RF-M002		STREAM NAME	Supercompacted	Combustibles	/TRM			<u>+</u>
MATRIX CODE	Local ID			DESCRIPTION	Supercompacted (combustible d	lebris			
SITE FINAL FORM ID	<u>c</u>	2116								
Waste Matrix Code									acted for volume reduction.	
NO MIGRATION VAR	RIANCE P	ΕΠΠΟΝ Α	SSIGNMENT			TRUCC	ON CODERF	-116C		
FINAL WASTE FORM	M DESCRI	PTORS:	<u> </u>			•				
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	U Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Developerations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	nmissioning storation	TSCA	A Asbestos PCBs Other N/A Unknown	X	
Footnotes							- -			
The waste stream s	supercome	acted com	nbustibles/TRM is liste	d in TRUCON unde	er RE 1160 historio	stad with "aid	or" IDC c 831	832 833		

RF-M002 - 1

RF - 4

2/28/95

WASTE TYPE MTRU

HANDLING CH

GENERATOR SITE RF

RF-M002 CONTAINER: Drum Container Matl: metal Liner Type: rigid Number Stored: 9
Type/Size: 55-gallon Int. Vol/Cinr: 0.21 m3 Liner Material: HDPE Number Projected: 0

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM [Kg/II							
Average	Lower Limit	Upper Limit					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
303.2	0.0	681.8					
28,8	0.0	681.8					
87.4	0.0	681.8					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
	0.0 0.0 0.0 0.0 303.2 28.8 87.4 0.0	Average Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 303.2 0.0 28.8 0.0 87.4 0.0 0.0 0.0 0.0 0.0					

STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

	Projected	Final Form	
End of 1992:	0.0	0.0	m3
End of 1993:	1,9	1.9	m3
1994;	0.0	0.0	m3/yr
1995:	0.0	0.0	m3/yr
1996;	0.0	0.0	m3/yr
1997:	0.0	0.0	m3/ry
1998-2002:	0.0	0.0	m3/yr
2003-2022;	0.0	0.0	m3/yr

TYPICAL EPA CODES APPLICABLE

F001

F002

F005

Comments

Packaging Materials, Steel

Packaging Material, Plastic

Upper limit assumes a drum can contain all cellulosics, all rubber, or all plastics - actual max is 681.8.

301.0

51.9

Lower limit assumes that a single drum can contain no cellulosics, rubber or plastics - actual min is 0.

Steet packaging materials assumes 1 overpack drum (55-gal) & 2 pucks (35-gal). Plastic packaging material assumes 1 PVC liner, 1 P.E. liner and 1 rigid liner.

Footnotes

 The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022. TYPICAL ISOTOPIC COMPOSITION

 Nuclide
 Activity

 Pu239
 4.08E+00
 Curles/m3

 Pu240
 1.02E+00
 Curles/m3

 Pu241
 2.44E+01
 Curies/m3

 Am241
 3.46E+00
 Curies/m3

SITE NAME RF		WASTE TYPE TRU HANDLING CH GENERATOR SITE RF	
WASTE STREAM MWIR IC WIPP IC Local IC MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	RF-T001 823 3129 823	STREAM NAME Cemented Studge/TRU DESCRIPTION Uncategorized Inorganic Studges	
Site Matrix Description	This waste consists of cemented	miscellaneous sludge (IDC 823)	
NO MIGRATION VARIANCE I FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: Mixed TRU	Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A VINKnown Unknown TSCA Asbestos PCBs Unknown VINKnown VINKnown	

00000

RF-T001 - 1

RF - 6

2/28/95

SITE NAME RE WASTE TYPE TRU HANDLING CH **GENERATOR SITE RF** RF-T001 CONTAINER: Drum Container Matt: metal Liner Type: rigid Number Stored: 35 Type/Size: 55-gallon Int. Vol/Ctnr: 0.21 m3 Liner Material: HDPE 28 Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide **Activity Material Parameters Lower Limit Upper Limit** <u>Average</u> Pu239 1.32E-01 Curies/m3 Iron-based Metals/Alloys 0.0 0.0 0.0 Projected **Final Form** Pu240 3.02E-02 Curies/m3 0.0 Aluminum-Based Metals/Alloys 0.0 0.0 End of 1992: 3.2 3.2 m3 Pu241 7.20E-01 Curies/m3 Other Metals 0.0 0.0 0.0 7.4 7.4 m3 End of 1993: Am241 3.80E-01 Curies/m3 Other Inorganic Materials 489.0 376.2 635.2 0.2 0.2 m3/yr 1994: Cellulosics 0.0 0.0 0.2 0.0 1995; 0.2 m3/yr Rubber 00 0.0 0.0 1996: 0.2 0.2 m3/yr 0.0 **Plastics** 0.0 0.0 1997: 0.2 0.2 m3/ry 208.9 Solidified, Inorganic matrix 160.7 271.6 1998-2002: 0.2 0.2 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.2 0.2 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 132.0 51.9 Packaging Material, Plastic

Footnotes

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE TYPE TRU HANDLING CH GENERATOR SITE RF						
Local ID MATRIX CODE SITE FINAL FORM IDC	RF-T002 821, 822, 825 5330 821&2, 825	STREAM NAME Combustibles/TRU DESCRIPTION Predominantly Combustible Debris						
Waste Matrix Code Group H	TT	th and paper products from cleanup of gloveboxes and spills. This waste includes IDCs 330, 336, 337, 821, 822						
	25.							
NO MIGRATION VARIANCE P	ETITION ASSIGNMENT	TRUCON CODE						
FINAL WASTE FORM DESCR	IPTORS:							
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	Rsearch and Devel, Waste						

00697

ENAME RF			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE RF
RF-T002 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	4x4x7	INAL WASTE	Int.	13) STORED	TRU WASTE	Liner Type: ner Material: -ESTIMATED	TYPICAL	Number Stored: Number Projected: ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	3.2	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	3.2	0.0 m3		
Other Inorganic Materials	0.1	0.0	7.2	1994:	0.0	0.0 m3/yr		•
Cellulosics	64.2	0.0	481.6	1995:	0.0	0.0 m3/yr		
Rubber	6.1	0.0	481.6	1996:	0.0	0.0 m3/yr		
Plastics	18.5	0.0	481.6	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr		
Soits	0.0	0.0	0.0	TYPICA	LEBACODE	S APPLICABLE		
Packaging Materials, Steel	187.1			TIFICA	L EPA CODE	SAPPLICABLE		-
Packaging Material, Plastic	2.2							
Comments								

Typical isotopic composition data is not available for this container type.

SITE NAME RF			WAS	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	TE RF	
RF-T002 CONTAINER: Type/Size:	·	ste Box		iner Matt: metal Vol/Ctnr: 1		Liner Type:		Number Stored: 2 Number Projected: 0	
TYPICAL WASTE DENSITE Material Parameters	ES FOR FI	NAL WASTE Lower Limit	FORM (kg/r Upper Limit	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC COMPOSITION Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form			
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	3.8 m3			
Other Metals	0.0	0.0	0.0	End of 1993;	0.0	3.8 m3			
Other Inorganic Materials	0.1	0.0	7.2	1994;	0.0	0.0 m3/yr			
Cellulosics	64.2	0.0	481.6	1995:	0.0	0.0 m3/yr			
Rubber	6.1	0.0	481.6	1996;	0.0	0.0 m3/yr			
Plastics	18.5	0.0	481.6	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVD(CA	LERACORE	C ADDITION E			
Packaging Materials, Steel	187.1			ITPICA	L EPA CODE	S APPLICABLE		-	
Packaging Material, Plastic	2.2								

Comments

2 as number stored includes waste in metal box requiring repacking to SWBs. Final waste form volumes include waste repacked from metal boxes into SWBs with 1:2 ratio.

End of 1992 1 metal box repacked into 2 SWBs

End of 1993 1 metal box repacked into 2 SWBs

Typical isotopic composition data is not available for this container type.

Footnotes

- 1. The number of containers stored (2) includes waste that is presently stored in 4x4x7 metal boxes that will be repackaged into SWB's.
- 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.

SITE NAME RF			WAS	STE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE RF	
RF-T002 CONTAINER Type/Size	Int.		21 m3 L	Liner Type: rigid iner Material: HDPE E-ESTIMATED		Number S Number Proj			
Material Parameters				RATES		GENERATION	Nuclide	Activity	OMPOSITION
	Average	Lower Limit	Upper Limit				Pu239	8.90E-01	Curies/m3
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	<u>Final Form</u>	Pu240	2.04E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	25.0	25.0 m3	Pu241	4.86E+00	
Other Metals	0.0	0.0	0.0	End of 1993;	35.7	35.7 m3			Curles/m3
Other Inorganic Materials	0.1	0.0	7.2	1994:	25.0	25.0 m3/yr	Am241	9.77E-01	Curies/m3
Cellulosics	64.2	0.0	481.6	1995:	10.9	10.9 m3/yr			
Rubber	6.1	0.0	481.6	1996;	8.7	8.7 m3/yr			
Plastics	18.5	0.0	481.6	1997:	1.9	1.9 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	2.4	2.4 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	6.2	6.2 m3/yr			
Soils	0.0	0.0	0.0	Typic (L EDA COD				
D1:! 6.1-1 -1:- 0:- 1	400.0			ITPICA	いし ヒアみ しひひ	ES APPLICABLE			

Footnotes

Packaging Materials, Steel

Packaging Material, Plastic

132.0

51.9

containers projected is for the years 1994 - 2022.

RF-T002 - 4

RF - 11

2/28/95

^{1.} The inventory for this waste stream contains mixed residues (24.15 m3 in 1992 and 39.38 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certiflable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The 1994 drum inventory reflects an increase of 19.32 m3 which is due to the Waste Characterization Re-assessment effort (5.66 m3 generated + 19.32 m3 transferred to non-mixed = 24.98 m3 represented for annual generation). This volume of waste was re-characterized as non-mixed TRU waste. This inventory of waste was transferred from Waste Stream RF-W012.

3. The number of containers stored is for the year 1993. The number of

SITE NAME RF				WAST	E TYPE TRU HANDL	ING CH	GENERATOR SIT	re RF	
v	ocal ID	3119 444	o-metal		Gound Glass/TRU Uncategorized Inorganic Pa	ırticulates			
Site Matrix Descri	ption Ti	nis waste w	as recharacterized		U waste. See Ground Glass		,		
NO MIGRATION VARIA FINAL WASTE FORM Defense TRU Was Non-Defense TRU Commercial TRU Unknown	DESCRI ste Waste		Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	RU X	Rsearch and Devet. Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance		E RF 118 TSCA Asbestos PCBs Other N/A Unknown	X	-

10070

ENAME RF			WAS	TE TYPE TRU	HANDI	ING CH GEN	ERATOR S	RF RF
RF-T003 CONTAINER Type/Size	-			iner Mati: metal Vol/Ctnr: 3.1	7 m3 L	Liner Type: fiberboa	rd	Number Stored: 1 Number Projected: -1
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE I	FORM (kg/r	n3) STORED		E-ESTIMATED GENERATION		ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		<u> </u>	<u> </u>	Nuclide	<u>Activity</u>
iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.2	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993;	3.2	0.0 m3		
Other Inorganic Materials	137.5	77.7	215.5	1994:	-3.2	0.0 m3/yr		
Celtulosics	1.1	1.1	1.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	1.1	1.1	1996:	0.0	0.0 m3/yr		
Plastics	19.8	19.8	19.8	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0,0	0.0 m3/yr		
Soils	0.0	0.0	0.0			L		
Packaging Materials, Steel	187.1			TYPICA	L EPA CODI	ES APPLICABLE		-
Packaging Material, Plastic	2.2							
Comments								

This waste was recharacterized as Ground Glass/TRM (RF-W032) as part of waste characterization reassessment effort.

Typical isotopic composition data is not available for this container.

Footnotes

1. The 1994 box inventory reflects a decrease of 3.17 m3 (one 4'x4'x7' metal box) which is due to the Waste Characterization Re-assessment effort. This volume of waste was re-characterized as TRU Mixed waste (previously considered non-mixed TRU). This inventory of waste was transferred to Waste Stream RF-W032.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

00771

RF-T004 - 1

NAME RF			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	SITE RF	
RF-T004 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon	NAL WASTE	Int.	13) STORED	' TRU WASTE	Liner Type: rigid iner Material: HDPE/fil		Number S Number Pro	jected: 4
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	23.8 0.0 0.0 261.9 0.0 0.0 0.0 0.0 0.0 132.0 51.9	4.8 0.0 0.0 124.3 0.0 0.0 0.0 0.0 0.0	28.6 0.0 0.0 719.1 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	O.0 m3 O.0 m3/yr O.4 m3/yr O.4 m3/yr O.4 m3/yr O.4 m3/yr O.4 m3/yr O.5 APPLICABLE	Nuclide Pu239 Pu240 Pu241 Am241	Activity 3.73E+01 8.55E+00 2.03E+02 4.23E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Comments									

Product/TRM

Footnotes

1. The inventory for this waste stream contains mixed residues (1.47 m3 in 1992 and 0.74 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document. 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF				WAS	TE TYPE TRU	HANDLING CH	d GENERA	TOR SITE RF	
	MWIR ID WIPP ID F	RF-T005		STREAM NAM	Particulate Sludge/T	RU			
MATRIX CODE SITE FINAL FORM ID	3	292, 299, 37 3129 n/a	/2	DESCRIPTION	Uncategorized Inorg	anic Sludge			
Waste Matrix Code Site Matrix Desc	ription Thi	s waste wa	s generated from plut	tonium recovery o Jiners. Final wa	operations in Building a ste form for this waste	771. The waste o	consists of IDCs 2 ocess Solids/TRU	92, 299, and 372. (IDC 806).	This waste is packaged
NO MIGRATION VAR			SIGNMENT			TRUCON C	ODE		
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	aste U Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Operations Waste Residues Decon and Decomm. Environmental Resto From Treatment of W. Maintenance	Issioning Iration	TSCA Asbes PCBs Other N/A Unkno	X	

300705

E MAME KH			WA	STE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE RF	
RF-T005 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAI WASTE	Int	L	21 m3 L	Liner Type: rigid iner Material: HOPE E-ESTIMATED		Number S Number Pro	jected: 0
Material Parameters	Average	Lower Limit	Upper Limi	RATES		GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	68.3	_	Projected	Final Form	Pu239	2.41E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	0.4	0.0 m3	Pu240	5.52E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.4	0.0 m3	Pu241	1.31E+02	Curies/m3
Other Inorganic Materials	489.0	376.2	635.7	1994:	0.8	0.0 m3/yr	Am241	0.00E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	1.7	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	1.3	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997;	0.1	0.0 m3/ry			
Solidified, Inorganic matrix	208.9	160.7	271.6	1998-2002:	0.3	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.5	0.0 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	132.0		<u> </u>	TYPICA	L EPA CODI	ES APPLICABLE			-
Packaging Majorial Disetic	510								

Footnotes

^{1.} This waste stream must be immobilized to meet WIPP WAC. After treatment it is converted to IDC 806 and the final waste form volumes are transferred to Waste Stream RF-T006 with a volume increase of 1:2.21.

^{2.} These typical waste densities are for the final waste forms (RF-T006).

SITE NAME RF		WASTE TYPE TRU HANDLING CH GENERATOR SITE RF	
Local I MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	D RF-T006 D 306 806 Solidified Inorganics This waste stream represents the immobilized with Portland cement.	STREAM NAME Solidified Process Solids/TRU DESCRIPTION Final waste form for Particulate Sludges after Ireatment solidified final form of all particulate and sludge type materials. Particulates and sludge type materials are The cemented wastes are cast into 1-gallon molds and allowed to cure prior to packaging. This is the final waste	
NO MIGRATION VARIANCE	Crucible/TRM (RF-W059). IDC 80 as IDC 806. PETITION ASSIGNMENT RF 114	ines/TRM (RF-W036), Inclnerator Ash/TRM (RF-W040), Particulate Sludge/TRM (RF-W068), and Sand, Slag, and D6 - All inorganic particulate and inorganic sludge waste must be immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identification of the immobilized by processing into a solid and identificati	ed
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown		Research and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown TSCA Asbestos PCBs Other Unknown	

.

SITE NAME RF		WASTE TYPE TRU HA	ANDLING CH GENERA	TOR SITE RF
<u>RF-T006</u>	CONTAINER: Drum Type/Size: 55-gallon	Container Mati: metal tht, Voi/Cthr: 0.21 m3	Liner Type: rigid Liner Material: HDPE	Number Stored: 3 Number Projected: 165
TYPICAL W	ASTE DENSITIES FOR FINAL WASTE		CTE CENEDATION	PICAL ISOTOPIC COMPOSITION

<u> Material Parameters</u>	Average	Lower Limit	Upper Limit
iron-based Metals/Alloys	0.0	0.0	68.3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganic Materials	489.0	376.2	635.7
Cellulosics	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	0.0	0.0	0.0
Solidified, Inorganic matrix	208.9	160.7	271.6
Solidified, Organic matrix	0.0	0.0	0.0
Soils	0.0	0.0	0.0
Packaging Materials, Steel	132.0		

	Projected	Final Form	
End of 1992:	0.0	0.9 m3	
End of 1993:	0.0	0.9 m3	
1994:	0.0	1.8 m3/	۷r
1995:	0.0	3.8 m3/	Уг
1996:	0.0	3.0 m3/	- Уг
1997:	0.0	0.3 m3/	ry
1998-2002:	0.0	0.6 m3/	yr.
2003-2022:	0.0	1.1 m3/	yr.

TYPICAL EPA CODES APPLICABLE

<u>Nuclide</u>	<u>Activity</u>	
Pu239	3.50E+01	Curies/m3
Pu240	8.01E+00	Curies/m3
Pu241	1.91E+02	Curies/m3
Am241	4.76E+00	Curies/m3

Comments

Packaging Material, Plastic

Final waste form volumes include final waste form volumes from Particulate Sludges/TRU after treatment.

51.9

Footnotes

- 1. Final waste form volumes include treated waste from RF-T005 and RF-T076.
- 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.
- The "Number Stored" field may not reflect the actual number of drums in storage, but the number of drums that would be generated if all waste streams that feed into RF-T006 were in final form.

WASTE STREAM MWIR ID STREAM NAME Supercompacted Combustibles/TRU WIPP ID RF-T007
Local ID 2216 DESCRIPTION Supercompacted combustible debris. MATRIX CODE 5330 SITE FINAL FORM IDC 2216 Waste Matrix Code Group Heterogeneous Site Matrix Description This waste consists of each part of the part of
Site Matrix Description This waste consists of cloth and paper products from cleanup of gloveboxes and spills which as been supercompacted for volume reduction. NO MIGRATION VARIANCE PETITION ASSIGNMENT TRUCON CODE RF 116C FINAL WASTE FORM DESCRIPTORS:
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Non-Mixed TRU Unknown Non-Mixed TRU X Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance Footnotes

This waste stream is listed in TRUCON but under "older" IDCs 831, 832, 833.

WASTE STREAM DROCK E FOR THE WIND THE WASTE DAG

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Nuclide Nuclide Activity Pu239 Curies/m3	TENAME RF				TE TYPE TRU		LING CH GEN	ERATOR S	RF RF
<u> </u>	Type/Size TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	55-gallon ES FOR F Average 0.0 0.0 0.0 0.0 303.2 28.8 87.4 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upper Limit 0.0 0.0 0.0 0.0 681.8 681.8 681.8 0.0 0.0	Vol/Ctnr: 0. n3) STORED RATES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	HDPE HDPE	<u>Nuclide</u> Pu239 Pu240 Pu241	Number Projected: 0 ISOTOPIC COMPOSITION Activity Curies/m3 Curies/m3 Curies/m3

Steel packaging materials assumes 1 overpack drum (55-gal) & 2 pucks (35-gal). Plastic packaging materials assumes 1 PVC liner, 1 P.E. liner and 1 rigid liner.

Activity on these radionuclides is unknown.

Footnotes

1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
	RF-T010 RD 800, 803, 807 3150 800, 803	AM NAME Aqueous Sludge/TRU CRIPTION Solldified Process Residues
	generated as a result of process waste wat filtration of precipitated solids from pretreate drum as wet sludge. The recipitated solids approximately 30% Portland cement. RFP	dge from wastewater treatment mixed with 30% Portland cement. IDC No. 800, 803, 807. The waste is ter treatment in Building 374 and 774. Aqueous sludge is produced by vacuum ed aqueous waste slurry. Entrapped solids are skimmed off the surface of the filter medium of the rotating is are chiefly hydroxides with pH of 10-12. The final waste form is obtained by mixing the wet sludge with has several drums of aqueous sludge that were returned by INEL. These old drums were packaged by judge or by adding cement to the top and bottom of a drum containing wet sludge. This older waste is
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU Non-Mixed TRU	Research and Devel. Waste X

112000

RF-T010 - 1

RF - 22

2/28/95

SITE NAME RF			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF								
RF-T010 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	int.	13) STORED	21m3 L	Liner Type: rigid Iner Material: HDPE E ESTIMATED	TYPICAL	Number S Number Pro				
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity				
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils	0.0 0.0 395.6 0.0 0.0 400.5 0.0	0.0 0.0 0.0 44.2 0.0 0.0 0.0 44.3 0.0	0.0 0.0 767.0 0.0 0.0 0.0 767.0 0.0	End of 1992; End of 1993: 1994: 1995; 1996: 1997: 1998-2002: 2003-2022;	0.6 0.6 0.0 0.2 0.3 0.3 0.6 1.1	Final Form 0.6 m3 0.0 m3/yr 0.2 m3/yr 0.3 m3/yr 0.3 m3/yr 1.1 m3/yr ES APPLICABLE	Pu239 Pu240 Pu241 Am241	5.16E-01 1.18E-01 2.81E+00 2.03E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3			
Packaging Materials, Steel Packaging Material, Plastic	132.0	0.0	0.0	TYPICA	L EPA COD	ES APPLICABLE			-			

Footnotes

3) 3) 4]

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF				WAST	E TYPE TRU HANDL	ING CH	GENERATOR SIT	TE RF
					Metal/TRU Metal debris			
Waste Matrix Code Site Matrix Desc	ription IDC that poly	cs 480 and 481, twould fit in a 55- yethylene liner, fit	This waste includes ite gal. drum are placed i perboard liner and sev	n DOT 7A, eraf bag lind	Type A metal boxes. These a ers. The boxes are lined with	drums are lined : a fiberboard and	with a rigid d PVC liner - This v	are difficult to reduce to a size waste also includes final form residues in IDCs 480 and 481.
NO MIGRATION VAR			MENT RF 117		TRU	CON CODE RF	117	
Defense TRU Wa Non-Defense TRI Commercial TRU Unknown	aste U Waste	X Mixed	lixed TRU ct Mixed TRU	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X	Asbestos PCBs Other N/A Unknown	X

ENAME RF			WA	STE TYPE TRU	HANDL	ING CH GEN	NERATOR S	RF RF	
RF-T011 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	4x4x7		Int.		Om3 LI	Liner Type: ner Material: ESTIMATED	TYPICAL	Number Stored: Number Projected: ISOTOPIC COMPOSITIO	0 0
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	171.3	1.7	695.4	L	Projected	Final Form			
Aluminum-Based Metals/Alloys	18.6	0.0	238,9	End of 1992:	3.2	0.0 m3			•
Other Metals	16.5	0.0	67.0	End of 1993:	3.2	0.0 m3			
Other Inorganic Materials	19.6	0.0	79.6	1994:	0.0	0.0 m3/yr			
Cellulosics	5.5	0.0	22.3	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	10.1	0.0	41.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0 .0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVDICA	L EDA CODE	C 4881104815			
Packaging Materials, Steel	187.1			ITPICA	L EPA CODE	S APPLICABLE		-	
Packaging Material, Plastic	2.2								
Comments									

End of 1993 - 1 plywood box repacked into 2 SWBs

Final waste form volumes included in final waste form volumes for SWBs.

Typical isotopic composition is not available for this container type.

SITE NAME RF			WA	STE TYPE TRU	HAND	ING CH GEN	IERATOR S	ITE RF
RF-T011 CONTAINER: Type/Size				iner Matt: metal Vol/Ctnr:		Liner Type: iner Materiat:		Number Stored: 0 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/i			ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	<u>Activity</u>
Iron-based Metals/Alloys	171.3	1.7	695.4		Projected	Final Form		
Aluminum-Based Metals/Alfoys	18.6	0.0	238.9	End of 1992:	41.2	0.0 m3		
Other Metals	16.5	0.0	67.0	End of 1993:	41.2	0.0 m3		
Other Inorganic Materials	19.6	0.0	79.6	1994:	-19.0	0.0 m3/yr		
Cellulosics	5.5	0.0	22.3	1995;	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	10.1	0.0	41.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	. 0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Solls	0.0	0.0	0.0	TVDIO	L ED4 00DE	· · · · · · · · · · · · · · · · · · ·		
Packaging Materials, Steel	187.1			TTPICA	L EPA CODE	S APPLICABLE		-
Packaging Material, Plastic	2.2							

Comments

Assume waste in metal boxes is repackaged into SWBs with 1:2 ratio.
End of 1992 - 13 metal boxes repacked into 26 SWBs

End of 1993 - 13 metal boxes repacked into 26 SWBs

Final form waste volumes included in final form waste volumes for SWBs.

Footnotes

1. The 1994 4'x4'x7' metal waste box inventory reflects a decrease of 19.02 m3 which is due to the Waste Characterization Re-assessment effort. This volume of waste was re-characterized as TRU Mixed waste (previously considered non-mixed TRU). This inventory of waste was transferred to Waste Stream RF-W011.

2. The typical waste densities for this container were derived for the SWB.

SITE NAME RE			WAS	STE TYPE TRU	HANDL	ING CH	GEN	ERATOR S	ITE RF	
RF-T011 CONTAINER: Type/Size:		aste Box		iner Mati: metal Vol/Ctnr: 1		Liner Type: iner Material:			Number Stored Number Projected	·
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED	TRU WASTE	E-ESTIMATE	D	TYPICAL	ISOTOPIC COMPO	SITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATIO	<u>N</u>	Nuclide	Activity	
Iron-based Metals/Alloys	171.3	1.7	695.4		Projected	Final Form				
Aluminum-Based Metals/Alloys	18.6	0.0	238.9	End of 1992:		55.1	lm3			
Other Metais	16.5	0.0	67.0	End of 1993:	1.9	55.1				
Other Inorganic Materials	19.6	0.0	79.6	1994:	0.0	-26.6	m3/yr			
Cellulosics	5.5	0.0	22.3	1995:	0.0		m3/yr			
Rubber	0.0	0.0	0.0	1996;	0.0		m3/yr			
Plastics	10.1	0.0	41.0	1997:	0.0	<u></u>	m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0	m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0	m3/yr			
Soils	0.0	0.0	0.0	*DOIG !		<u></u>	-			
Packaging Materials, Steel	187.1		· · · · · · · · · · · · · · · · · · ·	TYPICA	L EPA CODE	SAPPLICAL	3LE			-
Packaging Material Plactic	2.3									

Comments

Typical isotopic composition data is not available for this container type.

Footnotes

- 1. The 1994 SWB waste box inventory reflects a decrease of 38.04 m3 (11.44 m3 newly generated 38.04 m3 re-characterized = -26.6 m3) which is due to the Waste Characterization Re-assessment effort. This volume of waste was re-characterized as TRU Mixed waste (previously considered non-mixed TRU). This inventory of waste was transferred to Waste Stream RF-W011.
- 2. The SWB final waste form volumes reflect repackaging waste that is currently in 4'x4'x7' metal and plywood boxes into SWBs at a ratio of 1:2 (one 4'x4'x7' box into two SWBs.
- The number of containers stored (29) and number of projected (-14) includes
 waste that is presently stored in 4x4x7 metal boxes that will be repackaged into
 SWBs.
- 4. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.

SITE NAME RF			WAS	TE TYPE TRU	HANDL	LING CH GEN	ERATOR S	ITE RF	
RF-T011 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.			Liner Type: rigid Iner Material: HDPE/fi		Number S Number Pro	
Material Parameters	Average	Lower Limit	Upper Limit		F WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	171.3	1.7	695.4		Projected	Final Form	Pu239	1.24E+00	Curies/m3
Aluminum-Based Metals/Alloys	18.6	0.0	238.9	End of 1992:	32.3	32.3 m3	Pu240	2.84E-01	Curies/m3
Other Metals	16.5	0.0	67.0	End of 1993:	35,9	35.9 m3	Pu241	6.76E+00	Curies/m3
Other Inorganic Materials	19.6	0.0	79.6	1994:	7.0	7.0 m3/yr	Am241	9.54E-01	Curies/m3
Cellulosics	5.5	0.0	22.3	1995:	15,4	15.4 m3/yr			
Rubber	0.0	0.0	0.0	1996:	7.8	7.8 m3/yr			
Plastics	10.1	0.0	41.0	1997:	0.9	0.9 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	1.5	1.5 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	3.2	3.2 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	132.0			TYPICAL	L EPA CODE	S APPLICABLE			-
Packaging Material, Plastic	51.9								

Footnotes

1. The inventory for this waste stream contains mixed residues (14.28 m3 in 1992 and 6.11 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document. 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022. 3. The typical waste densities for this container were derived for the SWB.

51.9

SITE NAME RF	WAST	TE TYPE TRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID WIPP ID Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	RF-T036 377 3119 377	Firebrick, Pulverized or Fines/TRU Uncategorized Inorganic Particulates
i: ii fi	orick in the plutonium recovery incinerator in Building s pulverized to facilitate plutonium recovery. Material The waste is packaged in 55-gallon drums lined with a	Pulverized or Fines," IDC No. 377 and 378. This waste is generated from replacement of fire 771. The fire brick must be replaced periodically because of the plutonium buildup. The fire brick which assays below the economic discard limit is discarded as pulverized fire brick waste. a rigid polyethylene liner. Inventory data include residues in the same IDCs. IDC 377 - Waster and larger than 1/4 Inch diameter. IDC 378 - Particulate firebrick residue from recovery or be processed into IDC 806 (RF-T06). TRUCON CODE RF 122
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU X Non-Mixed TRU X Suspect Mixed TRU Unknown	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Trealment of Waste Maintenance TSCA Asbestos PCBs Other N/A Vihange Unknown

000718

RF-T036 - 1

SITE NAME RF			WAS	TE TYPE TRU	HAND	LING CH GEN	ERATOR	SITE RF	
RF-T036 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) STORED	TRU WAST	Liner Type: rigid Iner Material: HDPE/fi		Number S Number Pro L ISOTOPIC C	
Material Parameters	Average	Lower Limit	Upper Limit	KA IES C	F WASIE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	1.50E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.4	3.4 m3	Pu240	3.43E-01	Curles/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.3	1.3 m3	Pu241	8.17E+00	Curies/m3
Other Inorganic Materials	104.4	44.5	263.0	1994:	0.0	0.0 m3/yr	Am241	0.00E+00	Curies/m3
Cellulosics	28.9	14.5	57.7	1995:	0.0	·			
Rubber	0,0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	19.2	9.6	38.5	1997:	0.0	0.0 m3/ry			
Solidifled, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0,0	0.0	2003-2022:	0,1	0.1 m3/yr			
Soils	0.0	0.0	0.0			0.1 110//1			
Packaging Materials, Steel	132.0		<u> </u>	TYPICAL	LEPA COD	ES APPLICABLE			-
Packaging Material, Plastic	51.9								

Footnotes

^{1.} The inventory for this waste stream contains mixed residues (0.21 m3 in 1992 and 0.21 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF			WAST	TE TYPE TRU HANDLING CH GENERATOR SITE RF
	IR ID PP ID RF-T037		STREAM NAME	Heavy Metal (non-SS)/TRU
LOCAL MATRIX CODE SITE FINAL FORM IDC	5190 320		DESCRIPTION	Uncategorized metal debris
Waste Matrix Code Gro Site Matrix Descript	ion IDC No. 320 elements ab Typically, the and platinum	Heavy (non-SS) metal ove Cu on the periodic ese scrap metals consist are examples of scrap	chart. In 1987, ID st of crucibles, fun metals at the RFF	ed at various locations throughout the RFP. Heavy scrap metals is defined at RFP as metal at RFP as metals, rods and fixturing from several processes and production operations. Tantalum, tungsten P. Inventory data include residues in IDC 320. IDC 320 - Scrap metals which are heavier than Mainly used tantalum crucibles.
NO MIGRATION VARIAN	ICE PETITION A	SSIGNMENT RF 117		TRUCON CODE RF 117
FINAL WASTE FORM D Defense TRU Waste Non-Defense TRU W Commercial TRU W Unknown	Yaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other X Unknown X

SITE NAME RF			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	RF RF	
RF-T037 CONTAINE Type/Siz	R: Drum e: 55-gallon		1	iner Mati: metal Vol/Ctnr: 0.2		Liner Type: rigid ner Material: HDPE/fi	berboar	Number S Number Proj	<u> </u>
TYPICAL WASTE DENSI	TIES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	57.8	0.0	317.3		Projected	Final Form	Pu239	9.69E+00	Curies/m3
Aluminum-Based Metals/Alloys		0.0	0.0	End of 1992:	0.4	0.4 m3	Pu240	2.22E+00	Curies/m3
•		├ ───-	L			 	Pu241	5.28E+01	Curies/m3
Other Metals	134.8	44.5	1057.7	End of 1993:	1.3	1,3 m3	Am241	0.00E+00	Curies/m3
Other Inorganic Materials	13.3	0.0	19.2	1994:	0,0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0,0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.2	0.2 m3/yr			
Soils	0.0	0.0	0.0	TVBIC A	L EDA COD	C APPLICABLE			
Packaging Materials, Steet	132.0	·		ITPICA	L EPA CODE	S APPLICABLE			-

Footnotes

RF-T037 - 2

Packaging Material, Plastic

51.4

^{1.} The inventory for this waste stream contains mixed residues (0 m3 in 1992 and 0.21 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

^{2.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

MATRIX CODE

MWIR ID

WIPP ID RF-T038 Local ID 802

3121

WASTE TYPE TRU

STREAM NAME Sollified Lab Waste/TRU

HANDLING CH

GENERATOR SITE RF

DESCRIPTION

Maintenance

SITE NAME RF			WAS	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE RF	
RF-T038 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	iner Matt: metal Vol/Ctnr: 0.21		Liner Type: rigid ner Material: HDPE - ESTIMATED	TYPICAL	Number S Number Proj	<u> </u>
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Solldified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 935.0 0.0 0.0 0.0 333.0 0.0 0.0 132.0 64.8	0.0 0.0 0.0 311.7 0.0 0.0 0.0 238.0 0.0	0.0 0.0 0.0 1122.0 0.0 0.0 0.0 476.2 567.3	End of 1992: End of 1993; 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0jected 1.7 2.1 8.1 11.2 8.4 0.0 0.0 0.0	### SECTION SECTION Final Form 1.7 m3	Nuclide Pu239 Pu240 Pu241 Am241	Activity 1.79E-01 4.10E-02 9.76E-01 3.15E+00	Curies/m3 Curles/m3 Curles/m3

Footnotes

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WAST	E TYPE TRU HANDLIN	ів Сн	SENERATOR SI	TE RF
Local MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	ID RF-T052 ID 440,441,442,856 5122 440, 441	STREAM NAME DESCRIPTION	Glass debris			
	processes, ceramics, and gi	lovebox windows. This wa haracterized by TCLP ana	lytical data and process knowl	med "Glass." In	ventory data incl glass is character	n analytical labs, recovery ude residues in the same IDCs. ized by process knowledge and
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	RU X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA X X	Asbestos PCBs Other N/A Unknown	<u>x</u>

NAME RF			WAS	TE TYPE TRU	HAND	ING CH GEN	ERATOR S	ITE RF
RF-T052 CONTAINER: Type/Size:	4x4x7	NAL WASTE	int.	ner Matt: metal	0m3 L	Liner Type: iner Material: E-ESTIMATED	TYPICAL	Number Stored: 0 Number Projected: 0
TYPICAL WASTE DENSITI						GENERATION	Nuclide	. ISOTOPIC COMPOSITION Activity
Material Parameters	Average	Lower Limit	Upper Limit					
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	31.7	0.0 m3		•
Other Metals	0.0	0.0	0.0	End of 1993:	31.7	0.0 m3		
Other Inorganic Materials	244.3	20.7	466.5	1994:	0.0	0.0 m3/yr		
Cellulosics	1.1	0.0	1.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	1.1	1996;	0.0	0.0 m3/yr		
Plastics	19.8	0.0	19.8	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICA	L EPA COD	ES APPLICABL <u>E</u>		•
Packaging Materials, Steel	187.1							
Packaging Material, Plastic	2.2							
Comments								
Assume waste in metal boxes is End of 1992 - 10 metal boxes i End of 1993 - 10 metal boxes i Final waste form volumes include Typical isotopic composition data	epacked into epacked into ed in final was	20 SWBs 20 SWBs ste form volumes	s for SWBs	; ;				
Footnotes								
The typical waste densities for th	ls container v	vere derived for i	the SWB.					
								

C	<u></u>
C	>
_	ĭ
٨	5
7	

SITE NAME RF			WA	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	RF RF
RF-T052 CONTAINER Type/Size	·	aste Box		niner Mati: metal . Vol/Ctnr: 1	.9m3 Li	Liner Type: Bag/rigio		Number Stored: 20 Number Projected: 0
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/s			E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0	•	Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	38,0 m3		
Other Metals	0.0	0.0	0.0	End of 1993;	0.0	38.0 m3		
Other Inorganic Materials	244.3	20.7	466.5	1994:	0.0	0.0 m3/yr		
Cellulosics	1.1	0.0	1.1	1996:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	1.1	1996:	0.0	0.0 m3/yr		
Plastics	19.8	0.0	19.8	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	7000				
Packaging Materials, Steel	187.1	· · · · · · · · · · · · · · · · · · ·		IYPICA	L EPA CODE	S APPLICABLE		-
Packaging Material, Plastic	2.2							

Comments

Final waste form volumes include waste repackaged from metal boxes. Typical isotopic composition data is not available for this container type.

Footnotes

- 1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.
- 2. The number of containers stored (20) includes waste that is presently stored in 4x4x7 metal boxes that will be repackaged into SVVBs.

ENAME RF			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR :	SITE RF	
RF-T052 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solis Packaging Materials, Steel	55-gallon	NAL WASTE Lower Limit	Int.	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	TRU WASTE DF WASTE Projected 56.5 46.2 1.4 1.9 1.4 0.0 0.0 0.1	Liner Type: rigid ner Material: HDPE/fi -ESTIMATED GENERATION Final Form 56.5 m3 46.2 m3 1.4 m3/yr 1.9 m3/yr 1.4 m3/yr 0.0 m3/yr 0.0 m3/yr 0.1 m3/yr 0.1 m3/yr	berboar	Number S Number Proj L ISOTOPIC C	ected: 33
Packaging Material, Plastic	51.9								

1. The inventory for this waste stream contains mixed residues (0.63 m3 in 1992 and 3.37 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document. 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF			WAS	STE TYPE TRU HAND	LING CH	GENERATOR SI	ITE RF
WI Loc MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gro	ion IDCs 370, 36	n-metal 88 and 655. This waste :	DESCRIPTIO	Mg Oxide Crucibles/TRU N Ceramic/Brick Debris s any type or size of ceramic	crubicles or line	ers including LECO c	crucibles. This waste consists of
NO MIGRATION VARIAN	adhering to t electro-chen into 55-gallor	he surface and containin lical processing. Waste o drums, Inventory data	ng plutonium res is placed in 4-li	es in IDC 368.	s generated dur	ring plutonium recove placed in 1 gallon of	sodium, and/or potassium ery using pyrochemical and r 1 quart paint cans then placed
FINAL WASTE FORM DI Defense TRU Waste Non-Defense TRU V Commercial TRU Wa Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	X X	CA Asbestos PCBs Other N/A Unknown	X

SITE NAME RF W	ASTE TYPE TRU	HANDLING CH	GENERATOR SITE	RF
----------------	---------------	-------------	----------------	----

RF-T056	CONTAINER: Drum	Container Matl: metal	Liner Type: rigid	Number Stored:	6
	Type/Size: 55-gallon	Int. Vol/Ctnr: 0.21 m3	Liner Material: HDPE	Number Projected:	3

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

Material Parameters	Average	Lower Limit	Upper Limit
Iron-based Metals/Alloys	11.9	0.0	23.8
Aluminum-Based Metals/Alloys	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganic Materials	370.2	111.0	828.4
Cellulosics	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	26.9	0.0	53.8
Solidified, Inorganic matrix	0.0	0.0	0.0
Solidified, Organic matrix	0.0	0.0	0.0
Soll s	0.0	0.0	0.0

	<u>Projected</u>	Final Form
End of 1992:	1.9	1.9 m3
End of 1993:	1.3	1,3 m3
1994:	0.0	0.0 m3/yr
1995:	0.0	0.0 m3/yr
1996:	0.0	0.0 m3/yr
1997:	0.0	0.0 m3/ry
1998-2002:	0.0	0.0 m3/yr
2003-2022:	0.0	0.0 m3/yr

TYPICAL EPA CODES APPLICABLE

TYPICAL ISOTOPIC COMPOSITION

<u>Nuclide</u>	Activity	
Pu239	2.21E+01	Curles/m3
Pu240	5.06E+00	Curles/m3
Pu241	1.20E+02	Curles/m3
Am241	0.00E+00	Curles/m3

Footnotes

Packaging Materials, Steel

Packaging Material, Plastic

132.0

51.9

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

^{1.} The Inventory for this waste stream contains mixed residues (1.26 m3 in 1992 and 0 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several MPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

SITE NAME RF				WAST	E TYPE TRU HAN	DLING CH	GENERATOR SI	TE RF		
WASTE STREAM		RF-T057		STREAM NAME	Insulation/TRU					
MATRIX CODE SITE FINAL FORM ID	Local 10 0 <u>C</u>	438 5129 438		DESCRIPTION	Uncategorized inorganic non-metal debris					
Waste Matrix Code Sile Matrix Desc	cription	OC 438 - Tr haracterize	nis waste stream is c d using process know	wieuge ioi maniiestin	n. The insulation is gener g purposes is 1987 and f CRA hazardous constitue	989 to determ:	ine if any renortable qua	onsite. This waste was ntities per 49 CFR 172 were		
NO MIGRATION VAL			SSIGNMENT RF 12	2		RUCON COD	ERF 122			
PINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	aste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TRI Unknown		Rsearch and Devel, Wast Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning X	TSCA Asbestos PCBs Other N/A Unknown	×		

00730

SITE NAME RF			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF								
RF-T057 CONTAINER: Type/Size: TYPICAL WASTE DENSIT	55-gallon	NAI WASTE	Int.	L	_	Liner Type: rigid ner Materiaf: HOPE		Number S Number Proj ISOTOPIC C	ļ			
THIORE WASTE BENOTH	<u> </u>	MAE WADIE	t Otton (ng//			GENERATION	Nuclide	Activity				
Material Parameters	Average	Lower Limit	Upper Limit				Pu239	4.67E+00	Curies/m3			
Iron-based Metals/Alloys	0.0	0.0	0.0	į	<u>rojected</u>	Final Form	Pu240	1.07E+00	Curies/m3			
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	6.7	6.7 m3						
Other Metals	0.0	0.0	0.0	End of 1993:	6.7	6.7 m3	Pu241	2.54E+01	Curles/m3			
Other Inorganic Materials	84.7	2.2	362.8	1994:	0.7	0.7 m3/yr	Am241	0,00E+00	Curies/m3			
Cellulosics	4.8	0.0	9.6	1995:	0.1	0.1 m3/yr						
Rubber	0.0	0.0	0.0	1996:	0.1	0.1 m3/yr						
Plastics	0.0	0.0	0.0	1997:	0.1	0.1 m3/ry						
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.1	0.1 m3/yr						
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.1	0.1 m3/yr						
Soils	0.0	0.0	0.0	Ļ								
Packaging Materials, Steel	132.0			TYPICAL	<u>. EPA COD</u>	ES APPLICABLE			-			

Footnotes

Packaging Material, Plastic

51.9

^{1.} The inventory for this waste stream contains mixed residues (0.42 m3 in 1992 and 0.63 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
Local II MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	D RF-T059 D 392, 398 3119 392, 398 Solidified Inorganics	DESCRIPTION nd, slag, and crucible (IDC 392) and pulverized sand, slag, and crucible (IDC 398).
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESCI Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	Rsearch and Devel, Waste Comperations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

SITE NAME RF			WA	STE TYPE TRU	HAND	ING CH GE	NERATOR SI	TE RF	
RF-T059 CONTAINER: Type/Size:	55-gallon		int		21 m3 L	Liner Type: rigid Iner Malerial: HDPE		Number Stored: Number Projected:	0 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/			E ESTIMATED	TYPICAL	ISOTOPIC COMPOS	NOTTE
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	68.3	-	Projected	Final Form			
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		0.0 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3			
Other Inorganic Materials	489.0	376.2	635.7	1994:	0.0	0.0 m3/yr			
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	208.9	160.7	271.6	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TVD10.4	L EDA 000				
Packaging Materials, Steel	132.0	,		TTPICA	L EPA CODE	ES APPLICABLE		•	-

Footnotes

Packaging Material, Plastic

51.9

^{1.} The inventory for this waste stream contains mixed residues (4.41 m3 in 1992 and 0 m3 in 1993). This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

SITE NAME RF			WAST	TE TYPE TRU HA	ANDLING CH	GENERATOR SI	TE RF
WILL LOW MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gro	ion This waste f	orm includes scarfed gra	DESCRIPTION	Coarse Graphite/TRU Graphite Debris C 303) and coarse grap	phite (IDC 312). This waste is a result o	f broken graphile molds from the
NO MIGRATION VARIAN	NCE PETITION A		ress, Julig. 11	e caumium is present a	TRUCON CO	ed salt residues on the gra	phile.
PINAL WASTE FORM DI Defense TRU Waste Non-Defense TRU V Commercial TRU Wa Unknown	X Vaste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Wa Operations Waste Residues Decon and Decommiss Environmental Restorat From Treatment of Was Maintenance	X X X X X X X X X X X X X X X X X X X	TSCA Asbestos PCBs Other N/A Unknown	X

00073/

ILE NAME RE			WA	STE TYPE TRU	HAND	ING CH GEN	ERATOR S	SITE RF	
RF-T060 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int	L	21 m3 L	Liner Type: rigid iner Material: HDPE/fi		Number S Number Pro	jected: 32
Material Parameters	Average	Lower Limit	Upper Limit	RATES		GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	17.3	<u>!</u>	Projected	Final Form	Pu239	5.38E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	17.9	17.9 m3	Pu240	1.23E+00	Curles/m3
Other Metals	0.0	0.0	0.0	End of 1993:	17.6	17.6 m3	Pu241	2.93E+01	Curles/m3
Other Inorganic Materials	312.6	51.8	386,6	1994;	0.0	0.0 m3/yr	Am241	0.00E+00	Curles/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:		0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997;	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0,0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:		0.3 m3/yr			
Soils	0.0	0.0	0.0		L				
Packaging Materials, Steel	132.0			TYPICA	L EPA CODE	S APPLICABLE			-
Packaging Material, Plastic	51.9								

Footnotes

^{1.} The inventory for this waste stream contains mixed residues (86.94 m3 in 1992 and 87.07 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID WIPP ID RF-T063 Local ID 070,400,401,500 MATRIX CODE 1190 SITE FINAL FORM IDC	STREAM NAME Miscellaneous Liquids/TRU DESCRIPTION Uncategorized Wastewaters
plastic bottles and severa	0, 503, 508, 527, and 541. As result of the shutdown of plutonium operations at RFP in November, 1989, several hundred lanks of process liquids remained in storage in Buildings 371, 559, 771, and 779. These liquids are included in the list of e-year projected generation is an estimate of the past three years generation history. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed Commercial TRU Waste Suspect M Unknown Unknown	

SITE NAME RF			WAS	TE TYPE TRU	HAND	ING CH GEN	ERATOR S	ITE RF
RF-T063 CONTAINER Type/Size	•			iner Mati: metal		Liner Type:rigid Iner Material:HDPE		Number Stored: 1 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.3	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.3	0.0 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994;	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TVINO				
Packaging Materials, Steel	0.0	·		ITPICA	L EPA CODE	S APPLICABLE		-

Footnotes

Packaging Material, Plastic

0.0

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF				WAS	TE TYPE TRU	HANDLING	СН	GENERATOR S	ITE RF
WASTE STREAM	MWIR ID	PF.TOSS		STREAM NAME	Filters and Media	эЛЯ			
MATRIX CODE	Local ID		90,491	DESCRIPTION	Composite filters			,	
SITE FINAL FORM	IDC 3	335,342,49	90,49]				
Waste Matrix Cod	de Group Filt	ler							
	ope 34 pro abs	erations (l 2), acid co ocessed fi sorb mois	DC 331), absolute glo intaminated HEPA fit Iter media (IDC 376).	ovebox fitters from (ers (IDC 492), non Processed fitter m (Id contamination, I	non-acid contamin -acid contaminate edia is material wi	ated operations d HEPA filters (II nich has been tre	(IDC 335), a DC 492), plei ated using F	cid contaminated num prefitters (ID 'ortland cement t	, ful-flo filters from non-incineration I absolute glovebox filters (IDC DC 491), filter media (IDC 338), and lo waste boxes. Inventory data
NO MIGRATION V	ARIANCE PE	TITION A	SSIGNMENT RF 119	9		TRUCO	N CODE RF	119	
FINAL WASTE FO	RM DESCRIF	PTORS:							
Defense TRU Non-Defense i Commercial Ti Unknown	TRU Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and De Operations Was Residues Decon and Deco Environmental R From Treatment Maintenance	ommissioning estoration	TSCA	Asbestos PCBs Other N/A Unknown	x

RF-T066 CONTAINER:					 ,			
				iner Mati: metal		Liner Type:		Number Stored:
Type/Size:	4x4x7	 	Int.	Vol/Ctnr:	0 m3 Li	ner Materiai:		Number Projected:
TYPICAL WASTE DENSITIE	S FOR F	NAL WASTE	FORM (kg/r			-ESTIMATED	TYPICAL	LISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	<u>GENERATION</u>	Nuclide	Activity
Iron-based Metals/Alloys	Average 0.0	0.0	595.3		Projected	Final Form		
Aluminum-Based Metals/Alloys	42.1	0.0	440.7	End of 1992:	6.3	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	6.3	0.0 m3		
Other Inorganic Materials	15.0	0.0	154.8	1994:	0.0	0.0 m3/vr		
Cellulosics	104.8	0.0	496.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	11.3	1996:	0.0	0.0 m3/vr		
Plastics	0.0	0.0	595.6	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Solls	0.0	0.0	0.0			······································		
Packaging Materials, Steel	187.1			TYPICA	L EPA CODE	S APPLICABLE		•
Packaging Material, Plastic	2.2							
L								
Comments	 							
Assume waste in metal boxes is r Final waste form volumes include:								
rinai wasie form volumes include: End of 1992, 2 metal boxes repa			101 34408.	İ				
End of 1993 2 metal boxes repa								

RF-T066 - 2

The typical waste densities for this container were derived for the SWB.

SITE NAME RF			WAS	TE TYPE TRU	HANDI	LING CH GE	NERATOR S	SITE RF
RF-T066 CONTAINER: Type/Size:		aste Box		iner Mati: metal Vol/Ctnr: 1		Liner Type: rigid iner Material: riberbo	ard	Number Stored: 11 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E-ESTIMATED GENERATION		. ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASIE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	0.0	0.0	595.3		Projected	Final Form		
Aluminum-Based Metals/Alloys	42.1	0.0	440.7	End of 1992:	13.3	20.9 m3		
Other Metals	0.0	0.0	0.0	End of 1993;	13.3	20.9 m3		
Other Inorganic Materials	15,0	0.0	154.8	1994:	0.0	0.0 m3/yr		
Cellulosics	104.8	0.0	496.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	11.3	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	596.6	1997:	0.0	0.0 m3/ry		•
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	Typic	L EDA COD	SC ADDI ICADI E		
Packaging Materials, Steel	187.1			117(0)	AL EPA GOU	ES APPLICABLE		-
Packaging Material, Plastic	2.2							

Comments

Final waste form volumes include waste repackaged from metal boxes. Typical isotopic composition data is not available for this container type.

Englishes

- 1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.
- 2. The number of containers stored (11) includes waste that is presently stored in 4x4x7 metal boxes that will be repackaged into SWBs.

SITE NAME RF			WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF								
RF-T066 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon	INAL WASTE	Int.	3) STORED	TRU WASTE	Liner Type: Rigid iner Material: HDPE/fi - ESTIMATED GENERATION		Number S Number Pro	ected: 636			
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 23.9 0.0 8.3 30.0 1.3 88.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 440.7 0.0 154.8 496.1 11.3 595.6 0.0 0.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	24.6 17.0 2.0 3.2 2.4 0.1 0.1 6.3	24.4 m3 16.8 m3 2.0 m3/yr 3.2 m3/yr 2.4 m3/yr 0.1 m3/yr 0.1 m3/yr 6.3 m3/yr	Pu239 Pu240 Pu241 Am241	Activity 6.10E+00 1.40E+00 3.32E+01 0.00E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3			

Comments

Site final form IDC also includes 490 and 491.

IDC 331 must be immobilized to convert to IDC 376.

The following volumes were included in the final waste form volumes for Cemented Fifters/TRU to reflect the Immobilization of IDC 331:

End of 1992 $.21m3 \times 2.16 = .45m3$

End of 1993 .21m3 x 2.16 = .45m3

Footnotes

RF-T066 - 4

1. The inventory for this waste stream contains mixed residues (32.97 m3 in 1992 and 38.01 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The final waste form drum volumes for 1992 and 1993 show a decrease of 0.21 m3 as a result of processing IDC 331 waste and transferring to Waste Stream RF-T067.

The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WAST	E TYPE TRU	HANDLING CH	GENERATOR S	ITE RF
WASTE STREAM MWIR	ID RF-T067	STREAM NAME	Cemented Filters/	TRU		
Local MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	376 5410 376	DESCRIPTION	Composite Filters			
	This waste stream was previous the plant site. Processed filter	media, DC 376, is mat packaged in 55-gallon (erial which has be	en treated using Po	ortland cement to absorb i	m process operations throughout moisture and neutralize acid e residues within the same IDCs
NO MIGRATION VARIANC	E PETITION ASSIGNMENT	119		TRUCON C	ODERF 119	
PINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	Mixed TRU Ste Non-Mixed TRU	TRU X	Rsearch and Dev Operations Waste Residues Decon and Decor Environmental Re From Treatment of Maintenance	nmissioning	TSCA Asbestos PCBs Other N/A Unknown	×

SITE NAME RF			WA	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF								
RF-T067 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE FO				Container Mati: metal Liner Type: rigid Int. Vol/Ctnr: 0.21 m3 Liner Material: HDPE ORM (kg/m3) STORED TRU WASTE ESTIMATED				Number Stored: 6 Number Projected: 0				
Material Parameters	Average	Lower Limit		RATES C		GENERATION	Nuclide	L ISOTOPIC COMPOSITION Activity				
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	4.8 0.0 0.0 113.3 0.0 0.0 14.4 141.5	0.0 0.0 0.0 26.9 0.0 0.0 0.0 33.6	24.0 0.0 0.0 342.4 0.0 0.0 38.5 427.6	-	0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 1.1 m3 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu239 Pu240 Pu241 Am241	6.61E+00 Curies/m3 1.51E+00 Curies/m3 3.60E+01 Curies/m3 0.00E+00 Curies/m3				
Solfs	0.0	0.0	0.0	TYPICAL	L EPA CODE	ES APPLICABLE		-				

Footnotes

Packaging Materials, Steel Packaging Material, Plastic

132.0

51.9

^{1.} The inventory for this waste stream contains mixed residues (0.21 m3 in 1992 and 0.21 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The final waste form volumes for 1992 and 1993 include 0.45 m3 from the treatment of IDC 331 from Waste Stream RF-T066.

^{3.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF	•	WASTI	E TYPE TRU	HANDLING CH	GENERATOR SIT	re rf
	ID RF-T069	-	Organic Resins/TRU	J		
MATRIX CODE SITE FINAL FORM IDC	3212 809	DESCRIPTION	Organic resins			
	This waste stream was previous operations in Building 771. It co (discussed in the National Repo 430) and Leached resin (IDC 43 Final waste form for this waste s	insists of unleached re int on Prohibited Waste 31). The waste is pack stream is cemented res	esin (IDC 430) and lea es and Treatment Opt kaged in 55-gallon dru	ached resin (IDC 4 tions and in Treatm ums with multiple b	31). The particulate and nent Report No. 1) are unag liners. Inventory data	ed from plutonium recovery I sludge (TRU mixed) waste nleached ion exchange resin (IDC a include residues in these IDCs.
NO MIGRATION VARIANC FINAL WASTE FORM DES	E PETITION ASSIGNMENT RF 1 CRIPTORS:	26		TRUCON COD	<u>PE</u> RF 126	
Defense TRU Waste Non-Defense TRU Wa Commercial TRU Wast Unknown	··· ···· • ···· • ·· • ·· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··· • ··	RU I	Rsearch and Devel. N Operations Waste Residues Decon and Decommi Environmental Resto From Treatment of W Maintenance	Issioning Isration	TSCA Asbestos PCBs Other N/A Unknown	X

SITE NAME RF			WASTE TYPE TRU HANDLING CH GENERATOR SITE RF								
RF-T069 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon	INAL WASTE	Int.	n3) STORED	J TRU WASTE	Liner Type: rigid ner Material: HDPE	TYPICA!	Number S Number Pro LISOTOPIC C Activity	1		
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Soils Packaging Materials, Steel	0.0 0.0 0.0 475.0 0.0 0.0 0.0 203.0 0.0	0.0 0.0 0.0 316.7 0.0 0.0 0.0 0.0 135.3 0.0	0.0 0.0 0.0 0.0 617.5 0.0 0.0 0.0 263.5	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	12.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 12.0 m3 12.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu239 Pu240 Pu241 Am241	1.83E+00 4.19E-01 9.97E+00 0.00E+00	Curies/m3 Curies/m3 Curies/m3 Curies/m3		

Footnotes

^{1.} The inventory for this waste stream contains mixed residues (2.94 m3 in 1992 and 3.35 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

								
RF-T076 CONTAINER	`\		Cont	ainer Mati: metal		Liner Type:		Number Stored: 0
Type/Size	55-gallon		Int	. Vol/Ctnr: 0.2	11 m3 Li	ner Material:		Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/	m3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limi	RATES	OF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICA	L EDA CODE	E ADDI ICADI C		
Packaging Materials, Steel	0.0			TIPICA	L EPA CODE	S APPLICABLE		-
Packaging Material, Plastic	0.0							

Final waste form for these residues are included in other waste forms as REP output.

Footnotes

1. The inventory for this waste stream contains mixed residues (0,63 m3 in 1992 and 5.96 m3 in 1993). This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

RF-W008 - 1

RF-W008 CONTAINER: Drum				iner Mati: meta	I	Liner Type: rigid		itored:		
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0	21 m3 L	iner Material: HDPE	Number Projected: 0			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORE		E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>		
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	6.06E-01	Curies/m3	
Aluminum-Based Metals/Allovs	0.0	0.0	0.0	End of 1992:		1.9 m3	Pu240	1.39E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:		1.9 m3	Pu241	3.30E+00	Curies/m3	
Other Inorganic Materials	311,6	8.7	865.8	1994:	,,,,	0,0 m3/yr	Am241	0.00E+00	Curies/m3	
Cellulosics	12.0	12.0	12.0	1995:		0.0 m3/vr				
Rubber	0.0	0.0	0.0	1996:	<u> </u>	0.0 m3/yr				
Plastics	12.0	12.0	12.0	1997:	0.0	0.0 m3/ry				
Solidifled, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	64.9	9.6	865.8	TVBIO	L FDA COD	FO ADDI IDADI F				
Packaging Materials, Steel	132.0			ITPICA		ES APPLICABLE			-	
Packaging Material, Plastic	51.9				D006A					
					D007A					
					D008A					
					F001					
Footnotes					F002					

RF-W010 - 1

RF-W010 CONTAINER: Drum				niner Mati: metal		Liner Type: rigid	Number Stored: 684			
Type/Size: 55-gallon			Int.	Vol/Ctnr: 0.21	m3 Li ı	ner Material:HDPE	Number Projected: 396			
TYPICAL WASTE DENSITIES FOR FINAL WASTE FO			FORM (kg/i	m3) STORED 1	TRU WASTE	ESTIMATED	TYPICAL ISOTOPIC COMPOSITION			
Material Parameters	Average	Lower Limit	Upper Limit		F WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	0.0	0.0	0.0	=	rojected	Final Form	Pu239	5.16E-01	Curles/m3	
Aluminum-Based Metals/Alloy	s 0.0	0.0	0.0	End of 1992:	143.4	143.4 m3	Pu240	1.18E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	143.6	143.6 m3	Pu241	2.81E+00	Curies/m3	
Other Inorganic Materials	395.6	44.2	767.0	1994:	0.0	0.0 m3/yr	Am241	2.03E+00	Curies/m3	
Cellulosics	0.0	0.0	0.0	1996:	0.9	0.9 m3/yr				
Rubber	0.0	0.0	0.0	1996:	0.9	0.9 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.9	0.9 m3/ry				
Solidified, Inorganic matrix	400.5	44.3	767.0	1998-2002:	1.0	1.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	3.8	3.8 m3/yr				
Soils	0.0	0.0	0.0	TVDICAL	EDA CODE	S APPLICABLE				
Packaging Materials, Steel	132.0			TIFICAL	D006A	3 AFFLICABLE			-	
Packaging Material, Plastic	64.8				-					
					D008A					
					F001					
-					F002					
Footnotes					F005A					
 The number of containers s containers projected is for the 	tored is for the	year 1993. The	number of		F005A					

SITE NAME RF	-			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF							
w	WIR ID RE	F-W011		STREAM NAME DESCRIPTION							
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gr	48		lal								
Site Matrix Descrip	that	would fit in a 5	5-gal. drum are	placed in DOT 7A,		drums are line	d with a rigid polyet	t are difficult to reduce to a size hylene liner, fiberboard liner and Cs 480 and 481.			
NO MIGRATION VARIA			NMENT RF 11	7	TRU	CON CODE	RF 117				
Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	te Waste	X Mixe Non Sus	ed TRU -Mixed TRU pect Mixed TRI nown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X	CA Asbestos PCBs Other N/A Unknown	X			

ENAME RF		WAS	STE TYPE MTR	U HANDL	ING CH GEN	ERATOR S	ITE RF	
RF-W011 CONTAINER: Type/Size:		iner Mall: metal Vol/Ctnr:		Number Stored: 0				
TYPICAL WASTE DENSITE		RATES	TYPICAL ISOTOPIC COMPOSITION Nuclide Activity					
Material Parameters	Average	Lower Limit	Upper Limit					<u>Varrett</u>
iron-based Metals/Alloys	171.3	1.7	595.4		<u>Projected</u>	Final Form		
Aluminum-Based Metals/Alloys	18.6	0.0	238.9	End of 1992:	6.3	6.3 m3		
Other Metals	16.5	0.0	67.0	End of 1993:	6.3	0.0 m3		
Other Inorganic Materials	19.6	0.0	79.6	1994:	19,0	0.0 m3/yr		
Cellulosics	5.5	0.0	22.3	1995:	0,0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	10.1	0.0	41.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0,0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0			· · ·		
Packaging Materials, Steel	187.1			TYPICA		S APPLICABLE		-
Packaging Material, Plastic	2.2				D008C			
Comments	<u></u>				F001			
Assume waste in metal boxes wi Final waste form volumes are inc					F002			

Footnotes

- 1. The 1994 inventory refelcts an increase of 19.02 m3 which is due to the Waste Characterization Re-assessment effort. This volume of waste was recharacterized as TRU Mixed waste (previously considered non-mixed TRU). This inventory of waste was transferred from Waste Stream RF-T011.
- 2. The number of containers stored and number of containers projected is reported as 0 because these are not final packages. The waste reported on this sheet will be repackaged into SWB's.
- The typical waste densities for this container were derived for the SWB.

* Jan 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		AW PROF	ILE FOR IN	IE VVIPP II	KU WASTE E	SASELINE	INVENTORY RE	PORT	
Type/Size	ENAME RF			WA	STE TYPE MTR	J HANDL	ING CH GEN	ERATOR :	SITE RF
Naterial Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 171.3 1.7 695.4 End of 1992: 11.4 19.0 m3 1		`———	sste bax						
Iron-based Metals/Alloys 171.3 1.7 695.4	TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/				TYPICAL	L ISOTOPIC COMPOSITION
Iron-based Metals/Alloys	Material Parameters	Average	Lower Limit	Upper Limi		OF WASTE	GENERATION	Nuclide	Activity
Other Metals 16.5 0.0 67.0 End of 1993: 11.4 19.0 m3 Other Inorganic Materials 19.6 0.0 79.6 1994: 0.0 22.8 m3/yr Cellulosics 5.5 0.0 22.3 1995: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 10.1 0.0 41.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 1988.2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0.0 2003.2022: 0.0 0.0 m3/yr Solid Materials, Steel 187.1 Packaging Material, Plastic 2.2 Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1993 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 12 SWBs Footnotes Footnotes	Iron-based Metals/Alloys	171.3	1.7		-	Projected	Final Form		
Other Inorganic Materials 19.6 0.0 79.6 1994: 0.0 22.8 m3/yr Cellulosics 5.5 0.0 22.3 1996: 0.0 0.0 m3/yr Rubber 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Plastics 10.1 0.0 41.0 1997: 0.0 0.0 m3/yr Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs In 994 - 6 metal boxes repacked to 12 SWBs Footnotes	Aluminum-Based Metals/Alloys	18.6	0.0	238.9	End of 1992:	11.4	19.0 m3		
Cellulosics	Other Metals	16.5	0.0	67.0	End of 1993;	11.4	19.0 m3		
Rubber	Other Inorganic Materials	19.6	0.0	79.6	1994:	0.0	22.8 m3/yr		
Plastics	Cellulosics	5.5	0.0	22.3	1995:	0.0	0.0 m3/yr		
Solidified, Inorganic matrix Solidified, Organic matrix Solidified, Organic matrix Solidified, Organic matrix O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Solidified, Organic matrix Soils O.0 Packaging Materials, Steel Packaging Material, Plastic Comments Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes TYPICAL EPA CODES APPLICABLE D008C F001 F002	Plastics	10.1	0.0	41.0	1997:	0.0	0.0 m3/ry		
Soils Packaging Materials, Steel Packaging Material, Plastic Comments Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes TYPICAL EPA CODES APPLICABLE D008C F001 F002	Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Packaging Materials, Steel 187.1 Packaging Material, Plastic 2.2 Comments Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes	Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Packaging Materials, Steel 187.1 Packaging Material, Plastic 2.2 Comments Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes	Soils	0.0	0.0	0.0	Typic	L EDA CODE	S ADDI ICADI E		
Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes	Packaging Materials, Steel	187.1	 		111102		S AFFLICABLE		-
Final waste form volumes reflect repackaging of metal boxes into SWBs with a 1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes	Packaging Material, Plastic	2.2							
1:2 ratio End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs	Comments					F001			
End of 1992 - 2 metal boxes repacked to 4 SWBs End of 1993 - 2 metal boxes repacked to 4 SWBs 1994 - 6 metal boxes repacked to 12 SWBs Footnotes	•	repackaging	of metal boxes	into SWBs with	ı a	F002			
	End of 1992 - 2 metal boxes re End of 1993 - 2 metal boxes re	packed to 4	SWBs						
1. The number of containers stored (10) and the number of containers projected	Footnotes	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<i>-</i>				
(12) includes waste that is presently stored in 4x4x7 metal boxes that will be	•	. ,			l l				

- repackaged into SWB's.

 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.

0.0

0.0

0.0

SITE NAME RF			WA	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
RF-W011 CONTAINER: Type/Size:				iner Matt: metal		Liner Type: rigid ner Material:HDPE/fil	berboar	Number S Number Proj		-		
TYPICAL WASTE DENSITI Material Parameters	ES FOR FII Average		ORM (kg/) Upper Limit	RATES		-ESTIMATED GENERATION	Nuclide	. ISOTOPIC Co Activity				
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials	171.3 18.6 16.5 19.6	1.7 0.0 0.0 0.0	695.4 238.9 67.0 79.6	End of 1992: End of 1993: 1994;	7.1	60.6 m3 48.9 m3 7.1 m3/yr	Pu239 Pu240 Pu241 Am241	2.03E+00 4.64E-01 1.10E+01 1.84E+00	Curies/m3 Curies/m3 Curies/m3			
Cellulosics Rubber Plastics	5.5 0.0 10.1	0.0	0.0 41.0	1995: 1996: 1997:	16.0 12.5 2.7	16.0 m3/yr 12.5 m3/yr 2.7 m3/ry						

1998-2002:

2003-2022:

TYPICAL EPA CODES APPLICABLE

12.7

2.9) m3/yr

12.7 m3/yr

D008C

F001

F002

Comments

Solls

Final waste form volume reflects inclusion of final form waste from treatment of PCB solid/TRM (RF-W001) of following amounts:

0.0

0.0

0.0

132.0

51.9

0,0

0.0

0.0

End of 1992 - .21m3 End of 1993 - .42m3

RF-W011 - 4

Solidified, Inorganic matrix

Solidified, Organic matrix

Packaging Materials, Steel

Packaging Material, Plastic

Footnotes

1. The inventory for this waste stream contains mixed residues (16.42 m3 in 1992 and 6,14 m3 in 1993) In addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

S S S S

SITE NAME RF			WAS	TE TYPE MTRU HA	NDLING CH	GENERATOR S	TE RF
MATRIX CODE SITE FINAL FORM IT	MWIR ID RF-W012 WIPP ID RF-W012 Local ID RF-831,83 5330 DC 831,832,8	32, 833		Combustibles/TRM Predominantly combus	tible debris		
	hazardous s), 336, 337, 831, 831, 833, olvents. The bulk of these se repackaged into DOT 7	e wastes are p	ackaged in 55-gallon drui	ms with one ri-	aid polyethylene liner and	boxes and spills, Involving I several bag liners. In addition the ory data include mixed residue
NO MIGRATION VARIANCE PETITION ASSIGNMENT RF 116 FINAL WASTE FORM DESCRIPTORS:					TRUCON CO	DDE RF 116	
Defense TRU W Non-Defense TR Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Was Maintenance	ioning lion	TSCA Asbestos PCBs Other N/A Unknown	X

	<u> </u>		-	TE TYPE MTR		ING CH GEN	ERATOR	
RF-W012 CONTAINER:	metal box		Contai	ner Matt: metal		Liner Type:		Number Stored: 0
Type/Size:	Type/Size: 4x4x7					ner Material:		Number Projected: 0
TYPICAL WASTE DENSITI						ESTIMATED GENERATION	TYPICA Nuclide	L ISOTOPIC COMPOSITION Activity
Material Parameters	Average	Lower Limit	Upper Limit				<u>ivaanac</u>	Aunti
Iron-based Metals/Alloys	0.0	0.0	0.0		<u>Projected</u>	<u>Final Form</u>		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	15.9	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	15,9	0.0 m3		
Other Inorganic Materials	0.1	0.0	7.2	1994:	0.0	0.0 m3/yr		
Cellulosics	64.2	0.0	481.6	1996:	0.0	0,0 m3/yr		
Rubber	6.1	0.0	481.6	1996;	0.0	0.0 m3/yr		
Plastics	18.5	0.0	481.6	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0			- 45545-454		
Packaging Materials, Steel	187.1			TYPICA		S APPLICABLE		-
Packaging Material, Plastic	2.2				F001			
Comments	L				F002			
Assume waste in metal boxes will Final waste form volumes are inc					F005A			
	nuceu in ina	Waste IOITH VOIC	imes ioi 2440 s.		F005A			
footnotes 1. The number of containers stored								

packages. The waste reported on this sheet will be repackaged into SWB's.

2. The typical waste densities for this container were derived for the SWB.

ENAME RF			WASTE TYP	EMTRU HANDE	ING CH GEN	ERATOR S	ITE RF
RF-W012 CONTAINER: Type/Size:			Container Mai		Liner Type: Bag ner Material: PVC		Number Stored: 15 Number Projected: 0
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix	Average 0.0 0.0 0.0 0.1 64.2 6.1 18.5 0.0	NAL WASTE Lower Limit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 End o 0.0 End o 7.2 481.6 481.6	Projected of 1992: 9.5 of 1993: 9.5 1994: 0.0 1996: 0.0 1997: 0.0 8-2002: 0.0		TYPICAL Nuclide	Activity 0.00E+00 Curies/m3
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments Final waste form volumes reflect	0.0 0.0 187.1 2.2	0.0	0.0	1-2022: 0.0 TYPICAL EPA CODE F001 F002 F005A	0.0 m3/yr		-
1:2 ratio End of 1992 - 5 metal boxes r End of 1993 - 5 metal boxes r Footnotes 1. The number of containers sto	epacked into epacked into	10 SWB's 10 SWB's		F005A	÷		

- 4x4x7 metal boxes that will be repackaged into SWB's.
- 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

ENAME RF			WAS	TE TYPE MTRU	I HANDI	LING CH GEN	ERATOR :	SITE RF	
RF-W012 CONTAINER: Type/Size:				ner Mati: metal Vol/Ctnr: 0.2	1]m3 Li	Liner Type: rigid iner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITE	ES FOR F Average	INAL WASTE	FORM (kg/n Upper Limit	n3) STORED RATES (E-ESTIMATED GENERATION	Nuclide	L ISOTOPIC C	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	0.0 0.0 0.1 64.2 6.1 18.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 7.2 481.6 481.6 481.6	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002:	Projected 267.9 237.3 -10.4 19.2 15.7 6.2 6.3	267.9 m3 237.3 m3 -10.4 m3/yr 19.2 m3/yr 15.7 m3/yr 6.2 m3/ry 6.3 m3/yr	Pu239 Pu240 Pu241 Am241	9.49E-01 2.17E-01 5.17E+00 7.34E-01	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Solldified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 132.0 51.9	0.0	0.0	2003-2022: [<u>TYPICA</u>	27.5 EPA CODE F001 F002	27.5 m3/yr			-
On site final form IDC, 822 is also New densities assume no superc Footnotes	submitted fo ompaction.	r Inclusion in TR	RUCON.		F005A F005A				

- 1. The inventory for this waste stream contains mixed residues (104.1 m3 in 1992) and 33.18 m3 in 1993; the decrease in inventory is due to repackaging efforts) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.
- 2. The 1994 Inventory reflects a decrease of 19.32 m3 which is due to the Waste Characterization Re-assessment effort (8.9 m3 generated 19.32 m3 transferred to non-mixed = -10.42 m3 represented for annual generation). This volume of waste was re-characterized as non-mixed TRU waste. This inventory of waste was transferred to Waste Stream RF-T002.
- 3. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.

RF-W012 - 4

RF - 70

2/28/95

SITE NAME RF	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID RF-W013 WIPP ID RF-W013 Local ID RF-801 MATRIX CODE 3222 SITE FINAL FORM IDC 801 Waste Matrix Code Group Solidified Organics	STREAM NAME Solidified Organics/TRM DESCRIPTION Solidified Process Residues
Site Matrix Description IDC, No. 801. This waste stream	m Includes waste TRU organic fluids which are transferred to Building 774 for cementation from Buildings 707, 776, and gypsum cement within 55-gallon drums. The drum is lined with one or two bag liners with a rigid polyethylene liner. lented solids, and organic sludges/particulates. IDC 801 - Organic waste from liquid waste processing in Building 774. TRUCON CODE RF 112
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	RU Rearch and Devel. Waste TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste X Maintenance

SITE NAME RF			WAS	TE TYPE MTRI	HANDL	ING CH GEN	ERATOR S	ITE RF	
RF-W013 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.		21 m3 Li	Liner Type: rigid iner Material: HDPE E-ESTIMATED	TYPICAL	Number S Number Pro	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	0.0 0.0 521.6 0.0 0.0 0.0 0.0 467.5 0.0	0.0 0.0 0.0 199.1 0.0 0.0 0.0 178.5	0.0 0.0 0.0 728.3 0.0 0.0 0.0 0.0 652.8	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	Projected 111.3 111.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 111.3 m3 111.3 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/ry 0.0 m3/ry 0.0 m3/ry 0.0 m3/yr	Nuclide Pu239 Pu240 Pu241 Am241	Activity 4.70E-01 1.08E-01 2.56E+00 2.65E-01	Curies/m3 Curies/m3 Curies/m3
Packaging Material, Plastic	64.8				F001 F002				

Footnotes

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

RF - 73

ENAME RF			WAS	TE TYPEMTRU	HAND	ING CH GEN	ERATOR S	RF RF
RF-W026 CONTAINER: Type/Size:	55-gallon		int.		1]m3 L	Liner Type: rigid ner Material: HDPE		Number Stored: Number Projected:
TYPICAL WASTE DENSITI Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES O	F WASTE	ESTIMATED GENERATION	TYPICAL Nuclide Pu239	ISOTOPIC COMPOSITIO Activity Curies/m3
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals	0.0	0.0	0.0	End of 1992: End of 1993:	0.2 0.2	0.2 m3	Pu240 Pu241	Curies/m3 Curies/m3
Other Inorganic Materials Cellulosics	182.3	182.3	182.3	1994: 1995:	0.0	0.0 m3/yr	Am241	Curies/m3
Rubber Plastics	0.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry		
Solidified, Inorganic matrix Solidified, Organic matrix Soils	8.3	8.3	8.3	1998-2002: [2003-2022: [0.0	0.0 m3/yr 0.0 m3/yr		
Packaging Materials, Steel Packaging Material, Plastic	0.0 132.0 51.9	0.0	0.0	TYPICAL	EPA CODE F001	S APPLICABLE		
Comments	لــــــــــــا							
Footnotes 1. The number of containers store								

RF-W026 - 2

RF - 74

2/28/95

SITE NAME RF	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID RF-W028 WIPP ID RF-W028 Local ID RF-321 MATRIX CODE 7211 SITE FINAL FORM IDC 321 Waste Matrix Code Group Lead/Cadmium Metal Waste	STREAM NAME Lead/TRM DESCRIPTION Elemental Lead
Site Matrix Description IDC No. 321 - this waste stream of extensively in the Perimeter Secupackaged in 55-gallon drums line. 321 - all lead items and items con	consists of lead waste that is generated from discarded shielding, usually in the form of sheets and bricks used urity Zone (PSZ) to protect personnel against radiation exposure during plutonium processing. This waste is add with fiberboard liner and two polyethylene bag liners. Inventory data include mixed residues of the same IDC. IDC intaining lead except IDCs 302, 339, 341, 444, and 448.
NO MIGRATION VARIANCE PETITION ASSIGNMENT RF 11 FINAL WASTE FORM DESCRIPTORS:	7 TRUCON CODE RF 117
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

SITE NAME RF			WAS	TE TYPE MTRU	HAND	LING CH GEN	ERATOR S	SITE RF	
RF-W028 CONTAINER: Type/Size:	`\			iner Matl: metal Vol/Ctnr: 0.2	1]m3 L	Liner Type: rigid iner Material: HDPE/fi	berboar	Number S Number Proj	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E-ESTIMATED	TYPICAL	. ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		F WASTE	GENERATION	Nuclide Pu239	<u>Activity</u> 5.60E-01	Curies/m3
Iron-based Metals/Alloys	0.0	0.0	0.0	ļ	Projected	Final Form	Pu239 Pu240	1,28E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	3.8	3.8 m3	Pu240	3.05E+00	Curies/m3
Other Metals	592.2	16.0	1438.3	End of 1993:	3.8	3.8 m3	Am241		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0,1	0.1 m3/yr	AMZ41	1.86E-01	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.3	0.3 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.3	0.3 m3/yr			
Plastics	0,0	0.0	0.0	1997:	0.3	0.3 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.3	0.3 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.3	0.3 m3/yr			
Soils	0.0	0.0	0.0	TOPICAL		FO ADDI IDADI F			
Packaging Materials, Steel	132.0			ITPICAL		ES APPLICABLE			-
Packaging Material, Plastic	51.9				D008C				

Footnotes

^{1.} The inventory for this waste stream contains mixed residues (0 m3 in 1992 and 0.42 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

^{2.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WIPF	ID RF-W029 ID RF-W029 ID RF-339 5311 339	STREAM NAME Leaded Gloves/TRM DESCRIPTION Leaded Gloves/Aprons Debris
Waste Matrix Code Grou	p Lead/Cadmium Metal Waste n IDC No. 339. This waste strear which are damaged, or do not m 55-gation drums lined with a rigi	n consists of leaded rubber gloves which are used on gloveboxes to reduce radiation exposure to personnel. Gloves neet safety inspection requirements are replaced with new gloves and discarded as waste. The gloves are packaged in discarded properties on the gloves are packaged in discarded as waste. The gloves are packaged in discarded liner and one bag liner. Inventory data include mixed residues in IDC 339, 339 - Leaded drybox gloves 341 if the gloves are acid contaminated.
NO MIGRATION VARIANCE	E PETITION ASSIGNMENT RF 1	23 TRUCON CODE RF 123
FINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Wa Commercial TRU Was Unknown	X Mixed TRU ste Non-Mixed TRU	RU Research and Devel. Waste TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

ENAME RF		· .	WAS	STE TYPE MTRU	HANDL	ING CH GEN	ERATOR S	ITE RF	
RF-W029 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) STORED	TRU WASTE	Liner Type: rigid ner Material: HDPE ESTIMATED GENERATION	TYPICAL	Number S Number Proj ISOTOPIC C	ected: 5
Material Parameters	Average	Lower Limit	Upper Limit	IONIES C	THATIL	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 182.3 5.4 107.1 16.3 0.0	0.0 0.0 0.0 1.4 1.2 0.8 0.0	0.0 0.0 370.1 10.1 217.3 30.3 0.0		20.8 21.6 3.0 5.2 4.2 1.4 1.4	20.8 m3 21.6 m3 3.0 m3/yr 5.2 m3/yr 4.2 m3/yr 1.4 m3/ry 1.4 m3/ry 4.2 m3/yr 2.4 m3/yr 3.7 m3/yr 4.2 m3/yr	Pu239 Pu240 Pu241 Am241	3.99E+00 9.13E-01 2.17E+01 2.02E+00	Curies/m3 Curles/m3 Curles/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments Other inorganic material - Pb3 04	0.0 132.0 51.9	0.0	0.0	L		S APPLICABLE			-

Rubber - 37% of glove weight

Footnotes

1. The inventory for this waste stream contains mixed residues (0.21 m3 in 1992 and 0.63 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document. 2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WAST	E TYPEMTRU HA	NDLING CH	GENERATOR SITE	≣ RF
WIPP II Local II MATRIX CODE SITE FINAL FORM IDC	D RF-W032 D RF-W032 D RF-444 3119 444		Ground glass/TRM uncategorized Inorganic	; particulates		
	Inorganic Non-metal IDC No. 444. This waste stream come from the fluorescent lights leached glass may be mixed with fiberboard liner and two polyethy PETITION ASSIGNMENTRE 11	used throughout the phinter the crushed fluoresciene bags. IDC 444	plutonium and uramium pent lamp waste. This gi ground/leaded glass. M	processing areas, as t lass waste is package	well as ground leade ed in 55-gallon drum:	ed glass. Small amounts of
FINAL WASTE FORM DESCI Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: Mixed TRU	RU X	Rsearch and Devel. Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Was Maintenance	iste TSCA	Asbestos PCBs Other N/A Unknown	- X

RF-W032 CONTAINER:	RF-W032 CONTAINER: metal box			iner Matl: metal		Liner Type:	Number Stored: 0		
Type/Size:	4×4×7		Int.	Vol/Ctnr: 0	m3 Li		Number Projected: 0		
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED GENERATION	<u>TYPICAL</u> Nuclide	ISOTOPIC COMPOSITION Activity	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit		·		Muchae	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0	<u>P</u>	rojected_	Final Form			
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3			
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3			
Other Inorganic Materials	137.5	77.7	215.5	1994:	3.2	0.0 m3/yr			
Cellulosics	1.1	1.1	1.1	1995:	0.0	0.0 m3/yr			
Rubber	1.1	1.1	1.1	1996:	0.0	0.0 m3/yr			
Plastics	19.8	19.8	19.8	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	TYDICAL	EDA COS	C ADDI ICADI E		_	
Packaging Materials, Steel	187.1			ITPICAL		S APPLICABLE			
Packaging Material, Plastic	2.2				D008A				

Comments

Assume waste in metal boxes will be repackaged into SWBs with 1:2 ratio. Final waste form volumes are included in final waste form volumes for SWBs.

Footnotes

1. The 1994 inventory of 4'x4'x7 metal boxes reflects an increase of 3.17 m3 which is due to the Waste Characterization Re-assessment effort. This volume of waste was re-characterized as TRU Mixed waste (previously considered non-mixed TRU). This inventory of waste was transferred from Waste Stream RF-T003.

2. The typical waste densities for this container were derived for the SWB.

RF-W032 CONTAINER: Type/Size:		aste Box	 -	Container Matt: metal Liner Type: Bag/rigid Number Stored: 1 Int. Vol/Ctnr: 1.9m3 Liner Material: PVC/fiberboard Number Projected: 2						
TYPICAL WASTE DENSITION Material Parameters	ES FOR F	INAL WASTE	FORM (kg/	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC COMPOSITION		
Iron-based Metals/Alloys	0.0	0.0	0.0	-	Projected	Final Form				
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	1.9	1.9 m3				
Other Metals	0.0	0.0	0.0	End of 1993:	1.9	1.9 m3				
Other Inorganic Materials	137.5	77.7	215.5	1994:	0.0	3.8 m3/yr				
Cellulosics	1.1	1.1	1.1	1995:	0.0	0.0 m3/yr				
Rubber	1.1	1.1	1.1	1996:	0.0	0.0 m3/yr				
Plastics	19.8	19.8	19.8	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	0.0	0.0	0.0	TVDIC A	L EDA CODE	S APPLICABLE				
Packaging Materials, Steel	187.1			HIFICA		3 AFFLICABLE		•		
Packaging Material, Plastic	2.2				D008A					

Final waste form volumes reflect repackaging of metal boxes into SWBs with 1:2 ratio

1994 - 1 metal box repackaged into 2 SWBs.

Footnotes

- 1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 2022.
- 2. The number of containers projected (2) includes waste that is presently stored in 4x4x7 metal boxes that will be repackaged into SWB's.

RF - 81

NAME RF			WAS	TE TYPE MTR	U HANDI	ING CH GEN	ERATOR S	SITE RF	
RF-W032 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int. 1		21 m3 L	Liner Type: rigid iner Material: HDPE/fi E-ESTIMATED		Number S Number Proj LISOTOPIC C	ected: 38
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments Assumes no Immobilization requi	0.0 0.0 0.0 137.5 1.1 1.1 19.8 0.0 0.0 0.0 132.0 51.9	0.0 0.0 0.0 77.7 1.1 1.1 19.8 0.0 0.0	0.0 0.0 0.0 215.5 1.1 1.1 19.8 0.0 0.0	RATES End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.2 0.8 0.1 0.3 0.3 0.3 0.3 0.3	O.2 m3 m3 m3 m3/yr m3/	Nuclide Pu239 Pu240 Pu241	Activity 2.45E-01 5.61E-02 1.33E+00	Curies/m3 Curles/m3 Curles/m3

06077

SITE NAME RF				WAS	TE TYPEMTRU HANDI	ING CH	GENERATOR SIT	E RF
WASTE STREAM	MWIR ID RF WIPP ID RF Local ID RF	-W036			Firebrick, pulverized or fine			
MATRIX CODE SITE FINAL FORM ID	31 37 37 37 37 37 37 37 37 37 37 37 37 37	19 7			uncaterorized morganic par	iiculates		
	cription This brick Is put waste from partic	waste stream in the plutoniu ivertzed to faci e is packaged IDC 371 which culate firebrick	im recovery incinera filtate plutonium reco in 55-gallon drums i n is smaller than one waste for discard.	ator in Building overy. Materia lined with a rig e inch diamete	1771. The fire brick must be if which assays below the ecold polyethylene liner. Inventor and larger than 1/4 inch dia to be processed into IDC 806 (replaced per conomic disc ony data incl meter. IDC (RF-M01).	eriodically because of the eard limit is discarded as plude mixed residues in the 378 - Particulate firebrick	rated from replacement of fire plutonium buildup. The fire bric pulverized fire brick waste. The e same IDCs. IDC 377 - Waste k residue from recovery or
NO MIGRATION VA			NMENT RF 122		<u>TRI</u>	NCON COL	DERF 122	
Defense TRU W Non-Defense Ti Commercial TR Unknown	RU Waste	Non- Susp	d TRU Mixed TRU pect Mixed TRU nown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance	X X	TSCA Asbestos PCBs Other N/A Unknown	×

RF-W036 CONTAINER:				iner Mati: metal		Liner Type: rigid		Number S	· · · · · · · · · · · · · · · · · · ·
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.2	1]m3 Li	ner Material: HDPE/fi	berboar	Number Proj	ected: 4
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	L ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	5.24E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.8	0.2 m3	Pu240	1,20E+00	Curies/m3
Other Metals	0.0	0,0	0.0	End of 1993:	2.9	2.3 m3	Pu241	2,85E+01	Curies/m3
Other Inorganic Materials	104.4	44.5	263.0	1994:	0.0	0.0 m3/yr	Am241	0.00E+00	Curies/m3
Cellulosics	28.9	14.5	57.7	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	19.2	9.6	38.5	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.6	0.4 m3/yr			
Soils	0.0	0.0	0.0	TVDICA		C ADDUCABLE			
Packaging Materials, Steel	132.0			TTPICA		S APPLICABLE			. •
Packaging Material, Plastic	51.9				D004A				
					D006A				
					D007A				
					D008A				
Footnotes					F001	•			
1. The inventory for this waste s									
and 12.88 m3 in 1993) in addition This residue stream will be proce		•		ve.	F002				
Elimination Program which will g				. [F002				
streams as defined in the "Conce					F005A			•	

SITE NAME RF				WAST	E TYPE MTRU HAND	LING CH	GENERATOR SIT	E RF	
WASTE STREAM		RF-W037 RF-W037 RF-320			heavy metal (non-SS)/TRI				
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code		5190 320 Incategoriz	ed Metal	- Balana - La					
Site Matrix Desc	e 1 a	lements ab 'ypically, the nd platinum	ove Cu on the perions ese scrap metals of a are examples of s	odic chart. In 1987, ID onsist of crucibles, fun crap metals at the RFI	d at various locations through a dat various locations through a data was created specific nets, rods and fixturing from the location of the location and location and location with the location and lo	ally for lead. In several pro- lixed residue:	Prior to this, lead was necesses and production o	ot segregated from I perations, Tantalun	IDC 320. n. tungsten
NO MIGRATION VAI		•	SSIGNMENTRF	117	<u> </u>	UCON COD	ERF 117		
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	√aste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ing X	TSCA Asbestos PCBs Other N/A Unknown	X	

البيا
٠,
~ 1
~ J
, i

SITE NAME RF			WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR S	ITE RF	
RF-W037 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	L	21 m3 L	Liner Type: rigid iner Material: HDPE/fil		Number S Number Proj	1
Material Parameters	Average	Lower Limit	Upper Limit	RATES		GENERATION	Nuclide	Activity	<u> </u>
Iron-based Metals/Alloys	57.8	0.0	317.3		Projected	Final Form	Pu239	2.09E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		5.5 m3	Pu240	4.79E+00	Curies/m3
Other Metals	134.8	44.5	1057.7	End of 1993;		4.6 m3	Pu241	1.14E+02	Curies/m3
Other Inorganic Materials	13,3	0.0	19,2	1994:	0.0	0.0 m3/yr	Am241	2.59E+00	Curles/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	1.0	1.0 m3/yr			
Solis	0.0	0.0	0.0	70/0104					
Packaging Materials, Steel	132.0			IYPICA		ES APPLICABLE			-
Dookseles Material Diseits	51.0				D008C				

Footnotes

Packaging Material, Plastic

f. The inventory for this waste stream contains mixed residues (0 m3 in 1992 and 10.08 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

51.9

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF				WAST	E TYPEMTRU HANDL	LING CH	GENERATOR SIT	ERF	
	MWIR ID WIPP ID Local ID	RF-W038			Solidified Lab Waste/TRM Solidified Process Residues				
MATRIX CODE SITE FINAL FORM IDE	<u>c</u>	3121 802				•			
Waste Matrix Code Site Matrix Desc	ription ID an ab are ne	C No. 802. d developm sorbent cer e utralized be	This waste stream nent laboratories, ar ment. These are wa efore immobilization	nd maintenance shop astes which are incor . Immobilization is do	I fied with Portland Cement. T is which are packaged and s inpatible with the process col one in 55-galion drums. App ie Storage and Inventory Rej	sent to Buildi illection system proximately 2	ing 774 for immobilization em and the liquid waste	n with Portland cem treatment plant. Ad	nent and cidic wastes
NO MIGRATION VAR	NANCE PE	TITION AS	SSIGNMENT RF 11	3	TRU	UCON COD	ERF 113		
PINAL WASTE FORM Defense TRU Was Non-Defense TR Commercial TRU Unknown	aste U Waste	PTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	v	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance		TSCA Asbestos PCBs Other N/A Unkпown	×	-

SITE NAME RF			WAS	TE TYPE MTRU	HAND	ING CH GEN	ERATOR S	ITE RF	
RF-W038 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAI WASTE	Int.	<u> </u>	_	Liner Type: rigid Iner Material: HDPE	TYPICAL	Number S Number Pro	الــــــا
Material Parameters	Average	Lower Limit	Upper Limit	RATES (GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	1.73E-01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	1.3	1.3 m3	Pu240	3.97E-02	Curles/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.5	1.5 m3	Pu241	9.45E-01	Curies/m3
Other Inorganic Materials	935.0	311.7	1122.0	1994:	4.7	4.7 m3/yr	Am241	1.23E+00	Curies/m3 ,
Cellulosics	0.0	0.0	0.0	1995:	9.4	9.4 m3/yr			
Rubber	0.0	0.0	0.0	1996:	6.9	6.9 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	333.0	238.0	476.2	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	567.3	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	~\n\n.					
Packaging Materials, Steel	132.0			ITPICA		S APPLICABLE			-
Packaging Material, Plastic	64.8				D007A				

Footnotes

1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE TY	PEMTRU HANDLIN	ів Сн	ENERATOR SIT	E RF
WIPP Local I MATRIX CODE SITE FINAL FORM IDC	D RF-W040 D RF-W040 D not reported 3111	STREAM NAME incin-	erator ash/TRM Final waste form of this w	vaste is solldified	l process solids/T	RM
	iDCs 419, 420, 421, 425 and 42 operation of a fluidized bed incirwaste generated in process are level mixed waste. FBI ash was entitled "fluidized bed incinerator inventory data include mixed results."	ierator in Building 776 or an as, combustible oils from re apackaged in 55-gallon drui r ash/LLW mixed" in the inv	incinerator in Building 77 frigeration units, dieset fue ms lined with a rigid polye	 The incineratel, and crank case thylene liner and 	for was used to bu se oils. The oil ha If one bag liner. It	urn office trash, combustible ad been accumulated as a low is a portion of the waste stream
NO MIGRATION VARIANCE FINAL WASTE FORM DESC		_	TRUC	ON CODE		
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TF Unknown	Opera Residue Deco Enviro	rch and Devel. Waste ations Waste dues n and Decommissioning onmental Restoration Treatment of Waste enance	TSCA X	Asbestos PCBs Other N/A Unknown	X

100773

RF-W040 - 1

RF - 89

2/28/95

ENAME RF			WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF	
RF-W040 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys	55-gallon	INAL WASTE	Container Mati: metal Liner Type: rigid Number Int. Vol/Ctnr: 0.21 m3 Liner Material: HDPE Number Professional RATES OF WASTE ESTIMATED TYPICAL ISOTOPIC RATES OF WASTE GENERATION Nuclide Activity Upper Limit Projected Final Form Pu239 7.49E+00	ojected: 0
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments 1. This waste stream must be imvolume expansion of 2.11 occurs Footnotes 1. The inventory for this waste si 1992 and 233.77 m3 in 1993) in a above. This residue stream will telimination Program which will gestreams as defined in the "Conce Rocky Flats" (EG&G Rocky Flats changes, and processing schedu	0.0 0.0 489.0 0.0 0.0 0.0 0.0 208.9 0.0 0.0 132.0 51.9 Iream contain addition to the processed enerate sever express the 0.0 0.0 376.2 0.0 0.0 0.0 160.7 0.0 0.0 0.0 0.0 160.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0		
 Final waste form reflects TRU processed (with a volume expans this waste stream are in Waste S 3. The number of containers store 	waste invension of 2.11). tream RF-M	tories of incineral The final waste 01.	tor ash being form volumes for F005A	

SITE NAME RF			WAST	E TYPE MTRU	HANDLING CH	GENERATOR	SITE RF
	MWIR ID RF-W041 WIPP ID RF-W041		STREAM NAME	Leaded Gloves-Aci	d Contaminated/	TRM	
MATRIX CODE SITE FINAL FORM IDE	- <u>L</u> _	um Metal Waste	DESCRIPTION	Leaded Gloves/Apr	ons Debris		
Site Matrix Desc	371. These gloves are p Leaded glov new 30 mil g	gloves are contaminated ackaged in 55-gallon dru es as waste are currenti	f with nitric acid a ims lined with a ri y characterized b b # M85-2833) we	nd other acids wher gid polyethylene line y process knowledg ere below establishe	n replaced and dis er and a bag liner. je and sample and ed levels for lead (scarded as waste. The inventory data include alysis using the EP Tox (D008) per 40 CFR 261	e mixed residues in IDC 341. xicity Test. EP toxicity results of two 1.24. Table I. Leaded gloves
NO MIGRATION VAR	NANCE PETITION A	ASSIGNMENT			TRUCON CO	ODE	
FINAL WASTE FORM	DESCRIPTORS:						
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of \ Maintenance	nissioning oration	TSCA Asbestos PCBs Other N/A Unknown	X

RF-W041 CONTAINER: Type/Size:	L			iner Matt: metal Vol/Ctnr: 0.2	21 m3 Li	Liner Type: rigid ner Material: HDPE		Number St Number Proje	
TYPICAL WASTE DENSITI	ES FOR F			n3) STORED	' TRU WASTE	ESTIMATED GENERATION		L ISOTOPIC CO	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 0.0 193.2 5.4 113.5 16.3 0.0	0.0 0.0 0.0 1.1 1.2 0.6 3.6 0.0	0.0 0.0 0.0 312.9 10.1 183.8 30.3 0.0	•	26.3 26.5 0.9 1.8 1.4 0.3 0.3	26.3 m3 26.5 m3 0.9 m3/yr 1.8 m3/yr 1.4 m3/yr 0.3 m3/ry 0.3 m3/yr 0.3 m3/yr 0.3 m3/yr	Pu239 Pu240 Pu241 Am241	1.22E+00 2.91E+01	Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 132.0 51.9	0.0	0.0	TYPICA	D008A	ES APPLICABLE			-

Footnotes

Rubber - 27% of glove weight

1. The Inventory for this waste stream contains mixed residues (1.46 m3 in 1992) and 1.68 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE	TYPEMTRU HANDLIN	NG CH G	ENERATOR SITE	E RF
WIPP	D RF-W052 D RF-W052	STREAM NAME G				
MATRIX CODE SITE FINAL FORM IDC	D 440,441,442,856 5122 440, 442*	DESCRIPTION G	ilass debris			
	Inorganic Non-metal This waste stream is glass from processes, ceramics, and glove IDCs. This waste form has bee knowledged and ilmited analytic	box windows. This was n characterized by TCLF	te stream was previously na	imed "glass.". Inve	entory data includ	le mixed residues in the same
	PETITION ASSIGNMENT RF 1	18	TRUC	CON CODE RF 1	8	
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU	RU RI Di Er	search and Devel. Waste perations Waste esidues econ and Decommissioning nvironmental Restoration from Treatment of Waste aintenance		Asbestos PCBs Other N/A Unknown	X

00782

RF-W052 - 1

RF - 93

2/28/95

RF-W052 CONTAINER:	Standard wa	ste box	Cont	ainer Mati: metal		Liner Type:	3ag/rigi	d]	Number St	ored:	1
Type/Size:			In	t, Vol/Ctnr: 1	.9 m3 Li	ner Material:[PVC/fib	erboard	Number Proje	cted:	C
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg			ESTIMATE		TYPICAL	ISOTOPIC CO	MPOSITE	<u>on</u>
Material Parameters	Average	Lower Limit	Upper Lim		OF WASTE	GENERATIO	<u>N</u>	Nuclide	<u>Activity</u>		
Iron-based Metals/Alloys	0.0	0.0	0.0	-	Projected	Final Form					
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	1.9	1.9	m3				
Other Metals	0.0	0.0	0.0	End of 1993:	1,9	1.9	m3				
Other Inorganic Materials	244.3	20.7	466.5	1994:	0.0	0.0	m3/yr				
Cellulosics	1.1	0.0	1.1	1995:	0.0	0.0	m3/yr				
Rubber	1.1	0.0	1.1	1996:	0.0	0.0	m3/yr				
Plastics	19.8	0.0	19.8	1997;	0.0	0.0	m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0	m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0	m3/yr				
Soils	0.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICAB	1 F			_	
Packaging Materials, Steel	187.1		-	117,107	D005A	S ALL CIOND	<u></u>				
Packaging Material, Plastic	2.2										
					D008A						
					F001						
					F002						

NAME RF	WAS	TE TYPE MTRI	J HANDI	ING CH	GENERATO	OR SITE RF			
RF-W052 CONTAINER: Type/Size:				iner Matt: metal		Liner Type: rig		Number :	
TYPICAL WASTE DENSITI		INAL WASTE		n3) STORED	TRU WASTI	ESTIMATED GENERATION	TYP	_J ICAL ISOTOPIC (
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu23	39 1.28E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	1.5	1.5 m	13 Pu24	40 2.83E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	11.8	11.8 m	Pu24	41 6.75E+00	Curies/m3
Other Inorganic Materials	244.3	20.7	466.5	1994:	5.9	5.9 m			
Cellulosics	1.1	0.0	1.1	1995:	11.8	11.8 m			
Rubber	1.1	0.0	1.1	1996:	11.1	11.1 m			
Plastics	19.8	0.0	19.8	1997:	9.0	9.0 m	•		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	9.0	9.0 m	•		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	9.7	9.7 m	-		
Soils	0,0	0.0	0.0						
Packaging Materials, Steel	132.0	L		TYPICA		ES APPLICABL	<u>.E</u>		-
Packaging Material, Plastic	51.9				D005A				
C					D008A				
Comments					F001				
IDC 856 must be authorized for	RUPACT-II.				F002		+		
Footnotes					rooz				

1. The inventory for this waste stream contains mixed residues (8,74 m3 in 1992 and 8,40 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

00078/

RF-W052 - 3

SITE NAME RF		WASTE TYPE MTRU	HANDLING CH	GENERATOR SIT	€ RF
WIPP I	D RF-W056 D RF-W056 D RF-370,368,655 5123 370, 368	STREAM NAME Mg Oxide Crucible DESCRIPTION Ceramic/Brick Deb			
	IDCs 370, 368 and 655. This wa magnesium oxide crucible, mag surface and containing plutonium processing. Waste is placed in drums. Inventory data includes		ctive salts of calcium, nated during plutonium re ged or placed in 1 gallor	nagnesium, sodium, ar ecovery using pyroche n or 1 quart paint cans	nd/or potassium adhering to the emical and electro-chemical
NO MIGRATION VARIANCE FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU	X Rsearch and Devel	missioning loration	CA Asbestos PCBs Other N/A Unknown	- X

SITE NAME RF			WAS	STE TYPE MTRU] HANDLII	NG CH GEN	ERATOR SI	TE RF	
RF-W056 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	Int.		m3 Lin	Liner Type: rigid er Material: HOPE ESTIMATED SENERATION	TYPICAL		
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit				<u>Nuciide</u>	Activity	0
Iron-based Metals/Alloys	11.9	0.0	23.8	<u> </u>	rojected [Final Form	Pu239	5.50E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.6	0.6 m3	Pu240	1.26E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.3	1.3 m3	Pu241	3.30E+01	Curies/m3
Other Inorganic Materials	370.2	111.0	828.4	1994:	0.0	0.0 m3/yr	Am241	0.00E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	26.9	0.0	53.8	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.2	0.2 m3/yr			
Soils	0.0	0.0	0.0	TYPICAL	EDA CODE	ADDUCADUC			
Packaging Materials, Steet	132.0			ITPICAL	-	APPLICABLE			-
Packaging Material, Plastic	51.9				D003D				
					D006A				

Footnotes

^{1.} The inventory for this waste stream contains mixed residues (45.21 m3 in 1992 and 46.31 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. Final waste form reflects TRU waste inventories being processed. The final waste form volumes for this waste stream are in Waste Stream RF-M001.

^{3.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF	WAS	TE TYPEMTRU HANDLING CH	GENERATOR SITE RF
WASTE STREAM MWIR ID RF-WO WIPP ID RF-WO Local ID RF-430 MATRIX CODE 5129 SITE FINAL FORM IDC 438	157	Insulation/TRM Uncategorized inorganic non-metal debris	
characte present,	 This waste stream is contaminated insulativities of the contaminate of the c	ion. The insulation is generated from constructing purposes is 1987 and 1989 to determine if of plutonium or other metals. No laboratory an	any reportable quantities per 49 CFR 172 were
NO MIGRATION VARIANCE PETITIO		TRUCON CODE RE	122
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU X Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSC/ X	A Asbestos - PCBs Other N/A X Unknown

SITE NAME RF			WAS	TE TYPE MTRL	HANDL	ING CH GEN	ERATOR S	ITE RF	
RF-W057 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon		Int.	13) STORED	_ <u>TRU WASTE</u>	Liner Type: rigid iner Material: HDPE ESTIMATED GENERATION	TYPICAL Nuclide	Number S Number Proj ISOTOPIC Co Activity	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soildled, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 84.7 4.8 0.0 0.0 0.0 0.0 0.0 132.0 51.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 362.8 9.6 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	0.6 0.6 0.1 0.3 0.3 0.3 0.7 LEPA CODE F001	0.6 m3	Pu239 Pu240 Pu241	2.73E+00 6.24E-01 1.48E+01	Curies/m3 Curies/m3 Curies/m3

Footnotes

^{1.} The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF			WASTI	E TYPE MTRU HANDLII	NG CH	GENERATOR SI	TE RF	
WIP	IR ID RF-W058 PP ID RF-W058 al ID RF-411			Misc. Pu Recovery Byproduc Chloride salls	ts/TRM			~ = - · · · · · · · · · · · · · · · · · ·
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gro	3141 411							
	on IDCs 365, 404, 44 plutonium recove saits, a probable mixed residues in	y operations such as dire presence of magnesium, the IDCs. This waste str	ct oxide red sodium and eam include	2, 413, 414, 415, 418, 427, 42 duction molten salt extraction I potassium metals (reactivity es inorganic sludges/particula purification and direct oxide re	, electrorefi characteris ites, and re	ning, and salt scrub. It stic D003) and chromiu	s composition includes m (D007). Inventory d	s mixed data include
NO MIGRATION VARIAN		ENMENT RF 124		TRUC	CON CODI	ERF 124		
PINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU Wa Commercial TRU Wa Unknown	/aste X Min	ed TRU n-Mixed TRU spect Mixed TRU known		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	×	FSCA Asbestos PCBs Other N/A Unknown	X	

00733

RF-W058 - 1

RF - 100

2/28/95

SITE NAME RE	ITE NAME RF					WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF								
RF-W058 CONTAINER Type/Size	55-gallon		Int.	L	21 m3 LI	Liner Type: rigid iner Material: HDPE/		Number S Number Pro	jected; 229					
TYPICAL WASTE DENSIT	ES FORF	INAL WASTE	FORM (kg/r	n3) STURED RATES (ESTIMATED GENERATION			OMPOSITION					
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	_ 			<u>Nuclide</u>	Activity						
Iron-based Metals/Alloys	23.8	4.8	28.6		Projected_	Final Form	Pu239	3.73E+01	Curies/m3					
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	9.7	9.7 m3	Pu240	8.55E+00	Curies/m3					
Other Metals	0.0	0.0	0.0	End of 1993;	9.4	9.4 m3	Pu241	2.03E+02	Curies/m3					
Other Inorganic Materials	261.9	124.3	719.1	1994:	0.0	0.0 m3/yr	Am241	4.23E-01	Curies/m3					
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr								
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr								
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry								
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr								
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	2.4	2.4 m3/yr								
Soils	0.0	0.0	0.0	*****										
Packaging Materials, Steel	132.0			ITPICA		S APPLICABLE			-					
Packaging Material, Plastic	51.9				D002B									
, , , , , , , , , , , , , , , , , , ,					D003D									

Footnotes

1. The inventory for this waste stream contains mixed residues (146.55 m3 in 1992 and 138.76 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certiflable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

D007A

SITE NAME RF		WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE RF	
WIPP	ID RF-W059 ID RF-W069 ID 391 3119 391	DESCRIPTION	Sand, Slag, and Crucible/TRM Uncategorized Inorganic Particulates. Final waste form of this waste is Solidified Process Solids/TRM.	
Waste Matrix Code Group Site Matrix Description	This waste includes unputveriz 392), sand slag and crucible hand curcible (IDC 399). This was magnesium oxide sand, crucib	eel (IDC 393), sand from vaste is generated during le, calcium metal and s	, 395, 396), unpulverized sarid and crucible (IDC 391), unpulverized sand, slag and crucible (IDC 398), and pulverized sand stag and crucible (IDC 398), and pulverized stag and crucible (IDC 398), unpulverized sand, stag and crucible (IDC 398), unpulverized sand, stag and crucible (IDC 398), and pulverized stag and crucible (IDC	;
NO MIGRATION VARIANCE			TRUCON CODE	
Defense TRU Waste Non-Defense TRU Wast Commercial TRU Wast Unknown	X Mixed TRU ste Non-Mixed TRU	TRU	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A V Unknown	

ITE NAME RF			WAS	TE TYPE MTRU	HANDL	ING CH GEN	ERATOR SI	TE RF	
RF-W059 CONTAINER: Type/Size:	55-gallon		Int.	iner Matl: metal Vol/Ctnr: 0.20	,	Liner Type: rigid iner Material: HDPE		Number S Number Pro	jected; 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E ESTIMATED			OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	KATES C	F WASIE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	68.3	1	Projected	Final Form	Pu239	3.50E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	12.4	0,0 m3	Pu240	8,01E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	12.4	0.0 m3	Pu241	1.91E+02	Curles/m3
Other Inorganic Materials	489.0	376.2	635.7	1994:	0.0	0.0 m3/yr	Am241	4.76E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	208.9	160.7	271.6	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	7.5	0.0 m3/yr			
Soils	0.0	0.0	0.0	TYDICAL	EDA CODE	EC ADDITION DI F			
Packaging Materials, Steel	132.0		<u> </u>	ITPICAL		S APPLICABLE			-
Packaging Material, Plastic	51.9				D003D				

Footnotes

S

D007A

^{1.} The inventory for this waste stream contains mixed residues (42.11 m3 in 1992 and 31.51 m3 in 1993) in addition to the mixed waste inventory described above. This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

2. Final waste form reflects TRU waste inventories being processed (with a volume increase of 1:2.16). The final waste form volumes for this waste stream are in Waste Stream RF-M001.

^{3.} The typical waste densities are for the final waste for RF-M001.

SITE NAME RF		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
	ID RF-W060 ID RF-W060	STREAM NAME Coarse Graphite/TRM
Local MATRIX CODE SITE FINAL FORM IDC	D RF-303, 312 3119 303, 312	DESCRIPTION Graphite debris
Waste Matrix Code Group	Graphite	
	classified weapons shape casti	d graphite chunks (IDC 303) and coarse graphite (IDC 312). This waste is a result of broken graphite molds from the graphite.
NO MIGRATION VARIANCE	PETITION ASSIGNMENT RF 1	15 TRUCON CODE RF 115
FINAL WASTE FORM DESC	CRIPTORS:	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown		RSearch and Devel. Waste TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

00733

RF-W060 - 1

RF - 104

2/28/95

SITE NAME RF			WAS	TE TYPE MTRU	HAND	ING CH GEN	ERATOR S	SITE RF	
RF-W060 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solldified, Organic matrix Soils	55-gaflon ES FOR F Average 0.0 0.0 312.6 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 51.8 0.0 0.0 0.0 0.0	Upper Limit 17.3 0.0 0.0 386.6 0.0 0.0 0.0 0.0 0.0	3) STORED RATES (Im3 Li	Liner Type: rigid iner Material: HDPE E-ESTIMATED GENERATION Final Form 0.4 m3 0.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 1.8 m3/yr	TYPICAI Nuclide Pu239 Pu240 Pu241 Am241	Number S Number Proj LISOTOPIC C Activity 1.91E+01 4.37E+00 1.04E+02 0.00E+00	
Packaging Materials, Steel Packaging Material, Plastic	0.0 132.0 51.9	0.0	0.0	TYPICA	D006A	S APPLICABLE			-

Footnotes

1. The number of containers stored is for the year 1993. The number of containers projected is for the years 1994 - 2022.

SITE NAME RF		WASTE	TYPE MTRU HAND	LING CH C	SENERATOR SIT	E RF
WI Lo MATRIX CODE SITE FINAL FORM IDC	PP ID RF-W063 cal ID 070, 400, 401 1190		niscellaneous liquids/TRM ncategorized wastewaters			
Site Matrix Descript	plastic bottles and severa These liquids are included history.	I tanks of process liquids rem I in the list of mixed residues.	ained in storage in Buildin Basis for the five-year pro	ngs 371, \$59, 771, a ojected generation i	ind 779.	vember, 1989, several hundred he past three years generation
FINAL WASTE FORM D Defense TRU Waste			search and Devel. Waste	UCON CODE TSCA	Asbestos	
Non-Defense TRU W Commercial TRU W Unknown	Vaste Non-Mixed	TRU O R xed TRU B E	perations Waste esidues econ and Decommissionic nvironmental Restoration rom Treatment of Waste laintenance	X	PCBs Other N/A Unknown	X

00795

RF-W063 - 1

RF - 106

2/28/95

NAME RF						INVENTURT RE		
NAME KE			WAS	TE TYPE MTRU	HANDL	ING CH GEN	ERATOR S	ITE RF
RF-W063 CONTAINER: Type/Size:				ner Matt: metal Vol/Ctnr: 0.208	m3 Li	Liner Type: rigid iner Material: HDPE		Number Stored: (
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m			GENERATION	TYPICAL Nuclide	ISOTOPIC COMPOSITION
Iron-based Metals/Alloys	0.0	0.0	0.0	р	rojected	Final Form		
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 m3 0.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr		
Packaging Materials, Steel	0.0			<u></u>	D002B			
Packaging Material, Plastic Comments	0.0				D007A			
Final waste form volume included No isotopic data avaitable.	in other was	ste forms.						
Footnotes		·		<u> </u>				

1. The inventory for this waste stream contains mixed residues (14.5 m3 in 1992 and 5.02 m3 in 1993). This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

SITE NAME RF		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RF
WIP	R ID RF-W065 P ID RF-W065 al ID RF-333 6290 up Solidified Inorganics	STREAM NAME Calcium Metal/TRM DESCRIPTION Uncategorized reactive metals
	DO IDC 333. This material is element during the reduction process as	ental calcium used in plutonium reduction operations. Calcium metal pellets are mixed with plutonium tetrafluoride is a pyrotechnic initiator. It exhibits the characteristics of a RCRA reactive waste. 333 - Calcium Metal. TRUCON CODE
FINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU Was Commercial TRU Was Unknown	X Mixed TRU aste Non-Mixed TRU	X Rsearch and Devel. Waste TSCA Asbestos - Operations Waste X PCBs

000797

RF-W065 - 1

RF - 108

2/28/95

SITE NAME RF			WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR S	ITE RF
RF-W065 CONTAINER: Type/Size:			 i	iner Mati: Metal Vol/Ctnr: 0.2		Liner Type: Rigid iner Material: HDPE		Number Stored: 0 Number Projected: 0
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form		
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3		
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr		
Cellulosics	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	Tymic i	L EDA CODI	EC ADDI (CADI E		
Packaging Materials, Steel	0.0			TTPICE		ES APPLICABLE		-
Packaging Material, Plastic	0.0				D003D			

Comments

Volume change from 1992 to 1993 residues due to repackaging. Final waste form volume included in other waste forms, isotopic data not available.

Footnotes

1. The inventory for this waste stream contains mixed residues (0.21 m3 in 1992 and .002 m3 in 1993). This residue stream will be processed through the Rocky Flats Residue Elimination Program which will generate several WIPP WAC certifiable waste streams as defined in the "Conceptual Design Report for Residue Elimination at Rocky Flats" (EG&G Rocky Flats, 1994). Volume changes, waste stream changes, and processing schedules for residues are defined in this document.

SITE NAME RF		WASTE TYPE MTRU	HANDLING CH	GENERATOR SIT	E RF
WIPP Local MATRIX CODE SITE FINAL FORM IDC	ID RF-W066 ID RF-W066 ID RF-490 5410 335, 342'	STREAM NAME Filters & media/ DESCRIPTION Composite filters			
Waste Matrix Code Group She Matrix Description	This waste stream was previous operations throughout the plant operations (IDC 331), absolute 342), acid contaminated HEPA processed filter media (IDC 37-	usly named "Filter Waste/TRU." IDC No It site. This waste consists of Ful-flo filte glovebox filters from non-acid contamina Ifilters (IDC 492), non-acid contaminated 6). Processed filter media is material with te is packaged in 55-gallon drums and m	rs from the Building 771 incl ated operations (IDC 335), d HEPA fitters (IDC 492), pla nich has been treated using	nerator (IDC 328), fo acid contaminated a enum prefitters (IDC Portland cement to :	ul-flo filters from non-Inclineration ibsolute glovebox filters (IDC 491), filter media (IDC 338), and absorb moisture and poutralize
NO MIGRATION VARIANCE	PETITION ASSIGNMENT RF	119	TRUCON CODE RE	119	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU te Non-Mixed TRU	Openaments 11831	e X mmissioning estoration	A Asbestos PCBs Other N/A Unknown	×

DE MOSS CONTAINED	maket bes		一。					
RF-W066 CONTAINER: Type/Size:				ner Mati: metal	J	Liner Type:		Number Stored:
rypersize.	- AAAA 7		int. '	Vol/Ctnr:	0]m3 Li	ner Material:		Number Projected:
TYPICAL WASTE DENSITI	<u>es for fi</u>	NAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC COMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	0.0	0.0	595.3		Projected	Final Form		
Aluminum-Based Metals/Alloys	42.1	0.0	440.7	End of 1992:	0.0	0.0 m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.0	0.0 m3		
Other Inorganic Materials	15.0	0.0	154.8	1994:	3.2	0.0 m3/yr		
Cellulosics	104.8	0.0	496.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	11.3	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	595.6	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0,0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soits	0.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE		_
Packaging Materials, Steel	187.1				D001C			
Packaging Material, Plastic	2.2				D002B			
Comments								
Assume waste in metal boxes wi					D003E			
Final waste form volumes are inc	luded in final	waste form volur	nes for SWBs.		D004A			
Footnotes					D006A			
1. The 1994 inventory reflects ar	n increase of	3.17 m3 which is	due to the Was	ste	D007A			
Characterization Re-assessment				_	D008A			
characterized as TRU mixed was Waste Stream RF-T066.	ste. This inve	ntory of waste w	as transferred f	from				
vvasie Suealiv (1 - 1000.	<u> </u>	<u> </u>]	D009X			
					D010A			
					D011A			
					F001			
					F002			
					F005A			

000 000 000

NAME RF			WASTE	TYPEMTR	HANDL	ING CH GEN	ERATOR :	SITE RF
RF-W066 CONTAINER: Type/Size:		ste box	Container Int, Vol/	Mati: metal		Liner Type: Bag/rigioner Material: PVC/fib		Number Stored: Number Projected:
TYPICAL WASTE DENSITE	ES FOR FI	NAL WASTE	FORM (kg/m3)			ESTIMATED	TYPICAL	LISOTOPIC COMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity
Iron-based Metals/Alloys	0.0	0.0	595.3		Projected	Final Form		
Aluminum-Based Metals/Alloys	42.1	0.0	440.7 Er	nd of 1992:	1.9	1.9 m3		
Other Metals	0.0	0.0	0.0 Er	nd of 1993:	1.9	1,9 m3		
Other Inorganic Materials	15.0	0.0	154.8	1994;	0.0	3.8 m3/yr		
Cellulosics	104.8	0.0	496.1	1995:	0.0	0.0 m3/yr		
Rubber	1.1	0.0	11.3	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	595.6	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0,0	0.0	1898-2002;	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0		2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICA	L FPA CODE	S APPLICABLE		
Packaging Materials, Steel	187.1				D001C	- ATT ETOABLE		-
Packaging Material, Plastic	2.2				D002B			
					D003E			
Footnotes					D004A			
The number of containers store	ad is for the	(025 1003 The	wimber of	٦	D006A			
containers projected is for the year			idniber of	1	D007A			
2. The number of containers pro	ected (2) incl	udes waste that i	is presently stored		D008A			
in 4x4x7 metal boxes that will be	repackaged i	nto SWB's.						· ·
					D009X			
					D010A			
					D011A			
					F001			
					F002			
			•		F005A			

0800

TE NAME RF			WAS.	TE TYPE MTRU	HANDL	ING CH GEN	IERATOR S	ITE RF	
RF-W066 CONTAINER: Type/Size: TYPICAL WASTE DENSITE	55-gallon	NAI WASTE	Int. V	L		Liner Type: rigid Iner Material: HDPE/f		Number S Number Proj	
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	Average 0.0 23.9 0.0 8.3 30.0 1.3 7.8 0.0 0.0 0.0 132.0 51.9	Lower Limit	Upper Limit 0.0 440.7 0.0 154.8 496.1 11.3 595.6 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 48.3 47.7 2.5 5.1 3.9 0.6 0.6 35.1	GENERATION Final Form 42.8 m3 42.0 m3 1.8 m3/yr 3.6 m3/yr 2.8 m3/yr 0.4 m3/yr 0.4 m3/yr 25.3 m3/yr	Nuclide Pu239 Pu240 Pu241 Am241	Activity 3.27E+00 7.49E-01 1.78E+01 6.18E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3
Footnotes 1. The inventory for this waste's and 54,40 m3 in 1993) in addition This residue stream will be proce Elimination Program which will gistreams as defined in the "Conce Rocky Flats" (EG&G Rocky Flats changes, and processing schedt? The drum final waste form refibeing processed (with a volume these IDCs are in Waste Stream 3. The number of containers sto containers projected is for the years.	n to the mixed essed through enerate seven eptual Design s, 1994). Volules for residulects TRU was expansion of 7 RF-W067, red is for the y	waste inventory the Rocky Flats at WIPP WAC or Report for Residue changes, we as are defined in the Inventories of 2.16). Final was rear 1993. The Inventory of the Inventories of 2.16 in the Inventories of 2.16	described above Residue ertifiable waste due Elimination aste stream atteit document. I IDCs 328 and te form volumes	at 331	D004A D006A D007A D008A D009X D010A D011A F001 F002 F005A				

SITE NAME RF			WAS1	E TYPE MTRU HANDLI	NG CH	GENERATOR SI	TE RF	
WASTE STREAM MATRIX CODE	MWIR ID RF-W067 WIPP ID RF-W067 Local ID RF-376 5410			Cemented filters/TRM Composite filters				
Waste Matrix Code	Group Filter							
Site Matrix Des	contaminati	e. Processed litter me on. Filter waste is pac	edia, DC 376, is mat ckaged in 55 gallon o	le/TRU." IDC NO. 338 and 37 erial which has been treated u frums and metal standard was azardous constitutents origina	ising Portland (ste boxes, Inv	cement to absorb m entory data include	oisture and neutralize acid	ama
NO MIGRATION VA	RIANCE PETITION	ASSIGNMENT RF 119		TRUC	CON CODE	F 119		
FINAL WASTE FOR Defense TRU W Non-Defense Tf Commercial TR Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSC X	A Asbestos PCBs Other N/A Unknown	- X	

RF-W067 CONTAINER:	Drum		Contain	ner Mati: metal		Liner Type: rigid		Number S	tored: 4
Type/Size:	55-gailon		Int. \	Vol/Ctnr: 0.2	21 m3 Li	ner Material: HDPE		Number Proj	ected: 2066
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE				E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys	4.8	0.0	Upper Limit 24.0		Projected	Final Form	Pu239	6.61E+00	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	9.0	20.8 m3	Pu240	1.51E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	9.0	21.3 m3	Pu241	3.60E+01	Curies/m3
Other Inorganic Materials	113.3	26.9	342.4	1994:	0.0		Am241	0.00E+00	Curles/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	1.5 m3/yr			
Rubber	0.0	0.0	0.0	1996:		3.1 m3/yr			
Plastics	14,4	0.0	38.5	1997:	0.0	2.3 m3/yr 0.3 m3/ry			
Solidified, Inorganic matrix	141.5	33.6	427.6	1998-2002:	0.0	0.3 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	21.2 m3/yr			
Soils	0.0	0.0	0.0	2003-2022.	0.0	21.2 1113/91			
Packaging Materials, Steel	132.0	0.0		TYPICA	L EPA CODE	S APPLICABLE			-
Packaging Material, Plastic	51.9				D001C				
, admagnig, , 1,00,10					D002B				
					D003E				
					D005A				
Footnotes	· · · · · · · · · · · · · · · · · · ·				D006A				
 The inventory for this waste signed 6,93 m3 in 1993) in addition 									
This residue stream will be proce				·	D007A				
Elimination Program which will ge					D008A				
streams as defined in the "Conce				at	D009X				
Rocky Flats" (EG&G Rocky Flats changes, and processing schedu					F001				
2. The final waste form volumes									
328 and 331 from Waste Stream		z			F002				
The number of containers stor			number of		F003				
containers projected is for the yea	<u>ərs 1994 - 20</u>	22,							

Maintenance

RF-W068 CONTAINER: Type/Size:				iner Mati: metal Vol/Ctnr: 0.		Liner Type: rigid		Number S	
TYPICAL WASTE DENSITII Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix		NAL WASTE Lower Limit 0.0 0.0 0.0 376.2 0.0 0.0 0.0 160.7		13) STORED	OTRU WASTI	### Indept	TYPICAI Nuclide Pu239 Pu240 Pu241 Am241	Number Proj L ISOTOPIC C Activity 5.08E+00 1.16E+00 2.77E+01 0.00E+00	• "
Soils Packaging Materials, Steel Packaging Material, Plastic Footnotes 1. The Inventory for this waste stand 2.14 m3 in 1993) in addition to this residue stream will be proceed the proc	o the mixed w ssed through	raste inventory o the Rocky Flats	described above Residue	992	D001C D006A D007A D008A F001 F002 F005A	ES APPLICABLE			

SITE NAME RF		WAST	E TYPE MTRU HAND	DLING CH C	SENERATOR SIT	re Rf
WIPP ID	RF-W069 RF-W069 430, 431, 809 3212 809		Organic Resins/TRM Organic Resins			
Waste Matrix Code Group						
r V	vas (discussed in the National IDC 430) and leached resin (IC hese IDCs. Final waste form for the second second form for the second form for the second form for the second form for the second for the second form for the second form for the second form for the second for the s	771. It consists of unle Report on Prohibited V OC 431). The waste is or this waste stream is	eached resin (IDC 430) and Vastes and Treatment Optic packaged in 55-gallon drur cemented resin (IDC 809).	d leached resin (IDC ons and in Treatmer ns with multiple bag	431). The partic of Report No. 1) a liners. Inventory	s generated from plutonium culate and sludge (TRU mixed) are unleached Ion exchange resin r data includes mixed residues in
FINAL WAS TE FORM DESCR	RIPTORS:					
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioni Environmental Restoration From Treatment of Waste Maintenance	X	Asbestos PCBs Other N/A Unknown	X

70800

ENAME RF			WASTE TYPE MTRU	HANDLING CH G	ENERATOR S	SITE RF
RF-W069 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	FORM (kg/m3) STORED 1	Liner Type: rigid m3 Liner Material: HDPE		Number Stored: 46 Number Projected: 233
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 0.0 475.0 0.0 0.0 0.0 203.0 0.0 132.0 51.9	0.0 0.0 0.0 316.7 0.0 0.0 0.0 0.0 135.3	Upper Limit 0.0	Tojected Final Form 12.8 27.7 m3 4.4 9.5 m3 27.7 m3 4.4 9.5 m3 27.7 m3 2.1 m3/yr 1.0 2.2 m3/yr 2.1	Nuclide Pu239 Pu240 Pu241 Am241	Activity 5.94E-01 Curies/m3 1.36E-01 Curles/m3 3.24E+00 Curles/m3 0.00E+00 Curies/m3
Footnotes 1. The inventory for this waste st and 0.63 m3 in 1993) in addition this residue stream will be procestimination Program which will ge	ste form. ream contain the mixed vised through	s mixed residues vaste inventory o the Rocky Flats	(0.21 m3 in 1992 lescribed above Residue	D008A F001 F002 F005A		

RF-W069 - 2

RF - 119

2/28/95

SITE NAME RF				WAS	TE TYPE MTRU	HANDLING	СН с	ENERATOR :	SITE RF	
MATRIX CODE SITE FINAL FORM IDO	- <u>,-</u>	W076 292, 299			Process Residues.		ales			
Waste Matrix Code Site Matrix Desci	This w This w sludge 423) Misc. (raste stream wa raste was gener (IDC 292), mis The waste is pa Oxide.	s previously named " ated from plutonium r cellaneous studge (IC ckaged in 55-gallon c	ecovery o C 299), s	perations in Building ludge from size redu	771. The wa: iction area (ID:	ste consists o C 340), grit (II a include mix	of low-purity ox DC 372), soot	ide heel (IDC 2 (IDC 422), and	289), incineration I soot heel (IDC
FINAL WASTE FORM Defense TRU Wa Non-Defense TRI Commercial TRU Unknown	aste U Waste	X Mixed 1	ked TRU t Mixed TRU	X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning toration	TSCA	Asbestos PCBs Other N/A Unknown	X	-

NAME RF			WASTE T	YPE MTRU	HANDL	ING CH GEN	ERATOR SITE RF
RF-W076 CONTAINER: Type/Size:			Container I	Matt: metal Ctnr: 0.208	m3 LI	Liner Type:rigid ner Material:HOPE	Number Stored: Number Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	ORM (kg/m3)			ESTIMATED GENERATION	TYPICAL ISOTOPIC COMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit		···········		Nuclide Activity
Iron-based Metals/Alloys	0.0	0.0	0.0	<u>Pr</u>	ojected	Final Form	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0 End	d of 1992: 🗌	0.0	0.0 m3	
Other Metals	0.0	0.0	0.0 En	d of 1993;	0.0	0.0 m3	
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	
Solidified, Inorganic matrix	0.0	0.0	0.0 1	998-2002:	0.0	0.0 m3/yr	
Solidified, Organic matrix	0.0	0.0	0.0	003-2022:	0.0	0.0 m3/yr	
Soils	0.0	0.0	0.0	TYPICAL	FDA CODE	S APPLICABLE	_
Packaging Materials, Steel	0.0			IIIIOALI	D001C	J ATT LICABLE	-
Packaging Material, Plastic	0.0						
Comments					D002		
Final waste form volume included	i in other was	te forme se REP	output	1	D003		
No isotopic data available.	in ource no.	ate forms as the	output.		D006A		
Footnotes			·	•	D007A		
1. The inventory for this waste s	tream contair	ns mixed residues	(17.39 m3 in 1992	}	D008A		
and 15.91 m3 in 1993) in additior	to the mixed	waste inventory	described above.	1			
This residue stream will be proce				ļ	F001		
Elimination Program which will go streams as defined in the "Conce					F002		
Rocky Flats" (EG&G Rocky Flats					F002		
changes, and processing schedu 2. No isotopic information is ava	les for residu	res are defined in	his document.		F005A		

Hanford Site

HANFORD SITE (RL) WASTE STREAM PROFILE METHODOLOGY

APPROACH

The approach used in preparing the RL waste stream profiles is as follows:

- Waste is divided between "past practice waste" (1970 through 1986) and currentlygenerated waste (1987 through 2028). Currently-generated waste includes projected waste generation.
- · Past practice waste is grouped by generators, whereas currently-generated waste is grouped by waste matrix. The reasons for grouping the data in this manner are as follows: 1) the interim storage practice was changed from below ground surface (trenches) to above surface (storage buildings) in the 1986/1987 time period; 2) the By-Product Rule was issued by DOE on May 1, 1987, which compelled the hazardous components of TRU waste to be regulated by EPA under RCRA; 3) more detailed matrix information per container has been collected from the generator since 1987, and stored in the site's record waste tracking system; and 4) starting approximately 1986, waste generators began packaging the waste in accordance with the WIPP Waste Acceptance Criteria, thus reducing the need for additional waste processing prior to shipping to WIPP.
- · Currently-generated waste streams were identified by reviewing each container record in the site's solid waste tracking system. Groups of containers that have similar physical characteristics and chemical contaminants (mixed only) were placed into a treatability group waste stream. The waste was then separated into drums, boxes, and RH canisters.

ASSUMPTIONS

The following assumptions were made by the site in repackaging the waste into the final waste form:

1. General

- A. A portion of the thermocouple assemblies, transfer pumps, mixing pumps, and other equipment in the single-shell and double-shell tanks will be removed, size-reduced, decontaminated, and assayed. Assay information will be used to designate the waste packages as low-level waste or TRU waste. The projection is that 10% of the equipment will be designated as RH-TRU, mixed waste and 90% will be designated as remotehandled, low level mixed waste. (WHC-EP 0768, Solid Waste 30-Year Volume Summary, p. 4-6, Table 4-1)
- B. TRU waste forecast volume data has been provided from the following off-site waste generators: AL, AE, BCL, LB, LL, and Santa Susana Field Laboratory (Rockwell, Canoga Park). The assumption is that TRU waste from these off-site waste generators will be received at RL for treatment in the Waste Receiving and Processing Facility (WRAP) and shipment to WIPP. (WHC-EP-0768, Solid Waste 30-Year Volume Summary)

Information Only 000812

HANFORD SITE (RL) WASTE STREAM PROFILE METHODOLOGY (continued)

- C. PUREX transition activities will generate 117 m³ of CH-TRU and mixed TRU waste. The PUREX facility is currently undergoing transition activities towards decontamination and decommissioning. The facility transition activities at PUREX will provide a model for the subsequent transition of other canyon-type facilities in the future. Waste generation estimates from PUREX and other canyon type facilities have been included in the forecast. (WHC-EP-0768, Solid Waste 30-Year Volume Summary)
- D. Approximately 140 m³ of spent research reactor fuel stored in trenches with the TRU waste is managed as TRU waste. Future evaluations may determine that this waste should be managed by the National Spent Fuel Program. (WHC-SD-SNF-TI-001, Revision 0)
- E. The final disposition of buried TRU contaminated waste has not been made. Consequently, the volume is not included in the waste projected for shipment to WIPP.

2. Retrieval of Stored TRU Waste

A. Stored TRU waste consists of existing TRU waste generated since May 1970 through December 1993. This waste does not include waste, originally designated as TRU waste, that has been assayed and redesignated as low-level waste during the calendar years (CY) 1986 to 1993.

B. CH-TRU Waste

- Of the TRU waste stored from May 1970 to December 1985 that has not been assayed and redesignated as low-level waste (by December 1993), 50% of the waste stored in 55-gallon drums is expected to be TRU waste upon assaying. The remainder is expected to be low-level waste upon assaying. (WHC-EP-0225, Revision 1, Table 4-26)
- Waste is drums will be opened, examined to remove non-certifiable waste, and then
 packaged into new drums. The projection is that repackaging the waste will result in
 a 35% increase in the volume of TRU-certified waste in drums. (WHC-SD-W026-SDRD-001, Revision 3)
- Waste in boxes will be opened, and size-reduced to fit into TRUPACT-II SWBs. No volume reduction is projected.
- The site's solid waste tracking system does not distinguish between specific types of
 metals. If lead is present, then "other metals" is assumed to represent 100% of the
 metals in the container. Otherwise, iron-based metals is assumed to be 80% and
 aluminum-based metal is assumed to be 20% of the metal (reference: WHC-EP-225
 Rev 1, TRU Waste Characterization Based on Current Records).

Information Only

HANFORD SITE (RL) WASTE STREAM PROFILE METHODOLOGY (continued)

C. RH-TRU Waste

- Approximately 149 m³ of the TRU waste in drums and boxes stored in trenches, approximately 24 m³ of the TRU waste in 1-, 2-, and 5-gallon cans stored in alpha caissons, and approximately 140 m³ of irradiated material in drums, boxes and casks stored in trenches received prior to CY 1994 will be classified as RH-TRU waste when it is processed through the WRAP facility.
- No volume reduction is projected due to size reduction for transport in RH canisters.
- A small amount of CH-TRU (2.0E+2 m³) is expected to be retrieved and packaged as RH-TRU waste.

3. Newly-generated TRU waste

A. This waste will be generated during the fiscal years 1994 through 2013.

B. CH-TRU Waste

- One hundred percent of the waste in drums will be managed as TRU waste with 10% considered noncertifiable and requiring treatment.
- All boxed waste (except waste in SWBs) will require size reduction in the WRAP facility.

C. RH-TRU Waste

- Newly-generated RH-TRU waste will be stored in shielded drums pending repackaging in RH-canisters in the WRAP facility.
- RH-TRU waste retrieved from the 618-11 burial ground will include some soil surrounding breached containers. It is assumed that this soil will increase the waste volume to be retrieved by 25%. No volume reduction is projected for treatment in the WRAP facility.
- A portion of the single-shell and double-shell tank equipment will be size-reduced and decontaminated, assayed, and shipped to WIPP as RH-TRU waste. The assumption is the 90% of the equipment will be classified as remote-handled, low level mixed waste and 10% will be RH-TRU, mixed waste.
- Most of the waste generated between 1987 and 1993 is debris waste. As such, projected RH-TRU waste is assumed to be debris waste.
- The mixed waste contaminants and radionuclide composition of projected RH-TRU waste are unknown.

SITE NAME RL		WAST	E TYPEMTRU	HANDLING CH	GENERATOR SI	TE RL
Local MATRIX CODE SITE FINAL FORM IDC	ID RL-M001 ID RL-TB-001	DESCRIPTION	TRU Mixed Inorganion This waste stream waste support	vas generated fro	•	enance activities of various Plant
Waste Matrix Code Group Site Matrix Description NO MIGRATION VARIANCE	This waste stream consists constituents are metals, inc	primarily of Inorganic debriction in the primarily of Inorganic debriction in the primarily of Inorganic debriction in the primarily of Inorganic debriction in the primarily of Inorganic debrication in the primarily of Inorganic debriction in the Inorganic de	ris. Some of the con	ntainers contain o		d cellulosics). The hazardous
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Was Commercial TRU Waste Unknown	X Mixed TRU tte Non-Mixed T	RU C ed TRU F E	Rsearch and Devel. Toperations Waste Residues Decon and Decommi Environmental Resto From Treatment of Wi	Waste X X issioning	TSCA Asbestos PCBs Other N/A Unknown	X

Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics 13		WASTE TYPE MTRU HANDLING CH GEI	NERATOR SITE RL
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Olastics 138	FOR FINAL WASTE	Container Mati: steel Liner Type: bag Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION	Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION Nuclide Activity
Soils 0 Packaging Materials, Steel 154	Lower Limit 198.8	Description Projected Final Form Projected Pr	Nuclide Activity Pu238 1.81E-02 Curies/m3 Pu239 6.22E-01 Curies/m3 Pu240 1.40E-01 Curies/m3 Pu241 3.73E+00 Curies/m3 Pu242 8.14E-06 Curies/m3

RL-M001 - 2

RL - 2

SITE NAME RL				WAST	E TYPE MTRU HAND	DLING CH	GENERATOR SI	TE RL	
MATRIX CODE SITE FINAL FORM ID	<u>DC</u>	RL-TB-002 073		DESCRIPTION	TRU Mixed Inorganic Deb This waste stream was ge process and support opera Refinishing Plant.	nerated from	the cleanup and mainte	nance activities of va It (PUREX) and the P	rious 'Iutonium
Waste Matrix Code Site Matrix Desc	cription Th	is waste st zardous co	ream consists prim postituents are meta	arily of Inorganic meta als.	al debris. Some of the conf	tainers contai		c, rubber, cellulosics)	. The
PINAL WASTE FOR Defense TRU W Non-Defense TRU Commercial TRU Unknown	Vaste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU I	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioni Envíronmental Restoration From Treatment of Waste Maintenance	X X	TSCA Asbestos PCBs Other N/A Unknown	X	

			· <u> </u>						
RL-M002 CONTAINER:	aste Box	Conta	iner Mall: steel		Liner Type: bag	Number Stored:			
Type/Size:		Int.	Vol/Ctnr: 1	.9 m3 Li	ner Material: plastic	Number Projected:			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	——— MPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES		GENERATION	Nuclide	Activity	OTH COME
Iron-based Metals/Alloys	91.4	3.3	403.8		Projected	Final Form	Pu238	1.48E-02	Curies/m3
Aluminum-Based Metals/Alloys	22.9	3.3	403.8	End of 1992:	0.0	0.0 m3	Pu239	5.10E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	11.3	11.3 m3	Pu240	1.14E-01	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.06E+00	Curies/m3
Cellulosics	14.7	1.1	54.1	1995:	0.3	0.3 m3/yr	Pu242	6.67E-06	Curies/m3
Rubber	0.2	0.2	0.2	1996;	0.1	0.1 m3/yr			
Plastics	17.9	4.6	89.0	1997:	0.0	0.0 m3/ry			
Solldified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	76.4	76.4 m3/yr			
Soils	0.9	0.9	0.9						
Packaging Materials, Steel	154.0			TYPICA		S APPLICABLE			
Packaging Material, Plastic	1.2				D008				
Comments									

SITE NAME RL			WAST	E TYPE MTRU	HANDLING CH	1 (SENERATOR S	SITE RL	
WASTE STREAM MATRIX CODE SITE FINAL FORM		3		TRU Mixed Inorgal This waste stream process and suppo	was generated fr	om the cle	anup and main	tenance activities Plant	s of various
	e Group Uncategorizeription This waste constituents	ed Metal stream consists primarily are corrosives.	y of Inorganic deb	ris. Some of the co	ntainers contain c	organic de	bris (plastic, cell	lulosics, rubber).	The hazardous
NO MIGRATION VA	RIANCE PETITION A	ASSIGNMENT			TRUCONC	ODE			
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of	πissioning toration	TSCA	Asbestos PCBs Other N/A Unknown	х	

									
RL-M003 CONTAINER: Type/Size:			Int.	—— .		Liner Type: bag Iner Material: plastic		Number Stored Number Projected	1:
TYPICAL WASTE DENSITI	Average	Lower Limit	Upper Limit			GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix	171.4 42.8 0.0 0.0 1.1 1.0 27.4 0.0	0.0 0.0 0.0 0.0 1.1 1.0 27.4	214.2 214.2 0.0 0.0 1.1 1.0 27.4 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002:	0.0 3.2 0.0 0.1 0.0 0.0 0.0	0.0 m3 3.2 m3 0.0 m3/yr 0.1 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	2.03E-01 Curi 4.55E-02 Curi 1.21E+00 Curi	ies/m3 ies/m3 ies/m3 ies/m3
Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 0.0 154.0 1.2	0.0	0.0	2003-2022: TYPICA	21.2 L EPA CODE D002	21.2 m3/yr			

00002

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL
WASTE STREAM MWIR ID WIPP ID RL-M004 Local ID RL-TB-004 MATRIX CODE SITE FINAL FORM IDC 001 Waste Matrix Code Group Heterogeneous	STREAM NAME TRU Mixed Heterogeneous Debris (State Only) DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process, and support operations from Pacific Northwest Laboratories and the Plutonium Finishing Plant.
Site Matrix Description This waste stream consists pri hazardous by State regulation NO MIGRATION VARIANCE PETITION ASSIGNMENT	imarily of Heterogeneous debris (filters). Some of the containers contain organic debris (Plastic). The waste is TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

Aluminum-Based Metals/Alloys 0.0 0.0 0.0 End of 1992: 0.0 0.0 m3 Np237 3.50E-06 Curies/m	TENAME RL		WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL							
Nuclide Activity Co60 1.00E-04 Curies/mix Co60 Curies/m	Type/Size:			Int.	Vol/Ctnr: 1		iner Material: plastic	TYPICAL	Number Proj	ected:	
Iron-based Metals/Alloys					RATES	OF WASTE	GENERATION			<u> </u>	
\cdot	Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 154.0	0.0 0.0 0.0 0.0 1.2 0.0	0.0 0.0 0.0 0.0 0.0 5.9 0.0	End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 4.2 0.0 0.1 0.0 0.0 0.0 28.3	0.0 m3 4.2 m3 0.0 m3/yr 0.1 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/ry 28.3 m3/yr	Np237	3.50E-06	Curies/m3 Curies/m3 Curies/m3	
End of 92 volumes not compiled.			····								

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL, KERR MCGEE
WASTE STREAM MWIR ID WIPP ID RL-M005 Local ID RL-T8-005 MATRIX CODE SITE FINAL FORM IDC 071	TRU Mixed Homogeneous Solids W/ Merc. DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process, and support operations from Pacific Northwest Laboratories, Kerr McGee, and the Plutonium Finishing Plant.
Waste Matrix Code Group Solidified Inorganics This waste stream consists prim constituents vary and include me	narily of Homogeneous solids. Some of the containers contain organic debris (Plastic, cellulosics). The hazardous etals including mercury, ignitables, corrosives, and/or reactives, and PCBs TRUCON CODE
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs X

RL-M005 CONTAINER: Drum Type/Size: 55-gallon			Container Mati: steel Liner Type: figid Int, Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Stored: Number Projected:		
TYPICAL WASTE DENSITE Material Parameters		_		RATES		E ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
	Average	Lower Limit	Upper Limit				Am241	2.40E-03	Curies/m3
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Cm244	8.09E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;		0.0 m3	Cs137	1.00E-04	
Other Metals	0.0	0.0	0.0	End of 1993:	1.5	1.5 m3	Pu238	2.16E-03	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	1.5	1.5 m3/yr	Ru106		Curies/m3
Celfulosics	27.3	7.2	57.7	1995:	1.4	1.4 m3/yr		5.30E-03	Curies/m3
Rubber ·	0.4	0.4	0.4	1996:	2.2	2.2 m3/yr	Pu239	7.43E-02	Curies/m3
Plastics	18.8	4.6	37.0	1997:	1.2	1.2 m3/ry	Pu240	1.67E-02	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	4.8	4.8 m3/yr	Pu241	4.46E-01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	9.9	9.9 m3/yr	Pu242	9.72E-07	Curies/m3
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	131.0	L	<u> </u>	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0				D001				
Comments	<u></u>	•			D002				
End of 92 volumes not compiled.					D009				

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, KERR MCGEE
WASTE STREAM MWIR ID WIPP ID RL-M006 Local ID RL-TB-006 MATRIX CODE SITE FINAL FORM IDC 071 Waste Matrix Code Group Heterogeneous	TRU Mixed Inorg. Homogeneous Solids w/out Merc. DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process, and support operations from the fuel reprocessing plant (PUREX), Kerr McGee, and the Plutonium Finishing Plant.
	arily of Inorganic homogeneous solids. Some of the containers contain organic debris (rubber, cellulosics). The nics. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

RL-M006 CONTAINER: Drum Type/Size: 55-gallon				iner Mati: steel		Number Stored:				
			Int.	Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO	
Material Parameters	Average	Lower Limit	Upper Limit	RATES OF WASTE GENERATION Upper Limit				Activity	Activity	
Iron-based Metals/Alloys	14.7	0.0	18.4		Projected	Final Form	Pu238	1.45E-02	Curies/m3	
Aluminum-Based Metals/Alloys	3.7	0.0	18.4	End of 1992:	0.0	0.0 m3	Pu239	4.99E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	1.6	1.6 m3	Pu240	1.12E-01	Curies/m3	
Other Inorganic Materials	0.0	0.0	0.0	1994:	1.7	1.7 m3/yr	Pu241	2.99E+00	Curies/m3	
Cellulosics	33.7	B.6	83.8	1995:	1.5	1.5 m3/yr	Pu242	6.52E-06	Curies/m3	
Rubber	28.3	5.5	91.4	1996:	2.4	2.4 m3/yr				
Plastics	0,0	0.0	0.0	1997:	1.3	1.3 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	5.3	5.3 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	11.0	11.0 m3/yr				
Solls	0.0	0.0	0.0	TVDIO 4						
Packaging Materials, Steel	131.0			TYPICA		S APPLICABLE				
Packaging Material, Plastic	37.0				D001					

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M007 Local ID RL-TB-007 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Soils	STREAM NAME TRU Mixed Soils without Mercury DESCRIPTION This waste stream was generated from the cleanup activities of the 201C process facility.
	y of Soils. Some of the containers contain organic debris (rubber, cellulosics, plastic) and inorganic debris (metal). etals. TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rearch and Devel. Waste Operations Waste Residues Octher Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

ENAME RL		WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL							
RL-M007 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE			Container Mati: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE FORM (kg/m3) STORED TRU WASTE ESTIMATED				Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit			GENERATION	Nuclide	Activity	SWI COITION
Iron-based Metals/Alloys	22.8	0.5	38.8		Projected	Final Form	Am241	2.48E+00	Curies/m3
Aluminum-Based Metals/Alloys	5.7	0.5	38.8	End of 1992:	0.0	0.0 m3	Cs137	2.34E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	11.9	11.9 m3	Pu238	3.78E-04	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.5	0.5 m3/yr	Sr90	5,38E+00	Curies/m3
Cellulosics	63.1	1.2	67.3	1995:	0.3	0.3 m3/yr	Pu239	1.30E-02	Curies/m3
Rubber	20.9	1.8	210.4	1996:	0.5	0.5 m3/yr	Pu240	2.92E-03	Curies/m3
Plastics	33.1	0.6	33.6	1997:	0.2	0.2 m3/ry	Pu241	7.79E-02	Curies/m3
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.7	0.7 m3/yr	Pu242	1.70E-07	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	1.6	1.6 m3/yr	U234	9.98E-04	Curies/m3
Soits	421.0	254.3	570.8	,			U235	1.79E-05	Curies/m3
Packaging Materials, Steel	131.0		تــــــــــــــــــــــــــــــــــــــ	TYPICA	L EPA CODE	S APPLICABLE	U238	1.11E-03	Curies/m3
Packaging Material, Plastic	37.0				D007				
Comments					D010				
End of 92 volumes not compiled.									

RL-M007 - 2

RL - 14

2/28/95

SITE NAME RL			WASI	TE TYPE MTRU	HANDLING CH	GENERATOR S	ITE RL, PNL, KERR MCGEE
	Group Uncalegoriz	ed Metal	DESCRIPTION	research, process, a the fuel reprocessing non-mixed waste.	was generated fro and support opera g plant (PUREX),	m the cleanup and maint ations from Kerr McGee, and the Plutonium Finisl	lenance activities of various Pacific Northwest Laboratories, hing Plant. A volume of 40.02 is
Site Matrix Des	the nazard	ous constituents vary and	If Inorganic debri	s metals. Some of the and ignitables, corro	ne containers conto psives, and/or rea	ictives.	ic, rubber, cellulosics), and soils.
FINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	/aste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of V Maintenance	Waste X X Nissioning	TSCA Asbestos PCBs Other N/A Unknown	X

SITE NAME RI WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL, KERR MCGEE **RL-M008** CONTAINER: Drum Container Matt: steel Liner Type: rigid **Number Stored:** Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide <u>Activity</u> Material Parameters Average Lower Limit **Upper Limit** Am241 2.55E-01 Iron-based Metals/Alloys Curies/m3 158.4 0.1 2096.0 Projected Final Form Cm244 1.23E+00 Aluminum-Based Metals/Alloys Curies/m3 39.6 0.1 524.0 End of 1992: 0.0 0.0 m3 Cs137 4.00E-04 Curies/m3 Other Metals 0.0 0.0 0.0 End of 1993; 48.2 48.2 m3 Np237 4.67E-05 Curies/m3 Other Inorganic Materials 0.0 0.0 0.0 1994: 8.2 8.2 m3/yr Pu238 5.29E-01 Curies/m3 Cellulosics 7.5 0.5 139.0 1995: 14.7 14.7 m3/yr Pu239 4.59E+00 Rubber Curies/m3 4.9 0.3 245.6 1996; 34.3 34.3 m3/yr Pu240 1.06E+00 Curies/m3 **Plastics** 1.3 24.8 750.8 1997: B.9 8.9 m3/ry Pu241 3.04E+01 Curies/m3 Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 10.1 10.1 m3/yr Pu242 8.78E-05 Curies/m3 Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 52.4 52.4 m3/yr Ra226 8.90E-04 Curies/m3 Soils 2.9 0.9 48.7 TYPICAL EPA CODES APPLICABLE U234 6.51E-05 Curies/m3 Packaging Materials, Steel 131.0 D002 U235 6.66E-05 Curies/m3 Packaging Material, Plastic 37.0 U238 2.23E-06 Curies/m3 D006 Comments D007 End of 92 volumes not compiled.

Ć,

D008

SITE NAME RL	WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE RL, KERR MCGEE
WASTE STREAM MWIR ID WIPP ID RL-M0 Local ID RL-TB- MATRIX CODE SITE FINAL FORM IDC 074 Waste Matrix Code Group Combust	009 DESCRIPTION	TRU Mixed Organic Debris with corrosives This waste stream was generated from the cleanup and maintenance activities of varous research, process, and support operations from Kerr McGee, the fuel reprocessing plant (PUREX), and the Plutonium Finishing Plant.
Site Matrix Description This was constitued	nis are conosives.	is. Some of the confainers contain inorganic debris (metals) and soils. The hazardous
FINAL WASTE FORM DESCRIPTORS Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU X Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

RL-M009 CONTAINER: Type/Size:			Container Mati: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/m			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC CON	MPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 1.7 0.4 0.4 0.0 0.0 0.5 131.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.0 0.0 96.1 28.7 28.7 0.0 0.0 48.1	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 19.2 0.5 0.4 0.7 0.4 1.4 11.6 L EPA CODE	0.0 m3 19.2 m3 0.5 m3/yr 0.4 m3/yr 0.7 m3/yr 0.4 m3/ry 1.4 m3/yr 11.6 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	1.81E+01 C 4.06E+00 C 1.05E+02 C	curies/m3 curies/m3 curies/m3 curies/m3 curies/m3

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M010 Local ID RL-T8-010 MATRIX CODE SITE FINAL FORM IDC 074 Waste Matrix Code Group Combustible Site Matrix Description This waste stream consists prime	DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of the various process and support operations from the fuel reprocessing plant (PUREX) and Plutonium Finishing Plant. arily of Organic debris. Some of the containers contain inorganic debris (metals, including mercury), and soils. The
hazardous constituents are meta	als including mercury and ignitables, corrosives, and/or reactives. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TR Unknown Unknown	Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Vnknown Unknown

ENAME RL			WAS	TE TYPE MTRI	HANDL	ING CH GEN	ERATOR S	ITE RL	
RL-M010 CONTAINER: Type/Size:	55-gallon		Int.		08 m3 Li	Liner Type: rigid iner Material: HDPE		Number St Number Proje	I
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED		E-ESTIMATED GENERATION		. ISOTOPIC CC	MPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	MAILS	J/ WASIE	GENERATION	Nuclide	Activity	
iron-based Metats/Alloys	14.8	4.8	32.6		Projected	Final Form	Am241	6.86E-04	Curies/m3
Aluminum-Based Metals/Alloys	3.7	0.0	32.6	End of 1992:	0.0	0.0 m3	Pu238	3,34E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.4	0,4 m3	Pu239	1.15E+01	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu240	2.57E+00	Curies/m3
Cellulosics	2.6	1.4	3.8	1995:	0,0	0.0 m3/yr	Pu241	6.88E+01	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu242	1.50E-04	Curies/m3
Plastics	51.8	39.7	65.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.3	0.3 m3/yr			
Soils	2.4	2.4	2.4						
Packaging Materials, Steel	131.0			TYPICA		S APPLICABLE			
Packaging Material, Plastic	37.0				D002				
Comments			1		D006				
End of 92 volumes not compiled.		.		$\overline{}$	D009				

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M011 Local ID RL-TB-011 MATRIX CODE SITE FINAL FORM IDC 74 Waste Matrix Code Group Combustible	STREAM NAME TRU Mixed Organic Debris Metals without Mercury DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the fuel reprocessing plant (PUREX) and the Plutonium Finishing Plant.
Site Matrix Description This waste stream constituents are me	onsists primarily of Organic debris. Some of the containers contain inorganic debris (metals) and soils. The hazardous als including mercury and ignitables, corrosives, and/or reactives.
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed Non-Defense TRU Waste Non-	TRU X Rsearch and Devel, Waste X TSCA Asbestos Dixed TRU Operations Waste X PCBs Ct Mixed TRU Residues Other

360835

RL-M011 - 1

RL - 21

ENAME RL			WASTE TYPE MTRU HANDLING CH	GENERATOR SITE RL
RL-M011 CONTAINER: Type/Size:	55-gallon		Container Mati: steel Liner Type: rig Int. Vol/Ctnr: 0.208 m3 Liner Material: HE	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE Lower Limit	RM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION	TYPICAL ISOTOPIC COMPOSITION Nuclide Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	47.9 12.0 0.0 0.0 25.4 0.0 50.9 0.0	2.3 2.4 0.0 0.0 2.4 0.0 21.7 0.0	200.0 End of 1992: 0.0 0.0 m. 200.0 End of 1993: 0.8 0.8 m. 0.0 1994: 0.0 0.0 m. 96.2 1996: 0.0 0.0 m. 0.0 1996: 0.0 0.0 m. 155.0 1997: 0.0 0.0 m. 0.0 1998-2002: 0.1 0.5 m. 0.0 2003-2022: 0.5 0.5 m.	3 Pu240 2.68E+00 Curies/m3 3/yr Pu241 7.15E+01 Curies/m3 3/yr Pu242 1.56E-04 Curies/m3 3/yr 3/yr 3/yr
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	31.4 131.0 37.0	26,0	101.0 TYPICAL EPA CODES APPLICABLE D001 D002	
End of 92 volumes not compiled.			D007 D008	

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M012 Local ID RL-TB-012 MATRIX CODE SITE FINAL FORM IDC 074 Waste Matrix Code Group Combustible	STREAM NAME TRU Mixed Organic Debris contaminated w/Organics DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the Plutonium Finishing Plant.
	sts primarily of Organic debris. Some of the containers contain inorganic debris (metals) and soils. The hazardous including mercury and organics.
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Commercial TRU Waste Suspect M Unknown Unknown	J X Research and Devel. Waste X TSCA Asbestos 1 TRU Operations Waste X PCBs

RL-M012 CONTAINER: Type/Size:		Int.	Container Matt: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE Lower Limit	FORM (kg/m Upper Limit			ESTIMATED GENERATION	Nuclide	ISOTOPIC COMPO Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celfulosics Rubber Plastics Solidified, Inorganic matrix Solldified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	125.7 31.4 0.0 0.0 5.7 119.1 76.2 0.0 0.0 28.6 131.0 37.0	0.0 0.0 0.0 5.7 119.1 76.2 0.0 0.0	157.1 157.1 0.0 0.0 5.7 119.1 76.2 0.0 0.0 28.6	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 LEPA CODE	0.0 m3 0.2 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.1 m3/yr 0.1 m3/yr ES APPLICABLE	Am241 Pu238 Pu239 Pu240 Pu241 Pu242	4.06E-01 Curie 1.88E-01 Curie 6.54E+00 Curie 1.45E+00 Curie 3.87E+01 Curie 8.44E-05 Curie	s/m3 s/m3 s/m3 s/m3

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL
WASTE STREAM MWIR ID WIPP ID RL-M013 Local ID RL-T8-013 MATRIX CODE SITE FINAL FORM IDC 074 Waste Matrix Code Group Combustible	STREAM NAME TRU Mixed Organic Debris/Contaminated w/Organics DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process, and support operations from Pacific Northwest Laboratories (through the 340 building loading facility) and the Plutonium Finishing Plant.
constituents are organics. NO MIGRATION VARIANCE PETITION ASSIGNMENT	rily of Organic debris. Some of the containers contain inorganic debris (metals) and soils. The hazardous TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel Waste X TSCA Asbestos Operations Waste X PCBs

RL-M013 CONTAINER: Type/Size:				iner Mati: steel . Vol/Ctnr: 0.2	08 m3 L	Liner Type: rigid iner Material: HDPE		Number S Number Pro	L L
TYPICAL WASTE DENSITI		INAL WASTE	FORM (kg/r	m3) <u>STORED</u> RATES		E-ESTIMATED GENERATION		ISOTOPIC C	OMPOSITI
Material Parameters	Average	Lower Limit	Upper Limit				Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	69.7	38.8	144.2		Projected	Final Form	Am241	4.15E-01	Curies/m
Aluminum-Based Metals/Alloys	17.4	0.0	144.2	End of 1992:	0.0	0,0 m3	Ce144	6.10E-03	Curies/m
Other Metals	0.0	0.0	0.0	End of 1993:	0.6	0.6 m3	Cs134	3.00E-03	Curies/m
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Cs137	3.68E-02	Curies/m
Cellulosics	11.7	1.1	19.2	1995:	0.0	0.0 m3/yr	Eu152	1.60E-01	Curies/m
Rubber	28.2	4.8	72.1	1996:	0.0	0.0 m3/yr	Eu154	3.04E-01	Curies/m
Plastics	81,5	7.2	177.9	1997:	0.0	0.0 m3/ry	Eu155	4.64E-02	Curies/m
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Pu238	3.37E-01	Curies/m
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.4	0.4 m3/yr	Pu239	6.07E+00	Curies/m
Soils	15.7	4.8	27.4	2000-2022.	0.4	0.4 1113/97	Pu240	1.36E+00	Curies/m
Packaging Materials, Steel	131.0		27.4	TYPICA	L EPA CODE	S APPLICABLE	Pu241	4.23E+01	Curies/m
Packaging Material, Plastic	37.0				D019		Pu242	7.87E-05	Curies/m
					F001		Ru106	1.20E-03	Curies/m
Comments					-		Sr90	6.70E-03	Curies/m
End of 92 volumes not compiled.					F002		Ta182	6,00E-04	Curies/m
				-	F003				
					F004				
					F005				

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M014 Local ID RL-TB-014 MATRIX CODE SITE FINAL FORM IDC 075	STREAM NAME TRU Mixed Leaded Gloves/Aprons with Mercury DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the fuel reprocessing plant (PUREX) and the Plutonium Finishing Plant.
Waste Matrix Code Group Site Matrix Description This waste stream consists prim debris (plastic, rubber, cellulosic	arily of leaded gloves/aprons. Some of the containers contain inorganic debris (metals, including mercury), organic s), and soils. TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

NAME RL		·	WAS	TE TYPE MTR	U HANDI	LING CH GEN	ERATOR S	RL RL
RL-M014 CONTAINER: Type/Size: TYPICAL WASTE DENSITE	55-gallon ES FOR F	INAL WASTE	Int.	n3) <u>STOREC</u>	 TRU WASTI	Liner Type: rigid iner Material: HDPE E-ESTIMATED GENERATION		Number Stored: Number Projected:ISOTOPIC COMPOSITION
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments End of 92 volumes not compiled.	Average 78.8 19.7 0.0 0.0 2.2 100.8 28.9 0.0 42.7 131.0 37.0	0.1 0.1 0.0 0.0 0.0 0.1 27.6 1.3 0.0 0.0 4.2	936.6 336.6 0.0 0.0 19.2 211.2 74.1 0.0 0.0 134.5	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.0 4.6 0.1 0.1 0.2 0.1 0.3	0.0 m3 4.6 m3 0.1 m3/yr 0.1 m3/yr 0.2 m3/yr 0.3 m3/yr 2.8 m3/yr	Nuclide Am241 Ce144 Pu238 Pu239 Pu240 Pu241 Pu242	Activity 6.41E-02 Curies/m3 6.10E-03 Curies/m3 1.87E-01 Curies/m3 6.41E+00 Curies/m3 1.44E+00 Curies/m3 3.84E+01 Curies/m3 8.30E-05 Curies/m3

SITE NAME RL			WAS1	TE TYPE MTRU HAN	NDLING CH	GENERATOR SI	TE RL, PNL
		5		TRU Mixed Leaded Glov This waste stream was g research, process and si reprocessing plant (PUR	generated from the upport operations	e cleanup and mainte from the Pacific Nor	enance activities of various thwest Laboratories, the fuel t.
	ription This waste s debris (plast	tream consists primarily (ic, rubber, cellulosics), ar	of leaded gloves nd soils.		ntainers contain	inorganic debris (met	als, without mercury), organic
PINAL WASTE FORM Defense TRU Was Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Was Operations Waste Residues Decon and Decommissio Environmental Restoratio From Treatment of Waste Maintenance	ning I	CA Asbestos PCBs Other N/A Unknown	X

	55-gallon			lainer Matt: stee) I, Vol/Ctnr: 0.2	08m3 L	Liner Type: rigid iner Material: HDPE		Number S Number Proj	
TYPICAL WASTE DENSITII Material Parameters ron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solidis	Average 118.9 29.7 0.0 0.0 9.6 77.2 55.9 0.0 0.0 14.4	NAL WASTE Lower Limit 0.0 0.0 0.0 0.0 1.5 3.6 0.0 0.0 2.2	FORM (kg/ Upper Limi 1048.3 1048.3 0.0 0.0 65.3 201.8 302.0 0.0 0.0 92.9	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.0 15.1 0.4 0.3 0.5 0.3 1.1 9.1	E ESTIMATED GENERATION Final Form 0.0 m3 15.1 m3 0.4 m3/yr 0.5 m3/yr 0.5 m3/yr 0.3 m3/ry 1.1 m3/yr 9.1 m3/yr	TYPICAL Nuclide Am241 Pu238 Pu239 Pu240 Pu241 Pu242 Ra226	Activity 6.48E-02 3.10E-01 1.01E+01 2.27E+00 6.06E+01 1.36E-04 1.64E-02	OMPOSITIO Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic Comments	131.0 37.0			<u></u>	D002	SAFFEIGABLE			
nd of 92 volumes not compiled.			·		D005				

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M016 Local ID RL-TB-016 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Combustible Site Matrix Description This waste stream consists	STREAM NAME TRU Mixed Leaded Gloves/Aprons Metals/Org w/o Merc DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the Plutonium Finishing Plant.
NO MIGRATION VARIANCE PETITION ASSIGNMENT	primarily of Leaded gloves/aprons. some of the containers contain inorganic debris (metals), organic debris (plastic, ills. The hazardous constituents are metals and organics. TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TR Suspect Mixe Unknown	Operations viusie X PCBs

TENAME RL			WAS	TE TYPE MTR	J HANDL	ING CH GEN	ERATOR S	ITE RL	
RL-M016 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	55-gallon		Int. '	13) STORED	 TRU WASTI	Liner Type: rigid iner Material: HDPE ESTIMATED GENERATION	TYPICAL Nuclide	Number S Number Proj ISOTOPIC C Activity	J—I
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	96.0 24.0 0.0 0.0 29.3 125.2 66.3 0.0	2.4 2.4 0.0 0.0 2.4 48.1 38.5 0.0	257.2 257.2 0.0 0.0 86.6 197.1 115.4 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 0.0 1.7 0.0 0.0 0.1 0.0 1.1 0.0 1.0	0.0 m3 m3 m3 m3 m3/yr	Am241 Pu238 Pu239 Pu240 Pu241 Pu242	1.32E+00 5.77E-01 1.03E+01 2.30E+00 7.84E+01 1.33E-04	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments End of 92 yolumes not compiled.	37.9 131.0 37.0	16.2	72.1	TYPICA	D007 D008 D019	ES APPLICABLE			

SITE NAME RL			WAST	TE TYPE MTRU HANDL	ING CH	GENERATOR SI	TE RL
WASTE STREAM MATRIX CODE SITE FINAL FORM I	MWIR ID WIPP ID RL-M017 Local ID RL-TB-01 DC 076			TRU Mixed Organic Labpace This waste stream was generate process and support operate	erated from the cl	eanup and mainte onium Finishing P	enance activities of various Plant,
Site Matrix Des		stream consists primarity	of organic labpa	cks. Some of the containers	contain inorganio	debris (metals), o	organic debris (plastic, cellulosics)
NO MIGRATION VA	RIANCE PETITION A	ASSIGNMENT		TRU	CON CODE		
Defense TRU V Non-Defense Ti Commercial TR Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X

RL-M017 - 1

RL - 33

Container Material Parameters Average Lower Limit Upper Limit Int. Vol. End of 1992; O.0 O.0 End of 1993; O.0 O.0 Ind. Vol. Ind. Vol

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M018 Local ID RL-TB-018 MATRIX CODE SITE FINAL FORM IDC 076 Waste Matrix Code Group Solidified Organics	STREAM NAME TRU Mixed Organic Labpacks (State Only) DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the Plutonium Finishing Plant.
Site Matrix Description This waste stream consists hazardous by state regulation state regulation to the state regulation of the state regulation was a state regulation of the state of th	primarily of Organic labpacks. Some of the containers contain organic debris (plastic, cellulosics). The waste is n. TRUCON CODE
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TR Commercial TRU Waste Suspect Mixed Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

000843

RL-M018 - 1

RL - 35

ENAME RL			WAS	TE TYPE MTRI	J HANDL	ING CH GEN	ERATOR S	RL RL
RL-M018 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	n3) STORED	TRU WASTE	Liner Type: rigid iner Material: HDPE - ESTIMATED GENERATION	TYPICAL Nuclide	Number Stored: Number Projected: LISOTOPIC COMPOSITION Activity
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 17.8 0.0 100.9 0.0 32.6 0.0 131.0	0.0 0.0 0.0 0.0 0.0 8.6 0.0 18.9 0.0 32.6	0.0 0.0 0.0 0.0 0.0 26.9 0.0 121.1 0.0 32.6	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 1.9 0.3 4.2 1.7 0.5 1.3 0.0 L EPA CODE	Final Form 0.0 m3 1.9 m3 0.3 m3/yr 4.2 m3/yr 1.7 m3/yr 0.5 m3/ry 1.3 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	1.99E-02 Curies/m3 6.83E-01 Curies/m3 1.53E-01 Curies/m3 4.09E+00 Curies/m3 8.93E-06 Curies/m3
Comments End of 92 volumes not compiled.		. n						

)) RL-I

RL-M018 - 2

RL - 36

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M019 Local ID RL-TB-019 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Lead/Cadmium Metal Waste	STREAM NAME TRU Mixed Elemental Hazardous Metals w/Merc. DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process and support operations from the Pacific Northwest Laboratories and the Plutonium Finishing Plant.
	arily of elemental hazardous metals. Some of the containers contain inorganic debris (metals, including mercury), elfulosics), and soils. TRUCON CODE
FINAL WASTE FORM DESCRIPTORS:	TROCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Research and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

085

RL-M019 • 1

RL - 37

ENAME RL		_	WAS	TE TYPE MTR	U HANDI	ING CH GEN	ERATOR S	ITE RL	
RL-M019 CONTAINER: Type/Size: TYPICAL WASTE DENSITI Material Parameters	55-gallon ES FOR F Average	Lower Limit	Int,	13) STOREC	08m3 Li	Liner Type: rigid ner Material: HDPE ESTIMATED GENERATION	<u>Nuclide</u>	Activity	ected: OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celtulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments End of 92 volumes not compiled.	0.0 0.0 55.6 0.0 14.8 64.1 39.7 0.0 0.0 24.4 131.0 37.0	0.0 0.0 0.1 0.0 0.1 30.2 1.2 0.0 0.0 10.5	0.0 0.0 182.3 0.0 54.8 123.8 86.7 0.0 0.0 49.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022: TYPICA	0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 m3 1.3 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu238 Pu239 Pu240 Pu241 Pu242	1.88E-01 2.09E-01 7.17E+00 1.61E+00 4.30E+01 9.38E-05	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
					D007 D008 D009				

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL, PNL
WASTE STREAM MWIR ID WIPP ID RL-M020 Local ID RL-TB-020 MATRIX CODE SITE FINAL FORM IDC 077 Waste Matrix Code Group Lead/Cadmium Metal Waste	TRU Mixed Elemental Haz. metals w/out Merc. DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process and support operations from the 222-S Analytical Laboratory, Pacific Northwest Laboratories, and the Plutonium Finishing Plant.
Site Matrix Description This waste stream consists prima organic debris (plastic, rubber, ce	arily of elemental hazardous metals. Some of the containers contain inorganic debris (metals without mercury), ellulosics), and solls. TRUCON CODE
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs

30085

RL-M020 - 1

RL - 39

Type/Size:	Container Matt: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE					Number Stored: Number Projected:			
TYPICAL WASTE DENSITIE Material Parameters	ES FOR FI	NAL WASTE	FORM (kg/i	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 340.4 0.0 9.2 30.3 21.2 0.0 0.0 23.2 131.0 37.0	0.0 0.0 2.2 0.0 0.1 11.2 5.8 0.0 0.0 7.2	0.0 940.4 0.0 67.3 121.8 43.3 0.0 0.0 77.0	End of 1992: End of 1993; 1994: 1995: 1996: 1997: 1998-2002; 2003-2022:	Projected 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0	0.0 m3 1.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Am241 Pu238 Pu239 Pu240 Pu241 Pu242	3.47E-01 2.52E-01 8.64E+00 1.94E+00 5.18E+01 1.13E-04	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

380085

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M021 Local ID RL-TB-021 MATRIX CODE SITE FINAL FORM IDC 073 Waste Matrix Code Group Uncategorized Metal	STREAM NAME TRU Mixed Inorganic Debris PCB's w/ Mercury DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the Plutonium Finishing Plant.
Site Matrix Description This waste stream consists primar constituents include PCB's and me	rily of Inorganic Debris. Some of the containers contain organic debris (plastic, cellulosics). The hazardous orders.
Pefense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs X

NAME RL		WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL						
RL-M021 CONTAINER: Type/Size: TYPICAL WASTE DENSITI			int.	n3) STORED	TRU WAST	Liner Type: bag iner Material: plastic E -ESTIMATEO	TYPICAL	Number Stored: Number Projected: ISOTOPIC COMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	175.9 44.0 0.0 0.0 3.3 0.0 15.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0 14.5 0.0	268.6 67.1 0.0 0.0 26.6 0.0 159.5 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 66.6 0.0 1.6 0.5 0.0 447.1	0.0 m3 66.6 m3 0.0 m3/yr 1.6 m3/yr 0.5 m3/yr 0.0 m3/ry 0.0 m3/ry 447.1 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	2.82E-02 Curies/m3 7.82E-01 Curies/m3 1.76E-01 Curies/m3 4.69E+00 Curies/m3 1.02E-05 Curies/m3	
Soils Packaging Materials, Steel	0.0 154.0	0.0	0.0	TYPICA	L EPA CODI	ES APPLICABLE			
Packaging Material, Plastic	1.2				D006				
Comments End of 92 volumes not compiled.					D008 D009				

いいのい

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

SITE NAME RL	WASTE TYPE MTRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M022 Local ID RL-T8-022 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Combustible	TRU Mixed Leaded Gloves/Aprons PCB's w/Mercury DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various process and support operations from the Plutonlum Finishing Plant.
	rily of leaded gloves/aprons. Some of the containers contain inorganic debris (metal), organic debris (plastic) and PCB's and mercury. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	X Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs X

RL-M022 - 1

RL - 43

RL-M022 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE Material Parameters Iron-based Metals/Alloys	S FOR FI		Int.	n3) STORED	 TRU WASTE	Liner Type: bag iner Material: platic E-ESTIMATED		Number S Number Proj	ecled:
		Lower Limit			OF WASTE	GENERATION	Nuclide	Activity	OMPOSITION
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments	229.2 57.3 0.0 0.0 0.0 39.0 0.0 0.0 0.0 154.0	0.0 0.0 0.0 0.0 0.0 0.0 39.0 0.0	286.4 286.4 0.0 0.0 0.0 0.0 0.0 39.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	9.00 9.00 9.00 9.00 9.00 9.00 9.00 21.2 1.2 1.2 1.2 1.2 1.2 1.2 1.	9.0 m3 9.0 m3/yr 9.1 m3/yr 9.0 m3/yr 9.0 m3/yr 9.0 m3/yr 9.0 m3/yr 9.0 m3/yr 121.2 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	3.86E-02 1.33E+00 2.98E-01 7.95E+00 1.73E-05	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

SITE NAME RL		,	WASTE TYPE MTRU	HANDLING CH	GENERATOR SITE	RL			
WASTE STREAM	MWIR ID WIPP ID RL-M023 Local ID RL-TB-023		TION This waste stream v	vas generated from the	cleanup and maintena				
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod	DC 074 e Group Combustible		process and suppor	process and support operations from the Plutonium Finishing Plant					
	This waste s	Aream consists primarily of Organic	c Debris contaminated with	TRUCON CODE					
PINAL WASTE FOR Defense TRU V Non-Defense T Commercial TR Unknown	Waste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of Maintenance	nissioning oration	CA Asbestos PCBs Other N/A Unknown	X			

000857

Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Li	DLING CH GENI	NERATOR SITE RL
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 0.0 0.0 0.0 Projected Aluminum-Based Metals/Alloys 0.0 0.0 0.0 End of 1992: 0.0 Other Metals 0.0 0.0 0.0 End of 1993: 0.4 Other Inorganic Materials 0.0 0.0 0.0 1994: 0.0 Cellulosics 13.1 13.1 13.1 1996: 0.0 Rubber 8.3 8.3 8.3 1996: 0.0 Plastics 64.3 64.3 64.3 1997: 0.0 Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 0.0 Soils 0.0 0.0 0.0 2003-2022: 0.3 Packaging Materials, Steel 131.0 131.0 131.0 131.0		Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION Nuclide Activity
Comments	0 0.0 m3 4 0.4 m3 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr 0 0.0 m3/yr	Pu238 8.10E-03 Curies/m3 Pu239 2.78E-01 Curies/m3 Pu240 6.24E-02 Curies/m3 Pu241 1.67E+00 Curies/m3 Pu242 3.64E-06 Curies/m3

SITE NAME RL			WAS	STE TYPE MTRU	HANDLING C	н с	SENERATOR S	ITE RL	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	MWIR ID WIPP ID RL-M024 Local ID RL-TB-02 DC 076 e Group Solidified Or	4		TRU Mixed Organ This waste stream process and support	n was generated fr	rom the cle	anup and maint nium Finishing	enance activities of var Plant	ious
Site Matrix Des		stream consists primarilly	of Organic Lat	opacks. Some of the	containers contai		debris (plastic, r	ubber, cellulosics), and	PCB's.
FINAL WASTE FOR Defense TRU W Non-Defense Tf Commercial TRI Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning storation	TSCA	Asbestos PCBs Other N/A Unknown	X	

11/10))

RL-M024 - 1

RL - 47

RL-M024 CONTAINER: Type/Size:				ner Mati: steel Voi/Ctnr: 0.20	8 m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITI						ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celfulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 6.9 0.4 12.8 0.0 0.0 0.9 131.0	0.0 0.0 0.0 0.0 1.0 0.4 3.6 0.0 0.0	0.0 0.0 0.0 0.0 24.0 0.4 58.2 0.0 0.9	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.0 2.3 0.4 5.2 2.1 0.6 1.6 0.0 L EPA CODE	Final Form 0.0 m3 2.3 m3 0.4 m3/yr 5.2 m3/yr 2.1 m3/yr 0.6 m3/ry 1.6 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242	6.65E-04 2.29E-02 5.13E-03 1.37E-01 2.99E-07	Curies/m3 Curies/m3 Curies/m3 Curies/m3

@#~86

SITE NAME RL			WAST	E TYPE MTRU HAM	NDLING CH	GENERATOR SIT	FE PNL, KERR MCGEE
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code		1	DESCRIPTION	TRU Mixed Heterogened This waste stream was of research, process and s Laboratories.	generated from the c	leanup and mainte	nance activities of various d the Pacific Northwest
	This waste	stream consists primari	ly of Heterogeneo	Dus Oebris. The waste is	hazardous by State	regulation.	
FINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	aste X IU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Was Operations Waste Residues Decon and Decommissio Environmental Restoration From Treatment of Wast Maintenance	oning on	A Asbestos PCBs Other N/A Unknown	X

									
RL-M031 CONTAINER: Type/Size:	55-gallon		Int. V	ner Matl: steel Vol/Ctnr: 0.20	J	Liner Type:rigid ner Material:HDPE		Number S Number Proj	jected:
TYPICAL WASTE DENSITII	S FOR F	INAL WASTE	FORM (kg/m	3) STORED		E-ESTIMATED GENERATION		ISOTOPIC C	OMPOSITIO
Material Parameters iron-based Metals/Alloys	Average 0.0	Lower Limit 0.0	Upper Limit		Projected	Final Form	Nuclide Pu238	<u>Activity</u> 6.07E-03	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3	Pu239 Pu240	3.17E-01 9.53E-02	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	0.0	0.0	0.0	End of 1993:	0.6	0.6 m3 0.0 m3/yr	Pu241	1.38E+00	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	3.01E-06	Curies/m3
Rubber Plastics	14.3	14.3	14.3	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix Soils	0.0	0.0	0.0	2003-2022: [0.4	0.4 m3/yr			
Packaging Materials, Steel	131.0	<u> </u>		TYPICAL	EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								

000864

RL-M031 - 2

RL - 50

SITE NAME RL			WAST	IE TYPE MTRU	HANDLING CH	GENERATOR S	SITE PNL
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod	MWIR ID WIPP ID RL-M032 Local ID RL-TB-03 DC 071 e Group Solidified In	2		This waste stream	nic Homogeneous S was generated from and support operation		tenance activities of various orthwest Laboratories.
	cription This waste constituents		ly of Inorganic Hon	nogeneous Solids (absorbents). Some		in organic and metal hazardous
FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	el. Waste X X X X X X X X X X X X X X X X X X X	TSCA Asbestos PCBs Other N/A Unknown	X

300865

NAME RL				WASTE TYPE MTRU HANDLING CH GENERATOR SITE PNL						
RL-M032 CONTAINER: Drum Type/Size: 55-gallon				iner Mati: steel Vol/Ctnr: 0.208	m3 L	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORED 1		E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES OF	WASTE	GENERATION	Nuclide	<u>Activity</u>		
Iron-based Metals/Alloys	0.0	0.0	0.0		rojected	Final Form	Am241	3.43E-04	Curies/m3	
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.0	0.0 m3	Cs134	3,00E-04	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3	Pu239	6.22E-06	Curies/m3	
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.2	0.2 m3/yr	Pu241	3.30E-01	Curies/m3	
Cellulosics	77.5	77.5	77.5	1995:	0.2	0.2 m3/yr	Sr90	1.12E-02	Curies/m3	
Rubber	0.0	0.0	0.0	1996:	0.3	0.3 m3/yr				
Plastics	0.0	0.0	0.0	1997:	0.2	0.2 m3/ry				
Solidified, Inorganic matrix	98.2	98.2	98.2	1998-2002:	0.7	0.7 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	1.4	1.4 m3/yr				
Soils	0.0	0.0	0.0	TVDICAL	EDA CODE	EC ARRIVEARI E				
Packaging Materials, Steel	131.0			ITPICAL		ES APPLICABLE				
Packaging Material, Plastic	37.0				D001					
Comments					D002					
End of 92 volumes not compiled.			<u> </u>	 1	D007					
and a ser teraphor has pointpiled.					F003					

SITE NAME RL	WASTE TYPE MTRU HANDLING RH GENERAT	OR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-M201 Local ID RL-TB-201 MATRIX CODE 5400 SITE FINAL FORM IDC 001	DESCRIPTION The waste stream consists of projected mixed TRU wast of the waste is a portion of the thermocouple assemblies other equipment that will be eventually removed from single-	, transfer pumps, mixing pumps, and
	ludes failed and obsolete equipment or material including tanks, pumps, agitators, ovens, heaters will contain wood, plastics, paper, rubber, and soils.	, hoods, jumpers, and accessories.
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Operations Waste Suspect Mixed TRU Unknown Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	×

SITE NAME RL

WASTE TYPE MTRU

HANDLING RH

Page RL-M201 - 2

RL-M201 CONTAINER: RH Canister Container Matt: Steel Liner Type: Number Stored: Type/Size: RH Canister int. Vol/Ctnr: 0.89 m3 Liner Material: Number Projected:

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION

Number Projected:

TYPICAL ISOTOPIC COMPOSITION

Curies/m3

Curies/m3

Curies/m3

Curies/m3

Curies/m3

Curies/m3

Activity

Nuclide

Pu239

Pu240

Sr90

Y90

Cs137

Ba137m

Material Parameters	<u>Average</u>	Lower Limit	<u>Upper Limit</u>
Iron-based Metals/Alloys	176.0	49.0	1052.0
Aluminum-Based Metals/Alloys	44.0	12.0	263.0
Other Metals	0.0	0.0	0.0
Other Inorganic Materials	0.0	0.0	0.0
Cellulosics	3.3	0.0	26.6
Rubber	0.0	0.0	0.0
Plastics	15.9	14.5	159.5
Solldified, Inorganic matrix	0.0	0.0	0.0
Solldified, Organic matrix	0.0	0.0	0.0
Soils	0.0	0.0	0.0
Packaging Materials, Steel	435.0		

<u> </u>			
	<u>Projected</u>	<u>Final Form</u>	
End of 1992:	0.0	0.0	m3
End of 1993:	0.0	0.0	m3
1994:	0.0	0.0	m3/yr
1995:	0,0	0.0	т3/ут
1996:	0.0	0.0	m3/yr
1997:	6.8	6.8	m3/ry
1998-2002:	4.0	4.0	m3/yr
2003-2022:	85.0	85.0	m3/yr

TYPICAL EPA CODES APPLICABLE

Comments

Packaging Material, Plastic

Activity for these radionuclides is unknown.

Footnotes

An additional 31,027 m3 of "suspect" mixed RH-TRU waste has been reported by Hanford in the data submittals. Sufficient information is currently unavailable on the processes that are anticipated to generate this waste to ascertain if this waste would be eligible for disposal in WIPP as RH-TRU. Additional information has been requested from Hanford to resolve this issue in Revision 2 of the WTWBIR.

0.0

000000

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE RL, PNL
WASTE STREAM MWIR ID WIPP ID RL-T025 Local ID RL-TB-025 MATRIX CODE SITE FINAL FORM IDC 073 Waste Matrix Code Group Uncategorized Metal	STREAM NAME Non-mixed TRU Inorganic Debris DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process and support operations from the Pacific Northwest Laboratories and the Plutonium Finishing Plant.
Site Matrix Description This waste stream consists pri	marily of Inorganic Debris. Some of the containers contain organic debris (plastic, rubber, cellulosics). TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed T Unknown Unknown	Rsearch and Devel. Waste X TSCA Asbestos X Operations Waste X PCBs

	•									
RL-T025 CONTAINER:	Conta	iner Mati: steel		Liner Type: bag	Number Stored:					
Type/Size:			Int.	Int. Vol/Ctnr: 1.9 m3 Liner Material:plastic				Number Projected:		
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/r			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO	
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>		
Iron-based Metals/Alloys	66.6	12.7	915.3		Projected _.	Final Form	Pu238	5.76E-02	Curies/m3	
Aluminum-Based Metals/Alloys	16.7	12.7	915.3	End of 1992:	0,0	0.0 m3	Pu239	9.39E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	33.5	33.5 m3	Pu240	2,45E-01	Curies/m3	
Other Inorganic Materials	0.0	0.0	0.0	1994:	5.7	5.7 m3/yr	Pu241	8.72E+00	Curies/m3	
Cellulosics	7.6	1.2	62.3	1995;	10.2	10.2 m3/yr	Pu242	5,00E-05	Curies/m3	
Rubber	0.7	0.7	0.7	1996:	23.8	23.8 m3/yr				
Plastics	21.4	5.3	206.1	1997:	6.2	6.2 m3/ry				
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	7.0	7.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	36.4	36.4 m3/yr				
Soils	0.0	0.0	0.0	TYRICA	LEDACODE	C ABBUCABUE				
Packaging Materials, Steel	154.0			ITPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	1.2									

SITE NAME RL			WAST	E TYPE TRU	HANDLING C	н с	ENERATOR S	ITE RL, PNL	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	Group Combustible	6	DESCRIPTION	Non-mixed TRU Or This waste stream v research, process a Plutonium Finishing	was generated i ind support ope Plant,	rations fron	n the Pacific No	enance activities rthwest Laborato	; of various ories and the
NO MIGRATION VAR	NANCE PETITION A	stream consists primarily	or Organic Debri	s. Some of the conta	TRUCON C		bris (metal).		
PINAL WASTE FORM Defense TRU Wa Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	x	Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of V Maintenance	issioning pration	TSCA	Asbestos PCBs Other N/A Unknown	X	

360871

RL-T026 - 1

RL - 57

RL-T026 CONTAINER: Type/Size:	aste Box	— <u>-</u> -	Container Matt: steel Liner Type: bag Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic			Number Stored: Number Projected:			
TYPICAL WASTE DENSITI						ESTIMATED GENERATION		ISOTOPIC COM	MPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit				Nuclide Am241	Activity 3.33E-02 C	>
Iron-based Metals/Alloys	47.5	45.8	689.1		<u>Projected</u>	Final Form	Pu238	·	Duries/m3 Duries/m3
Aluminum-Based Metals/Alloys Other Metals	11.9	0.0	689.1	End of 1992:	0.0	0.0 m3	Pu239		Curies/m3
_ · · · · · · · · · · · · · · · · · · ·	0.0	0.0	0.0	End of 1993:	116.1	116.1 m3	Pu240		Curies/m3
Other Inorganic Materials Cellulosics	0.0	0.0	0.0	1994:	19.7	19.7 m3/yr	Pu241		Curies/m3
	4.6	0.1	79.9	1995:	35,5	35.5 m3/yr	Pu242		
Rubber	2.3	0.1	106,5	1996:	82.7	82.7 m3/yr	FUZ4Z	1.07E-05 C	Curies/m3
Plastics	19.2	0.4	390.0	1997:	21.5	21.5 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	24.4	24.4 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	126.4	126.4 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	154.0		<u> </u>	IYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	1.2								

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE PNL
WASTE STREAM MWIR ID WIPP ID RL-T027 Local ID RL-TB-027 MATRIX CODE SITE FINAL FORM IDC 071 Waste Matrix Code Group Solidified Inorganics	STREAM NAME Non-mixed TRU Inorganic Homogeneous Solids DESCRIPTION This waste stream was generated from the cleanup and maintenance activities of various research, process and support operations from the Pacific Noirthwest Laboratories.
Site Matrix Description This waste stream consts prima	arily of inorganic homogeneous solids. Some of the containers contain organic debris (plastic, rubber, cellulosics).
NO MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS:	TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

RL-T027 CONTAINER: Type/Size:			ner Mati: steel Voi/Ctnr: 0.20)8 m3 LI	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED GENERATION	Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	27.0 6.8	4.8	153.9 153.9	End of 1992:	Projected 0.0	Final Form 0.0 m3	Am241 Co60	9.33E-02 1.00E-03	Curies/m3 Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	1.3	1.3 m3	Cs137 Pu238	5.00E-03 5.53E-02	Curies/m3 Curies/m3
Other Inorganic Materials Cellulosics	0.0 4.5	0.0	9.6	1994: 1995:	130,7	66.2 m3/yr 130.7 m3/yr	Pu239	1.04E+00	Curies/m3
Rubber	5.0	1.6	11.1	1996;	147.4	147.4 m3/yr	Pu240 Pu241	2.47E-01 5.36E+00	Curies/m3 Curies/m3
Plastics Solidified, Inorganic matrix	12.9 72.0	7.2 72.0	50.5 192.0	1997: 1998-2002:	72.2 65.0	72.2 m3/ry 65.0 m3/yr	Pu242	1.91E-05	Curies/m3
Solidified, Organic matrix Soils	0.0	0.0	0.0	2003-2022:	107.5	107.5 m3/yr	Ra226	3.17E-01	Curies/m3
Packaging Materials, Steel	0.0 131.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								

SITE NAME RL			WAST	TE TYPE TRU	HANDLING C	н с	SENERATOR S	RL, PNL	
WIP Loc MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Grou	•	8	DESCRIPTION	research, process Plutonium Finishin	n was generated fi and support oper ig Plant.	rations fron	n the Pacific No	tenance activities of vari orthwest Laboratories an	ious od the
Site Matrix Description		stream consts primarily o	of soils. Some of	the containers cont	tain organic debris		rubber, cellulos	ics).	
FINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	aste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning storation	TSCA	Asbestos PCBs Other N/A Unknown	X	

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT SITE NAME RL WASTE TYPE TRU HANDLING CH. GENERATOR

ENAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR SI	TE RL, PNL	
RL-T028 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.		J	Liner Type: rigid ner Material: HDPE		Number SI Number Proje ISOTOPIC CO	ected;
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	Nuclide Pu238	Activity 6.53E-03	Curies/m3
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	Projected 0.0	0.0 m3	Pu239 Pu240	2.24E-01 5.04E-02	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials Cellulosics	0.0	0.0	0.0	End of 1993: 1994: 1995:	0.6 0.7 67.1	0.6 m3 0.7 m3/yr	Pu241 Pu242	1.35E+00 2.93E-06	Curies/m3 Curies/m3
Rubber Plastics	1.6	1.6	1.6	1996: 1997:	18.0	67.1 m3/yr 18.0 m3/yr			
Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1998-2002;	36.7	0.2 m3/ry 36.7 m3/yr			
Soils Packaging Materials, Steel	431.0 131.0	98.6	0.0 603.4	2003-2022: TYPICA	0.1 L EPA CODE	0.1 m3/yr			
Packaging Material, Plastic	37.0								
Comments End of 92 volumes not compiled.									

00876

00087

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE RL, PNL
WASTE STREAM MWIR ID WIPP ID RL-T029 Local ID RL-T8-02 MATRIX CODE SITE FINAL FORM IDC 074 Waste Matrix Code Group Combustible	research, process and support operations from the Pacific Northwest Laboratories and the Plutonium Finishing Plant.
- L	stream consists primarily of Organic Debris. Some of the containers contain (norganic debris (metal) and soil.
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown Research and Devel, Waste X PCBs Other Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

RL-T029 CONTAINER:	Drum		Contai	ner Mati: steel		Liner Type: rigid		Number S	tored:
Type/Size: 55-gallon			int. '	Vol/Ctnr: 0.20	18 m3 Li	ner Material: HDPE	Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	17.2	0.9	519.7		Projected	Final Form	Am241	2.10E-01	Curies/m3
Aluminum-Based Metals/Alloys	4.3	0.9	519.7	End of 1992:	0.0	0.0 m3	Cm244	1.60E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	367.7	367.7 m3	Cs137	1.00E-04	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	62.7	62.7 m3/yr	Np237	7.12E-06	Curies/m3
Cellulosics	27.2	0.0	480.8	1995:	112.8	112.8 m3/yr	Pu23B	1.65E-01	Curies/m3
Rubber	11.2	0.0	139.5	1996:	262.6	262.6 m3/yr	Pu239	4.98E+00	Curies/m3
Plastics	28.2	1.8	456.1	1997:	68.2	68.2 m3/ry	Pu240	1.13E+00	Curies/m3
Solidified, inorganic matrix	0.0	0.0	0.0	1998-2002:	77.5	77.5 m3/yr	Pu241	3.11E+01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	401.5	401.5 m3/yr	Pu242	B.30E-05	Curies/m3
Soils	7.1	0.4	192.7		ا	(Th232	2.9BE-08	Curies/m3
Packaging Materials, Steel	131.0	لــــــــــا		TYPICA	L EPA CODE	S APPLICABLE	U234	8.20E-06	Curies/m3
Packaging Material, Plastic	37.0						U235	2.04E-06	Curies/m3

SITE NAME RL			WAST	TE TYPE TRU	HANDLING CH	GENERATOR S	ITE RL
WASTE STREAM	MWIR ID WIPP ID RL- Local ID RL-			Non-mixed Inorganic			enance activities of various
MATRIX CODE SITE FINAL FORM IC				process and support	t operations from	the Plutonium Finishing	Plant.
Waste Matrix Code Site Matrix Des			arily of Inorganic Deb	f vis. Some of the con	itainers contain o	rganic debris (plastic, cel	lulosics), soils, and PCB's.
NO MIGRATION VA		TION ASSIGNMENT			TRUCON CO	DDE	
Defense TRU V Non-Defense TI Commercial TR Unknown	Vaste RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	eu X	Rsearch and Devel. Operations Waste Residues Decom and Decomm Environmental Resto From Treatment of William	X Issioning pration	TSCA Asbestos PCBs Other N/A Unknown	X

000879

RL-T030 - 1

RL - 65

ENAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE RL	
RL-T030 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	Int.	Container Mati: steel Liner Type: rigid Int. Vot/Ctnr: 0.208 m3 Liner Material: HDPE DRM (kg/m3) STORED TRU WASTE ESTIMATED			Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION				
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	209.5	0.0	261.9		Projected	Final Form	Pu238	1.62E-04	Curies/m3
Aluminum-Based Metals/Alloys	52.4	0.0	261.9	End of 1992:		0.0 m3	Pu239	5.57E-03	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3	Pu240	1.25E-03	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.34E-02	Curies/m3
Cellulosics	23.8	23.8	23.8	1995:	0.0	0.0 m3/yr	Pu242	7.29E-08	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Plastics	52.4	52.4	52.4	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.1	0.1 m3/yr			
Soils	9.5	9.5	9.5						
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	ES APPLICABLE			
Packaging Material, Plastic	37.0								
Comments									
End of 92 volumes not compiled.									

00030

RL-T030 - 2

RL - 66

SITE NAME RL			WAST	E TYPE TRU HAND	LING CH	GENERATOR SI	TE RL
•	·			202 A Bidg TRU Waste This waste stream consists using the Plutonium/Uraniu	s of contact-handl um Solvent Extrac	ed TRU waste from lion Process.	n the Fuel Reprocessing Plant
Site Matrix Descr	Typically, 70 waste in dru and sectione combustible polyethylene boxes are al contain thes	to 80% of waste in drims is noncombustible and glove boxes, hoods, materials in boxes may bottles, gloves and rules used for disposal of a filters and other wast	ducting, conduit, is y include cotton rag bber. Absorbed cor high-efficlency par	ed machinery, tools, glass, (othes, pumps, piping, fans, I gs and clothing, plastic shee nbustible liquids such as oil	concrete, plumbin light fixture, instrui eting, plastic pipe, Is have also been	g and fixture and s mentation, tools, co tape, ladders, plex placed in some dr	Approximately 20 to 30 % of oil. Boxes typically contain whole onveyor sections, wire, etc. The iglass, step benches, ums and boxes. Drums and inticulate air filters, while others
NO MIGRATION VARI		SSIGNMENT		IR	UCON CODE		
Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	ste X I Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissionir Environmental Restoration From Treatment of Waste Maintenance	X X	Asbestos PCBs Other N/A Unknown	X

				TE TYPE TRU		ING CH GEN	ERATOR SI	TE INC		
RL-T101 CONTAINER: Standard Wuste Box Type/Size:				Container Matt: steel Liner Type: bag Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	13) STORED		ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	4.91E-02	Curies/m3	
Aluminum-Based Metals/Alloys	168,9	0.0	0.0	End of 1992:	140.0	140,0 m3	Pu239	1.93E+00	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	140.0	140.0 m3	Pu240	4.33E-01	Curies/m3	
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	4.87E+00	Curies/m3	
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.52E-05	Curies/m3	
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	2.20E-01	Curies/m3	
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.07E-02	Curies/m3	
Solidified, Inorganic matrix	4.4	0,0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.16E-02	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.07E-02	Curies/m3	
Soils	0.0	0.0	0.0	[· ·	Ba137m	1.10E-02	Curies/m3	
Packaging Materials, Steel	154.0		<u> </u>	TYPICA	L EPA CODE	S APPLICABLE	U-nat	1.88E-12	Curies/m3	
Packaging Material, Plastic	1.2									
Comments										

RL-T101 CONTAINER: Type/Size:	<u> </u>			iner Matt: steel Vol/Ctnr: 0.2	08 m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITI Material Parameters			•	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
	Average	Lower Limit	Upper Limit			· · · · · · · · · · · · · · · · · · ·	Pu238	3.61E-02	Curies/m3
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu239	1.42E+00	Curies/m3
Aluminum-Based Metals/Alloys Other Metals	87.0	0.0	0.0	End of 1992:	230.0	310.0 m3	Pu240	3.19E-01	Curies/m3
	0.0	0.0	0.0	End of 1993:	230.0	310.0 m3	Pu241	3.59E+00	Curies/m3
Other Inorganic Materials Cellulosics	43.0	0,0	0.0	1994:	0.0	0.0 m3/yr	Pu242	1.86E-05	Curies/m3
	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Am241	1.62E-01	Curies/m3 ·
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Sr90	7.90E-03	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs137	8.55E-03	
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	7.90E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		-	Curies/m3
Soils	18.0	[0.0]	0.0	Typic s			Ba137m	8.09E-03	Curies/m3
Packaging Materials, Steel	131.0			ITPICA	L EPA CODE	S APPLICABLE	U-nat	1.38E-12	Curies/m3
Packaging Material, Plastic	37.0								

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE RL
	ID RL-T102 ID RL-TB-102 5400	STREAM NAME 202-AL Bidg TRU Waste DESCRIPTION This waste stream consists of contact-handled TRU waste from the laboratory at the Fuel Reprocessing Plant.
	Typically, 70 to 80% of waste in a waste in drums is noncombustible and sectioned glove boxes, hood combustible materials in boxes in polyethylene bottles, gloves and	drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of e waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain whole is, ducting, conduit, lathes, pumps, piping, fans, light fixture, Instrumentation, tools, conveyor sections, wire, etc. The hay include cotton rags and clothing, plastic sheeting, plastic pipe, tape, ladders, plexiglass, step benches, rubber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and of high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others ste forms.
NO MIGRATION VARIANCE		TRUÇON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU te Non-Mixed TRU	Rsearch and Devel. Waste X Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

ENAME RL		WAS	WASTE TYPE TRU HANDLING CH GENERATOR SITE RL							
RL-T102 CONTAINER: Standard Waste Box Type/Size: TYPICAL WASTE DENSITIES FOR FINAL WASTE FO			Int.	Container Mati: steef Liner Type: bag Int. Vol/Ctnr: 1.9m3 Liner Material: plastic				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity		
Iron-based Metals/Alloys	706.7	0.0	0.0		<u>Projected</u>	Final Form	Pu238	8.50E-06	Curies/m3	
Aluminum-Based Metals/Alloys	168.9	0.0	0,0	End of 1992:	2.5	2.5 m3	Pu239	3.34E-04	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	2.5	2.5 m3	Pu240	7.50E-05	Curies/m3	
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	8.43E-04	Curies/m3	
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.37E-09	Curies/m3	
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	3.81E-05	Curies/m3	
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	4.60E-02	Curies/m3	
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	4.92E-02	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Y90	4.60E-02	Curies/m3	
Soils	0.0	0.0	0.0				Ba137m	4.65E-02	Curies/m3	
Packaging Materials, Steel	154.0			TYPICA	L EPA CODE	S APPLICABLE				
Packaging Material, Plastic	1.2									
Comments										
Upper and lower weights for final	waste form a	ire unknown.								

RL-T102 - 2

RL - 71

WASTE	TYPE	TRU
		I I

HANDLING CH

GENERATOR SITE RL

RL-T102	CONTAINER: Drum Type/Size: 55-gallon	Container Matt: steel Int. Vol/Ctnr: 0.208 m3	Liner Type: rigid	Number Stored: Number Projected:
TYPICAL WAS	STE DENSITIES FOR FINAL WASTE FOR	RM (kg/m3) STORED TRU W	ASTE ESTIMATED TO	YPICAL ISOTOPIC COMPOSITION

TYPICAL WAS TE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m
Material Parameters	Average	Lower Limit	Upper Limit
Iron-based Metals/Alloys	552.0	0.0	0.0
Aluminum-Based Metals/Alloys	87.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganic Materials	43.0	0.0	0.0
Cellulosics	105.0	0.0	0.0
Rubber	45.0	0.0	0.0
Plastics	107.0	0.0	0.0
Solidified, Inorganic matrix	15.0	0.0	0.0
Sofidified, Organic matrix	0.0	0.0	0.0
Soils	18.0	0.0	0.0

131.0

37.0

RATES	UF WASTE	GENERATION
	<u>Projected</u>	Final Form
End of 1992:	154.0	208.0 m3
End of 1993;	154.0	208.0 m3
1994:	0,0	0.0 m3/yr
1995:	0.0	0.0 m3/yr
1996:	0.0	0.0 m3/yr
1997:	0.0	0.0 m3/ry
1998-2002:	0.0	0.0 m3/yr
2003-2022;	0.0	0.0 m3/yr
TVDIO A		

TITIOAL	130 TOPIC C	OWEOSITION
<u>Nuclide</u>	<u>Activity</u>	
Pu238	4.90E-06	Curies/m3
Pu239	1.92E-04	Curies/m3
Pu240	4.32E-05	Curies/m3
Pu241	4.85E-04	Curies/m3
Pu242	2.53E-09	Curies/m3
Am241	2.19E-05	Curies/m3
Sr90	2.65E-02	Curies/m3
Cs137	2.83E-02	Curies/m3
Y90	2.65E-02	Curies/m3
Ba137m	2.68E-02	Curies/m3

TYPICAL EPA CODES APPLICABLE

Comments

Packaging Materials, Steef

Packaging Material, Plastic

Upper and lower weights for final waste form are unknown.

SITE NAME RL				WAST	E TYPE TRU HANDL	ING CH	GENERATOR SI	ITE RL	
WASTE STREAM MATRIX CODE	MWIR ID WIPP ID RL- Local ID RL- 420	TB-103			216-Z-9 Retrieved Soil This waste stream consists Trench. Soil is contaminate	of TRU waste (rom the retrieved co	ontaminated soil fr	am the 216-Z-9
SITE FINAL FORM ID	<u>oc</u>		·		THE TOTAL SOLITON CONTRACTOR	a by TKO liquid	waste.		
	cription Waste is a st	angalu 55-ga	allon grum. Vermicu	ith TRU solutior lite is a packing	ns. Soil is contained in a 0.3 praterial between the inner a	mm polyethyle and outer conta	ne bag within an inn iner.	ner container. The	outer container
PINAL WASTE FORM Defense TRU WASTE FORM Non-Defense TRU Commercial TRU Unknown	/aste RU Waste	X Mixe Non- Susp	ed TRU -Mixed TRU pect Mixed TRU nown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSC X	A Asbestos PCBs Other N/A Unknown	X	

RL-T103 - 1

RL - 73

ENAME RL			WAS	STE TYPE TRU	HANDI	ING CH GEN	ERATOR S	ITE RL	
RL-T103 CONTAINER:	` !			iner Matl: steel Vol/Ctnr: 0.20	08]m3 L	Liner Type: rigid iner Material: HDPE		Number S Number Proj	L
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r			E.ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu242	4.57E-04	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	73.5	99.2 m3	Am241	3.98E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	73.5	99.2 m3	Pu238	8.89E-01	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu239	3.49E+01	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu240	7.85E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu241	8.82E+01	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	324.0	162.0	324.0	Typic.	L ED 1 000	F0 4881 10 481 F			
Packaging Materials, Steel	131.0			TYPICA	L EPA COD	ES APPLICABLE			

RL-T103 - 2

Packaging Material, Plastic

285.0

RL - 74

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE RL
	RL-T104 RL-TB-104 DESCRIPTION This waste stream consists of TRU waste from the T Plant Fuel Reprocessing Plant.
	eterogeneous pically, 70 to 80% of waste in drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of easte in drums is noncombustible waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Absorbed combustible liquids ch as oils have also been placed in some drums. Drums are also used for disposal of high-efficiency particulate air filters.
NO MIGRATION VARIANCE FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	

RL-T104 - 1

RL - 75

RL-T104 CONTAINER:			 i	ner Matl: steel		Liner Type: rigid		Number 9	Stored:
Type/Size:	55-gallon		int.	Vol/Ctnr: 0.20)8[m3 L	iner Material: HDPE		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit		F WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	9.03E-05	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	3.7	5.0 m3	Pu239	3.55E-03	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	3.7	5.0 m3	Pu240	7.97E-04	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0		Pu241	8.95E-03	Curies/m3
Cellulosics	105.0	0.0		1995:		0.0 m3/yr	Pu242	4.64E-08	Curies/m3
Rubber	45.0	0.0	0.0		0.0	0.0 m3/yr	Am241	4.04E-04	Curies/m3
Plastics	107.0			1996:	0.0	0.0 m3/yr	Sr90	7.69E-05	Curies/m3
		0.0	0.0	1997;	0.0	0.0 m3/ry	Cs137	8.21E-05	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	7.69E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Ba137m	7.77E-05	Curies/m3
Soils	18.0	0.0	0.0	TYPICA	L EPA CODI	ES APPLICABLE	U-nat	1.96E-08	Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	131.0 37.0								

Upper and lower weights for final waste form are unknown.

SITE NAME RL				WAST	E TYPE TRU	HANDLING (СН С	ENERATOR	SITE RL	
MATRIX CODE SITE FINAL FORM IDE	<u>c</u>	L-TB-105 400			222-S TRU Waste This waste stream Laboratory		U waste fron	n the Chemical	Separation Areas	s Operations
Waste Matrix Code Site Matrix Desc	ription Typ was and com poly box	oically, 70 to ste in drum i sectioned nbustible m rethylene to es are also	o 80% of waste in s is noncombustib glove boxes, hood naterials in boxes r pottles, gloves and	drums is combustible ble waste, such as faild ds, ducting, conduit, la may include cotton rag rubber. Absorbed cotton I of high-efficiency paraste forms.	ed machinery, toots athes, pumps, pipln gs and clothing, pla: mbustible liquids su	i, glass, concrete g, fans, light fixt stic sheeting, pla ach as oils have	e, plumbing : ure, instrum: astic pipe, ta also been pl	and fixture and entation, tools, pe, ladders, pla aced in some a	I soil. Boxes typic conveyor section exiglass, step ber drums and boxes	cally contain whole is, wire, etc. The nches,
NO MIGRATION VAR			SIGNMENT			TRUCON	CODE			
PINAL WASTE FORM Defense TRU Was Non-Defense TRU Commercial TRU Unknown	aste U Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning toration	TSCA	Asbestos PCBs Other N/A Unknown	X	

RL-T105 - 1

RL - 77

RL-T105 CONTAINER: Type/Size:		ste box		ner Mall: steel Vol/Ctnr: 1	.9m3 Li	Number Stored: Number Projected:			
TYPICAL WASTE DENSITIE Material Parameters	S FOR FI	NAL WASTE	FORM (kg/m Upper Limit	STORED RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	706.7 168.9 0.0 39.4 11.4 0.3 24.2 4.4 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993; 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	22.1 22.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	22.1 m3 22.1 m3 22.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137 Y90 Ba137m U-dep	2.12E-03 8.31E-02 1.87E-02 2.10E-01 1.09E-06 9.47E-03 5.12E-03 5.12E-03 5.19E-03 2.30E-07	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

06083

RL-T105 CONTAINER:	Drum		Conta	iner Mati: steel	**	Liner Type: rigid		Number \$	Stored;
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.26	08 m3 Li	ner Material: HDPE		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORED		ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	1.56E-03	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	30.7	41.4 m3	Pu239	6.12E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	30.7	41.4 m3	Pu240	1,37E-02	Curies/m3
Other Inorganic Materials	43,0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.54E-01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	8,00E-07	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	6.97E-03	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	\$190	3.77E-03	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	· · · · · · · · · · · · · · · · · · ·	Cs137	4.04E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	3.77E-03	Curies/m3
Soils	18.0	0.0	0.0	2003-2022.	<u>0.0</u>	0.0 m3/yr	Ba137m	3.82E-03	Curies/m3
Packaging Materials, Steel	131.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-del	1.69E-07	Curies/m3
Packaging Material, Plastic	37.0						U-enr	6,07E-08	Curies/m3
rackaging Material, Plastic	37.0						U-nal	1.94E-09	Curies/m3

SITE NAME RL				WASI	E TYPETRU HANDLI	ис (сн] GE	NERATOR	SITE RL	
V L MATRIX CODE		RL-T106 RL-TB-106 6400			233-S TRU Waste This waste stream consists o	f TRU wa	ste from t	he REDOX I	Fuel Reprocessing	Facility,
SITE FINAL FORM IDC Waste Matrix Code G Site Matrix Descri	ption Typ	pically, 70 to ste in drums	80% of waste in di	· waste, such as faile	items such as wood, plastics ed machinery, tools, glass, co Drums are also used for dispos	ncrete, plu	ımbina ar	d fixture and	deal Absorbed co	20 to 30 % of ombustible liquids
NO MIGRATION VARIA			SIGNMENT		TRUC	ON COD	E			
Defense TRU Was Non-Defense TRU Commercial TRU V Unknown	Waste		Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	×	V	sbestos CBs Other WA Inknown	X	

300894

RL-T106 - 1

RL - 80

ENAME RL	·		WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	HTE RL	
RL-T106 CONTAINER Type/Size TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	3) STORED	TRU WASTE	Liner Type: rigid ner Material: HDPE ESTIMATED		Number S Number Pro	jected:
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
fron-based Metals/Alloys Aluminum-Based Metals/Alloys	552.0 87.0	0.0	0.0	End of 1992:	Projected 6.0	Final Form	Pu238 Pu239	1.20E-02 4.70E-01	Curies/m3 Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	6.0	8.1 m3	Pu240	1.06E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.19E+00	Curies/m3
Cellulosics Rubber	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	6.15E-06	Curies/m3
Plastics	45.0 107.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	5.36E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1997: 1998-2002:	0.0	0.0 m3/ry			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr 0.0 m3/yr			
Soils	18.0	0.0	0.0	TYPICA					
Packaging Materials, Steel Packaging Material, Plastic	131.0 37.0			LTPICA	L EPA CODE	S APPLICABLE			
Comments	<u> </u>								
Upper and lower weights for final	waste form a	re unknown.		_ -					

SITE NAME RL			WAS	TE TYPE TRU	HANDLING C	н (GENERATOR SI	TE RL	
MATRIX CODE SITE FINAL FORM II	MWIR ID WIPP ID RL-T10 Local ID RL-T8- 5400 DC			234-5Z TRU Wast		waste from	n the Plutonium I	Finishing Plant.	
Site Matrix Des	and section combustibe polyethyle boxes are contain the	70 to 80% of waste in dri frums is noncombustible bried glove boxes, hoods, ble materials in boxes ma the bottles, gloves and ru also used for disposal of ese filters and other wast	waste, such as fair , ducting, conduit, I iy include cotton ra ibber. Absorbed co f high-efficiency pa	led machinery, tools lathes, pumps, pipin gs and clothing, plas Imbustible liquids su	s, glass, concrete, g, fans, fight fixtur stic sheeting, plas uch as oils have a Several boxes cor	, plumbing re, instrum stic pipe, ta Iso been p ntain only I	and fixture and s entation, tools, c ipe, ladders, plex laced in some dr	ioil. Boxes typic onveyor sections riglass, step ben	ally contain whole s, wire, etc. The oches,
NO MIGRATION VA FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	M DESCRIPTORS Vaste X RU Waste		П	Rsearch and Devel Operations Waste Residues Decon and Decomi Environmental Res From Treatment of Maintenance	missioning storation	TSCA	Asbestos PCBs Other N/A Unknown	X	

コラコシント

RL-T107 - 1

RL - 82

. 2/28/95

RL-T107 CONTAINER: Type/Size:		Int.	Container Mati: steel Liner Type: bag Int, Vol/Cinr: 1.9 m3 Liner Material: plastic				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ORM (kg/m3) STORED TRU WASTE RATES OF WASTE Upper Limit				TYPICAL ISOTOPIC COMPOSITION Nuclide Activity				
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	706.7 168.9	0.0	0.0	F 1 44000	Projected	Final Form	Pu238 Pu239	5.43E-02 2.13E+00	Curies/m3 Curies/m3
Other Metals	0.0	0.0	0.0	End of 1992: End of 1993:	1690.0 1690.0	1690.0 m3 1690.0 m3	Pu240	4.79E-01	Curies/m3
Other Inorganic Materials Cellulosics	39.4 11.4	0.0	0.0	1994: 1995;	0.0	0.0 m3/yr 0.0 m3/yr	Pu241 Pu242	5.38E+00 2.79E-05	Curies/m3 Curies/m3
Rubber Plastics	0.3 24.2	0.0	0.0	1996;	0.0	0.0 m3/yr	Am241 Sr90	2.43E-01 1.37E-02	Curies/m3 Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1997: 1998-2002:	0.0	0.0 m3/ry 0.0 m3/yr	Cs137	1.49E-02	Curies/m3
Solidified, Organic matrix Solls	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90 Ba137m	1.37E-02 1.41E-02	Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	154.0 1.2	<u> </u>		TYPICA	L EPA CODE	S APPLICABLE	U-dep U-enr	2.07E-06 9.69E-07	Curies/m3 Curies/m3
Comments							U -nat	2.37E-08	Curies/m3

000897

RL-T107 - 2

RL - 83

- 4-1 L			Container Matt: stee! Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Stored:		
Type/Size:		Int.	Vol/Ctnr: 0.20	Number Projected:					
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters Average Lower Limit Up				RATES C	Nuclide	<u>Activity</u>			
Iron-based Metals/Alloys	552.0	0.0	0.01		Projected	Final Form	Pu238	4.04E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	1890.0	2560.0 m3	Pu239	1.59E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1890.0	2560.0 m3	Pu240	3.57E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	4.01E+00	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.08E-05	Curies/m3
Rubber · f	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.81E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr 90	1.02E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.11E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Y90	1.02E-02	Curies/m3
Soils	18.0	0.0	0.0	L.			Ba137m	1.05E-02	Curies/m3
Packaging Materials, Steel	131.0		<u></u>	TYPICAL	_ EPA CODE	S APPLICABLE	U-dep	1.54E-06	Curies/m3
Packaging Material, Plastic	37.0						U-enr	7.22E-07	Curies/m3

900898

SITE NAME RL				WAST	E TYPE TRU	HANDLING C	н с	ENERATOR S	SITE RL	
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	1-				Misc 200 West Are This waste stream miscellaneous sou	consists of TRU	waste fron nical Separa	n the 200 Area ations Area.	Waste Tank Farms and	d other
Waste Matrix Code Site Matrix Desc	cription Typ	pically, 70 t ste in drum	o 80% of waste in d	Irums is combustible ≥ waste, such as faile ed in some drums. C	ed machinery, tools	i, glass, concrete	. plumbina	and fixture and	s. Approximately 20 to I soil. Absorbed combu air fitters.	30 % of stible liquids
NO MIGRATION VAL			SIGNMENT			TRUCON	ODE			
PINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	aste RU Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	J X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning toration	TSCA	Asbestos PCBs Other N/A Unknown	X	

RL-T108 CONTAINER:		Contai	iner Matt: steel		Number Stored: Number Projected:				
Type/Size:		int.	Vol/Ctnr: 0.20	08 m3 LI					
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Lower Limit	Upper Limit	RATES (OF WASTE	Nuclide	Activity			
Iron-based Metals/Afloys	Average 552.0	0.0	0.0		Projected	Final Form	Pu238	4.98E-03	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	21.0	28.3 m3	Pu239	1.96E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	21.0	28.3 m3	Pu240	4.40E-02	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	4.94E-01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.56E-06	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	2.23E-02	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.86E-03	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.99E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.86E-03	Curies/m3
Soils	18.0	0.0	0.0			·	Ba137m	1.88E-03	Curies/m3
Packaging Materials, Steel	131.0	L.,		TYPICA	L EPA CODE	S APPLICABLE	U-nat	7.39E-08	Curies/m3
Packaging Material, Plastic	37.0								
Comments									

SITE NAME RL				WAST	E TYPE TRU HANDL	ING CH	GENERATOR S	ITE RL
MATRIX CODE SITE FINAL FORM ID	Local ID	RL-T109 RL-TB-109 5400		-	308 Bldg TRU Waste This waste stream consists	of TRU waste	from the Fuels Dev	elopment Laboratory.
	ription T w aa c p b	ypically, 70 raste in drun nd sectioned ombustible rollyethylene lockes are also ontain these	to 80% of waste in its is noncombustiful glove boxes, howarderials in boxes pottles, gloves and oused for disposalifters and other waste for the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of the specific transport of transpo	ore waste, such as falle ods, ducting, conduit, la may include cotton rag d rubber. Absorbed cor al of high-efficlency part	ed machinery, tools, glass, co othes, pumps, piping, fans, lig is and clothing, plastic sheet onbustible liquids such as oils	oncrete, plumbi ght fixture, instr i⊓g, plastic pipe : have also boo	ing and fixture and umentation, tools, o t tape, ladders, ple	. Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The xiglass, step benches, rums and boxes. Drums and articulate air filters, while others
PINAL WASTE FORI Defense TRU W Non-Defense TR Commercial TRU Unknown	M DESCR aste U Waste		Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU X C	TRU Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSO	CA Asbestos PCBs Other N/A Unknown	X

RL-T109 CONTAINER: Type/Size:		iste box		ner Matt: steel Vol/Ctnr: 1	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		13) STORED	 TRU WASTE	ner Material: plastic ESTIMATED GENERATION	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	,		<u>JEMEIOA MOM</u>	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	3.48E-03	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	6.5	6.5 m3	Pu239	1.37E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	6.5	6.5 m3	Pu240	3.07E-02	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.45E-01	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	1.79E-06	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1,56E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	3.94E-03	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	4.30E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	ļ	Y90	3.94E-03	Curies/m3
Soils	0.0	0.0	0.0	2003-2022.	0.0	0.0 m3/yr	Ba137m	4.06E-03	Curies/m3
Packaging Materials, Steel	154.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-dep	1.21E-02	Curies/m3
Packaging Material, Plastic							U-enr	3.11E-04	Curies/m3
ovicegnity (viaterial, Flastic	1.2						U-nat	3.76E-03	Curies/m3

				iner Mati: steel		Liner Type: rigid	·	Number S	Stored:
Type/Size: 5	55-gallon		Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Projected:		
TYPICAL WASTE DENSITIE	S FOR F	NAL WASTE	FORM (kg/r	n3) STORED		E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
ron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	2.57E-03	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	6.6	8.9 m3	Pu239	1.01E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	6,6	8.9 m3	Pu240	2.27E-02	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	2.55E-01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	1.32E-06	Curies/m3
Rubber	45.0	0.0	0.0	1996;	0.0	0.0 m3/yr	Am241	1.15E-02	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	2r90	2.91E-03	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	3.17E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	2.91E-03	Curies/m3
Soils	18.0	0.0	0.0				Ba137m	2.99E-03	Curies/m3
Packaging Materials, Steel	131.0	L		TYPICA	L EPA CODE	S APPLICABLE	U-dep	8.90E-03	Curies/m3
Packaging Material, Plastic	37.0						U-enr	2.29E-04	Curies/m3

RL-T109 - 3

RL - 89

SITE NAME RL		WAST	E TYPE TRU	HANDLING CH	GENERATOR S	SITE RL
	D RL-T110 D RL-TB-110 5400	DESCRIPTION	324 and 325 Bldg (This waste stream Engineering Labora	consists of contac	ct-handled TRU waste fro f 1.74E+1 m3 generated	om the Chemical Materials in 1984 is radioactive sources.
	Typically, 70 to 80% of waste in waste in drums is noncombusti and sectioned glove boxes, how combustible materials in boxes polyethylene bottles, gloves an boxes are also used for disposi	ble waste, such as faile ods, ducting, conduit, la may include cotton rag d rubber. Absorbed cor al of high-efficiency par vaste forms. The waste and resultant waste	ed machinery, tools, ithes, pumps, piping is and clothing, plas mbustible liquids su ticulate air fillers. S e consists of irradial	, glass, concrete, j g, fans, light fixture stic sheeting, plast ch as oils have als Several boxes cont ted fuel from R&D	plumbing and fixture and e, instrumentation, tools, tic pipe, tape, ladders, plo so been placed in some of tain only high-efficiency potentials.	drums and boxes. Drums and particulate air filters, while others are assemblies or pins of irradiated
NO MIGRATION VARIANCE	PETITION ASSIGNMENT			TRUCON CO	DDE	
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	RU X	Rsearch and Devel Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of MaIntenance	missioning toration	TSCA Asbestos PCBs Other N/A Unknown	X

000904

RL-T110 - 1

RL - 90

ENAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE RL							
RL-T110 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	int.	Container Matt: steet Liner Type: bag Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic RM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION			TYPICAL	Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION			
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	,0,,20		<u>GENERATION</u>	Nuclide	Activity	Carrie a land
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	8.64E-02	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992;	83.9	83.9 m3	Pu239	3.39E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	83.9	83,9 m3	Pu240	7.62E-01	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	8.57E+00	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.44E-05	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	3.87E-01	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	5.21E-01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	5.63E-01	Curies/m3
Solidifled, Organic matrix	0,0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	5.21E-01	Curies/m3
Soits	0.0	0.0	0.0	TVBIO E			Ba137m	5.33E-01	Curies/m3
Packaging Materials, Steel	154.0			TYPICA	L EPA CODE	ES APPLICABLE	U-dep	3.27E-03	Curies/m3
Packaging Material, Plastic	1.2						U-enr	1.02E-03	Curies/m3
Comments Upper and lower weights for final	waste form a	are unknown					U-nat	8.52E-04	Curies/m3

RL-T110 CONTAINER: Type/Size:	ļ			iner Mati: steel Vol/Ctnr: 0.20	08 m3 L		Number Stored: Number Projected:		
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m			E ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	6.47E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992;	236.0	319.0 m3	Pu239	2.54E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	236.0	319.0 m3	Pu240	5.71E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	6.42E+00	Curies/m3
Cellutosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	3.33E-05	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	2.90E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997;	0.0	0.0 m3/ry	Sr90	3.90E-01	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	4.22E-01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	3.90E-01	Curies/m3
Soils	18.0	0.0	0.0				Ba137m	3.99E-01	Curies/m3
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	ES APPLICABLE	U-dep	2.45E+03	Curies/m3
Packaging Material, Plastic	37.0						U-enr	7.66E-04	Curies/m3
• • •	37.0						U-enr U-nat	7.66E-04 6.39E-04	Curies Curies

SITE NAME RL			WAST	E TYPE TRU	HANDLING CH	Н	GENERATOR S	ITE RL	
Wil	PP ID RL-T111A al ID RL-TB-11 5400			325B and 327 Bld This waste stream from the Shielded Laboratory. A volu	n (RL-T111A and F Laboratory Annex	RL-T111B	idiochemistry Bu	ically remote-handlo ilding and Post Irra t-handled waste.	ed TRU waste diation Test
Waste Matrix Code Gro Site Matrix Descripti	on Typically, 70 % of waste i boxes typica conveyor se plexiglass, s and boxes.	ous I to 80% of waste prese In drums is noncombust Illy consists of whole an ctions, wire, etc. The c tep benches, polyethyle Drums and boxes are a	itule waste, such a nd sectioned glove ombustible materia ene bottles, gloves ilso used for dispo	s falled machinery, boxes, hoods, duc als in boxes may in and rubber. Absor sai of high-efficienc	, tools, glass, cond cting, conduit, lathe actude cotton rags abed combustible li	crete, plun es, pumps and cloth liquids suc	nbing and fixture i, piping, fans, lig ing, plastic shee thas alls bave a	and soil. The was tht fixture, instrumenting, plastic pipe, ta	te presently in ntation, tools, pe, ladders,
NO MIGRATION VARIAN	CE PETITION A		times and other w	rasie ioinis.	TRUCON C	ODE[
PINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU W Commercial TRU Wa Unknown	aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	x imissioning storation	TSCA	Asbestos PCBs Other N/A Unknown	×	

ENAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR SI	TE RL	
RL-T111A CONTAINER: Type/Size: TYPICAL WASTE DENSITI		Int,	L	9 m3 Li	Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITION				
Material Parameters	Average	Lower Limit	Upper Limit	RATES	F WASTE	GENERATION	Nuclide	Activity	0
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	706.7 168.9 0.0 39.4 11.4 0.3 24.2 4.4 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	10.6 10.6 0.0 0.0 0.0 0.0 0.0	10.6 m3 10.6 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137	3.94E+00 2.47E+01 1.23E+01 7.73E+02 3.52E-04 3.11E-07 1.37E+02 1.47E+02 1.37E+02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	0.0 154.0 1.2	0.0	0.0	<u>TYPICA</u>	L EPA CODE	ES APPLICABLE	Ba137m U-dep U-enr U-nat	1.39E+02 6.32E-03 1.02E-01 1.15E-04	Curies/m3 Curies/m3 Curies/m3

RL-T111A - 2

RL - 94

SITE NAME RL			WAST	E TYPETRU HANI	DLING RH	GENERATOR S	ITE RL
WII Loc MATRIX CODE SITE FINAL FORM IDC	PP ID RL-T1116 cal ID RL-T8-11 5400 001	18	_	from the Shielded Laborat	11A and RL-T1 ory Annex of the	e Radiochemistry Bu	cally remote-handled TRU waste ilding and Post Irradiation Test -handled waste (ref. RL-T111A).
	Typically, 70 % of waste i boxes typica conveyor se plexiglass, s and boxes. air filters, wh	0 to 80% of waste pre in drums is noncombu ally consists of whole actions, wire, etc. The step benches, polyeth Drums and boxes are alle others contain the	ustible waste, such a and sectioned glove combustible materi ylene bottles, gloves e also used for dispo	s failed machinery, tools, g boxes, hoods, ducting, co als in boxes may include co and rubber. Absorbed cor sal of high-efficiency partic vaste forms.	glass, concrete, nduit, lathes, pu otton rags and c mbustible liquids culate air filters	plumbing and fixture imps, piping, fans, lig clothing, plastic sheet s such as oils have al Several boxes conta	ober, rags. Approximately 20 to 3 and soil. The waste presently in ht fixture, instrumentation, tools, ing, plastic pipe, tape, ladders, so been placed in some drums tin only high-efficiency particulate
NO MIGRATION VARIAN FINAL WASTE FORM DI Defense TRU Waste Non-Defense TRU W Commercial TRU W Unknown	SCRIPTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed TRI Unknown	u X	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning	GCA Asbestos PCBs Other N/A Unknown	X

									
RL-T111B CONTAINER:	RH Caniste	r (for drum waste) Conta	iner Matl: Sleel		Liner Type:		Number S	Stored:
Type/Size:			lnt,	Vol/Ctnr: 0.0	39 m3 Li	iner Material:		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	1.83E+00	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992;	0.2	0.2 m3	Pu239	1.15E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	0.2	0.2 m3	Pu240	1.15E+01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.60E+02	Curies/m3
Cellulosics	105.0	0.0	0.0	1995;	0.0	0.0 m3/yr	Pu242	1.64E-04	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.45E-07	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0,0	0.0 m3/ry	Sr90	6.38E+01	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	6.82E+01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Y90	6.38E+01	Curies/m3
Soils	18.0	0.0	0.0				Ba137m	6.45E+01	Curies/m3
Packaging Materials, Steel	527.0	L—.—	L	TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.94E-03	Curies/m3
Packaging Material, Plastic	26.0						U-enr	4.76E-02	Curies/m3
Comments							U-nat	5.35E-05	Curies/m3

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE RL
	ID RL-T112 ID RL-TB-112 5400	STREAM NAME 340 Bldg Oper and R&D TRU Waste DESCRIPTION This waste stream consists of TRU waste from the Retention and Neutralization Facility.
	Typically, 70 to 80% of waste in dru waste in drums is noncombustible and sectioned glove boxes, hoods, combustible materials in boxes may polyethylene bottles, gloves and rul	ums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain whole ducting, conduit, lathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. The y include cotton rags and clothing, plastic sheeting, plastic pipe, tape, ladders, plexiglass, step benches, bber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others e forms.
NO MIGRATION VARIANCE		TRUCON CODE
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU	Rearch and Devel. Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

RL-T112 CONTAINER: Type/Size:	Standard wa	ste box		ner Matl; steel Vol/Ctnr; 1	Number Stored: Number Projected:				
TYPICAL WASTE DENSITIE	FORM (kg/m	13) STORED	TYPICAL ISOTOPIC COMPOSITION Nuclide Activity						
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	706.7 168.9 0.0 39.4 11.4 0.3 24.2 4.4 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	51.5 0.0 0.0 0.0 0.0 0.0 0.0	51.5 m3 51.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137 Y90 Ba137m U-dep U-enr	4.74E-02 1.86E+00 4.18E-01 4.70E+00 2.44E-05 2.12E-01 1.21E-01 1.29E-01 1.21E-01 1.22E-02 5.57E-03 1.12E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

RL-T112 CONTAINER:	Drum		Contai	ner Matl: sleel		Liner Type: rigid		Number S	itored:
Type/Size:	55-gallon	7	Int.	Vol/Ctnr: 0.20	08 m3 Li	ner Material: HDPE		Number Proj	ected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	552.0	0.0	0.0	-	Projected	Final Form	Pu238	3.54E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	37.0	49.9 m3	Pu239	1.39E+00	Curies/m3
Other Metais	0.0	0.0	0.0	End of 1993:	37.0	49.9 m3	Pu240	3.13E-01	Curies/m
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.51E+00	Curies/m
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	1.82E-05	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0,0	0.0 m3/yr	Am241	1.59E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	9.02E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	9.64E-02	Curies/m3
Solidified, Organic matrix	0,0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	9,02E-02	Curies/m3
Soils	18.0	0.0	0.0				Ba137m	9.12E-02	Curies/m3
Packaging Materials, Steel	131,0	L		TYPICA	L EPA CODE	S APPLICABLE	U-dep	4.17E-03	Curies/m3
Packaging Material, Plastic	37.0						U-enr	8.35E-03 1.38E-04	Curies/m3

SITE NAME RL				WAST	E TYPE TRU	HANDLING C	Н	GENERATOR	SITE RL	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	<u>oc</u> [RL-TB-113 5400		DESCRIPTION	100 Areas and 200 This waste stream of Sources in the Read	consists of TRU	waste from	n the Biologica ion Areas.	al Laboratory and	other R&D
	cription Type wa and cor pol box	pically, 70 t ste in drum d sectioned mbustible m yethylene t kes are also	o 80% of waste in o s is noncombustible glove boxes, hood laterials in boxes in pottles, gloves and	drums is combustible le waste, such as faile is, ducting, conduit, la nich include cotton rag rubber. Absorbed cor of high-efficiency par iste forms.	ed machinery, tools, thes, pumps, piping is and clothing, plast nbustible tiquids suc	glass, concrete, , fans, light fixtui tlc sheeting, plas h as oils have a	, plumbing re, instrum stic pipe, ta	and fixture and entation, tools, ipe, ladders, pl	d soil. Boxes typ , conveyor section lexiglass, step b	pically contain whole ons, wire, etc. The enches,
NO MIGRATION VAI			SIGNMENT			TRUCON C	ODE			
Defense TRU W Non-Defense TF Commercial TRU Unknown	/aste RU Waste	×	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	X I	Rsearch and Devel, Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of V Maintenance	dissioning pration	TSCA	Asbestos PCBs Other N/A Unknown	X	·

RL-T113 CONTAINER: Type/Size:		iste box		ner Mati: steel Vol/Ctnr: 1	.9 m3 L	Liner Type: bag ner Material: plastic		Number S Number Pro	1
TYPICAL WASTE DENSIT! Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m Upper Limit			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	5.48E-04	Curies/m3
Aluminum-Based Metals/Alloys Other Metals	168.9	0.0	0.0	End of 1992:	12.8	12.8 m3	Pu239 Pu240	2.15E-02 4.84E-03	Curies/m3 Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	End of 1993: 1994;	12,8	12.8 m3 0.0 m3/yr	Pu241	5.44E-02	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.82E-07	Curies/m3
Rubber Plastics	0.3 24.2	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241 Sr90	2.45E-03 5.23E-04	Curies/m3 Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1997; 1998-2002;	0.0	0.0 m3/ry 0.0 m3/yr	Cs137	5.58E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	5.23E-04	Curies/m3
Soils Packaging Materials, Steel	0.0 154.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	Ba137m	5.28E-04	Curies/m3
Packaging Material, Plastic	1.2								

RL-T113 - 2

RL - 101

RL-T113 CONTAINER: Type/Size:	<u> </u>		Container Matl: s		Liner Type: rigid ner Material: HDPE		Number :	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		RED TRU WASTE		TYPICAL Nuclide	ISOTOPIC C	COMPOSITION
Iron-based Metals/Alloys	552.0	0.0	0.0	Projected	Final Form	Pu238	4.02E-04	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0 End of 19		18.2 m3	Pu239	1.58E-02	Curies/m3
Other Metals	0.0	0.0	0.0 End of 19	<u> </u>	18.2 m3	Pu240	3.55E-03	Curies/m3
Other Inorganic Materials	43.0	0.0	 	94: 0.0	0.0 m3/yr	Pu241	3.98E-02	Curies/m3
Cellulosics	105.0	0.0		95: 0.0	0.0 m3/yr	Pu242	2.07E-07	Curies/m3
Rubber	45.0	0.0		96: 0.0	0.0 m3/yr	Am241	1.80E-03	Curies/m3
Plastics	107.0	0.0		97: 0.0	0.0 m3/ry	Sr90	3.83E-04	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0 1998-20		0.0 m3/yr	Cs137	4.09E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0 2003-20	<u> </u>	0.0 m3/yr	Y90	3.83E-04	Curies/m3
Soils	18.0	0.0	0.0			Ba137m	3.87E-04	Curies/m3
Packaging Materials, Steel	131.0	L	<u>TYF</u>	ICAL EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0							

SITE NAME RL			WAST	E TYPETRU HANDL	ING CH	GENERATOR S	ITE RL
MATRIX CODE SITE FINAL FORM IDC	WIR ID VIPP ID RL-T114 ocal ID RL-TB-11 5400			209 E Bldg TRU Waste This waste stream consists	of TRU waste fro	m the Critical Ma	ss Laboratory.
Waste Matrix Code G Site Matrix Descrip	Ption Typically, 70 waste in dru and sectione combustible polyethylene boxes are al	o to 80% of waste in dri ms is noncombustible ad glove boxes, hoods, materials in boxes ma bottles, gloves and ru	waste, such as faile, ducting, conduit, la ly include cotton rag abber. Absorbed cor If high-efficiency par	ed machinery, tools, glass, co Alhes, pumps, piping, fans, lig Is and clothing, plastic sheeti Tibustible liquids such as oils	oncrete, plumbing tht fixture, instrum ing, plastic pipe, t have also been t	and fixture and s rentation, tools, c ape, ladders, ples placed in come di	Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The xiglass, step benches, rums and boxes. Drums and articulate air filters, while others
NO MIGRATION VARIA		SSIGNMENT		TRU	CON CODE		
Defense TRU Wast Non-Defense TRU Commercial TRU W Unknown	te X Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

100917

RL-T114 CONTAINER: Type/Size:		iste box		ner Mati: steel Vol/Ctnr: 1	.9m3 Li	Liner Type: bag ner Material: plastic		Number 5 Number Pro	ļ
TYPICAL WASTE DENSITI Material Parameters						ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
fron-based Metals/Alloys	<u>Average</u> 706.7	Lower Limit	Upper Limit		Projected	Final Form	Pu238	1.24E-01	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	1.7	1.7 m3	Pu239	4.86E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	1.7	1.7 m3	Pu240	9.93E+00	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	1.23E+01	Curies/m3
Cellulosics	11.4	0.0	0.0	1995;	0.0	0.0 m3/yr	Pu242	6.36E-05	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	5.54E-01	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	2.55E-02	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	2.78E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	2.55E-02	Curies/m3
Soils	0.0	0.0	0.0			· .	Ba137m	2.63E-02	Curies/m3
Packaging Materials, Steel	154.0		<u> </u>	TYPICA	L EPA CODE	S APPLICABLE	U-nat	4.46E-08	Curies/m3
Packaging Material, Plastic	1.2								

RL-T114 CONTAINER:	Drum		Contai	ner Mati: steel		Liner Type: rigid		Number 9	Stored:
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0,2	08 m3 Li	ner Material: HDPE		Number Pro	ected:
TYPICAL WASTE DENSITE	ES FOR F	INAL WASTE	FORM (kg/m			E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	_
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	9.44E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	13.4	18.1 m3	Pu239	3.71E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	13.4	18.1 m3	Pu240	8.33E-01	Curies/m3
Other Inorganic Materials	43.0	0,0	0.0	1994:	0.0	0.0 m3/yr	Pu241	9.36E+00	Curies/m3
Cellutosics	105,0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.85E-05	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4.23E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.94E-02	Curies/m3
Solidified, Inorganic matrix	15,0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr	Cs137	2.12E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.94E-02	Curies/m3
Soils	18.0	0.0	0.0			L	Ba137m	2.00E-02	Curies/m3
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE	U-nal	3.40E-08	Curies/m3
Packaging Material, Plastic	37.0								

300313

SITE NAME RL			WAST	E TYPE TRU	HANDLING CH	GE	NERATOR S	ITE RL
	P ID RL-T115			231-Z Bldg TRU Wa				
MATRIX CODE SITE FINAL FORM IDC	5400		DESCRIPTION	This waste stream c	ansists of TRU v	waste from i	he Materials E	Engineering Laboratory.
Waste Matrix Code Gro Site Matrix Description	Typically, 70 waste in drui and sectione combustible polyethylene boxes are al	to 80% of waste in drums is noncombustible vid glove boxes, hoods, materials in boxes may bottles, gloves and rule	vaste, such as faile ducting, conduit, la r include cotton rag bber. Absorbed col high-efficlency par	ed machinery, tools, g athes, pumps, piping, gs and ctothing, plast mbustible liquids suc	glass, concrete, , fans, light fixture tic sheeting, plas h as oils have al	plumbing au e, instrumer tic pipe, tap iso been pla	nd fixture and a ntation, tools, d e, ladders, ple ced in some d	s. Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The exiglass, step benches, drums and boxes. Drums and particulate air filters, while others
NO MIGRATION VARIAN		SSIGNMENT			TRUCON C	ODE		
Defense TRU Waste Non-Defense TRU W Commercial TRU Wa Unknown	aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of V Maintenance	nissioning oration		Asbestos PCBs Other N/A Unknown	X

000920

RL-T115 - 1

RL - 106

RL-T115 CONTAINER: Type/Size:	·	aste box	 -	ner Mati: steel Vol/Ctnr: 1	.9m3 L	Liner Type: bag		Number 8	
TYPICAL WASTE DENSITI	L————	INAL WASTE		-		ner Material:plastic		Number Pro	· —
Material Parameters					OF WASTE	GENERATION			OMPOSITIO
	Average	Lower Limit	Upper Limit				Nuclide Ducas	Activity	
Iron-based Metals/Alloys	706.7	0.0	0.0		<u>Projected</u>	Final Form	Pu238	1.38E-02	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	480.0	480.0 m3	Pu239	5.41E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	480.0	480.0 m3	Pu240	1.21E-01	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.37E+00	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	7.08E+06	Curies/m3
Rubber	0.3	0.0	0.0	1996;	0.0	0.0 m3/yr	Am241	6.17E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.09E-03	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.17E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0		Y90	1.09E-03	Curies/m3
Soils	0.0	0.0	0.0	2005-2022.	0,0	0.0 m3/yr	Ba137m	1.10E-03	Curies/m3
Packaging Materials, Steel	154.0	<u>~</u>		TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.13E-03	Curies/m3
Packaging Material, Plastic	1.2						U-enr	3.67E-06	Curies/m3
Comments							U-nat	1.09E-06	Curies/m3

560321

RL-T115 - 2

RL-T115 CONTAINER: Type/Size:				ner Mati: steel Vol/Ctnr: 0.208	3m3 Li	Liner Type: rigid iner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/m			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	171.0 171.0 0.0 0.0 0.0 0.0 0.0	230.0 m3 230.0 m3 230.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137 Y90 Ba137m U-dep	1.01E-02 3.96E-01 8.89E-02 1.00E+00 5.18E-06 4.51E-02 7.99E-04 8.53E-04 7.99E-04 8.07E-04 1.56E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

SITE NAME RL			WAST	E TYPE TRU	HANDLING CH	G	ENERATOR S	SITE RL	
WASTE STREAM MATRIX CODE SITE FINAL FORM I	MWIR ID WIPP ID RL-T116 Local ID RL-TB-1 5400 DC			303-C Bldg TRU W		waste from	the Material E	valuation Laboratory.	
	waste in dri and section combustible polyethylen boxes are a	O to 80% of waste in ums is noncombustibled glove boxes, hoode materials in boxes no e bottles, gloves and	le waste, such as falle ds, ducting, condult, la nay include cotton rag rubber. Absorbed cor l of high-efficiency par	ed machinery, tools, thes, pumps, piping is and clothing, plas nbustible tiquids suc	glass, concrete, g, fans, light fixture tic sheeting, plast ch as oils have alt	plumbing a e, instrume tic pipe, ta so been pl	and fixture and entation, tools, pe, ladders, ple aced in some o	s. Approximately 20 to 30 % of soil. Boxes typically contain we conveyor sections, wire, etc. exiglass, step benches, drums and boxes. Drums and particulate air filters, while other	whole The
NO MIGRATION VA		ASSIGNMENT	41		TRUCON CO	ODE			
Defense TRU V Non-Defense TI Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Devel. Operations Waste Residues Decon and Decomn Environmental Rest From Treatment of Maintenance	nissioning loration	TSCA	Asbestos PCBs Other N/A Unknown	×	

000923

RL-T116 CONTAINER:	<u> </u>	ste box		ner Matt: steel Vol/Ctnr: 1.	9m3 Li	Liner Type: bag		Number S Number Proj	
Type/Size: TYPICAL WASTE DENSITI	L		FORM (kg/n	n3) <u>STORED</u>	TRU WASTE	ESTIMATED GENERATION		ISOTOPIC C	١
Material Parameters	Average	Lower Limit	Upper Limit				Pu238	3.51E-01	Curies/m
Iron-based Metats/Alloys	706.7	0.0	0.0	ŕ	<u>Projected</u>	Final Form	Pu239	1.38E+01	Curies/m
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992;	1.8	1.8 m3	Pu240	3,10E+00	Curles/n
Other Metals	0.0	0.0	0.0	End of 1993:	1.8	1,8 m3	Pu241	3,48E+01	Curies/n
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu242	1.81E-04	Curies/n
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Am241	1.57E+00	Curies/n
Rubber	0.3	0.0	0.0	1996:	0.0	0,0 m3/yr	Sr90	2.01E+00	Curies/r
Plastics	24.2	0.0	0.0	1997:	0,0	0.0 m3/ry	Cs137	2.14E+00	Curies/n
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	2.01E+00	Curies/r
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Ba137m	2.02E+00	Curies/r
Soils	0.0	0.0	0.0	TVDICA	I EDA CODI	ES APPLICABLE	U-enr	1,12E-02	Curies/r
Packaging Materials, Steel	154.0			TIFICA	L LFA CODI	LO AL / LIDABLE	O 0/1	,,	
Packaging Material, Plastic	1.2								

RL-T116-2

RL - 110

RL-T116 CONTAINER: Type/Size:				ainer Mati: steel . Vol/Ctnr: 0.2	08 m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	2.60E-01	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	6.6	8.9 m3	Pu239	1.02E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	6.6	8.9 m3	Pu240	2.30E+00	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	2.58E+01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	1.34E-04	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.17E+00	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	\$r 9 0	1.49E+00	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.58E+00	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.49E+00	Curies/m3
Soil s	18.0	0.0	0.0			<u> </u>	Ba137m	1.50E+00	Curies/m3
Packaging Materials, Steet	131.0			TYPICA	L EPA CODE	S APPLICABLE	U-enr	8.33E-03	Curies/m3
Packaging Material, Plastic	37.0								

Upper and lower weights for final waste form are unknown.

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE RL
WASTE STREAM MWIR ID WIPP ID RL-T117 Local ID RL-TB-117 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME 318 Bldg TRU Waste DESCRIPTION This waste stream consists of TRU waste from the Radiological Calibration Laboratory.
Site Matrix Description Typically, 70 to waste in drums	o 80% of waste in drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of s is noncombustible waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Absorbed combustible soils have also been placed in some drums. Drums are also used for disposal of high-efficiency particulate air filters.
Non-Defense TRU Waste Commercial TRU Waste	Mixed TRU Research and Devel, Waste Non-Mixed TRU Operations Waste Residues Other Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance

100926

RL-T117 - 1

RL - 112

RL-T117 CONTAINER: Drum Type/Size: 55-gallon				Container Matt: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Stored: Number Projected:		
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/n	RATES O		ESTIMATED GENERATION	Nuclide	ISOTOPIC C	OMPOSITIO	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	552.0 87.0	0.0	0.0		Projected 0.1	Final Form 0.1 m3	Sr90 C s 137	8.27E-02 9.01E-02	Curies/m3 Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	0.1	0.1 m3	Y90 Ba137m	8.27E-02 8.53E-02	Curies/m3 Curies/m3	
Other Inorganic Materials Cellulosics	43.0 105.0	0.0	0.0	1994: 1995:	0.0 0.0	0.0 m3/yr 0.0 m3/yr	U-dep U-enr	6.06E-04 2.17E-04	Curies/m3 Curies/m3	
Rubber Plastics	45.0 107.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry	U-nat	6.94E-06	Curies/m	
Solidified, Inorganic matrix Solidified, Organic matrix	15.0	0.0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr				
Soils	18.0	0.0	0.0	L		ES APPLICABLE				
Packaging Materials, Steel Packaging Material, Plastic	131.0 37.0									

Waste stream has been identified as TRU waste but its isotopic composition is incomplete.

SITE NAME RL				WAST	TE TYPETRU H	HANDLING C	H_	GENERATOR S	SITE RL		
WASTE STREAM	MWIR ID	RL-T118		STREAM NAME	300 Area RD TRU W	√aste					
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod	<u>DC</u> e Group [-	RL-TB-118 5400 eterogeneou	US	DESCRIPTION This waste stream consists of contact-handled TRU waste from the Chemical Enging Building and Radiochemistry Building Laboratory and Hot Cells, and Radiochemistry Cesium Recovery, and Radioanalytic Laboratory. A volume of 3.19 m3 generated in radioactive sources, stored in trenches. e in drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to spill the waste county of filed as a filed as							
one many bes	a c p b c	nd sectioned or bustible in blyethylene is boxes are also ontain these el; and irrad	i glove boxes, hoods naterials in boxes m bottles, gloves and r o used for disposal o filters and other was	waste, such as fall s, ducting, conduit, is ay include cotton rag ubber. Absorbed cor of high-efficiency par ste forms. The waste and resultant waste	offems such as wood, ged machinery, tools, glathes, pumps, piping, figs and clothing, plastic mbustible liquids such ticulate air fitters. Seve consists of irradiated generated from irradia	plass, concrete, fans, light fixtur c sheeting, plas nas oils have a veral boxes cor d fuel from R&f	, plumbing re, instrum stic pipe, t Iso been p ntain only	and fixture and nentation, tools, ape, ladders, pla placed in some of high-efficiency p	soil. Boxes typic conveyor section exiglass, step ber drums and boxes particulate air filte	cally contain whole ns, wire, etc. The noches, . Drums and ers, while others	
NO MIGRATION VA			SIGNMENT			TRUCON C	ODE				
Defense TRU V Non-Defense T Commercial TR Unknown	Vaste RU Wa s te	X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	, X	Rsearch and Devel. W Operations Waste Residues Decon and Decommis Environmental Restors From Treatment of Wa Maintenance	Ssioning ation	TSCA	Asbestos PCBs Other N/A Unknown	X		

NAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE RL	
RL-T118 CONTAINER: Type/Size:		iner Mati: steel Vol/Ctnr: 1	Number Stored: Number Projected:						
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED		ESTIMATED			OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit		JF WASIE	GENERATION	<u>Nuclide</u>	<u>Activity</u>	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	1.29E-02	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	48.5	48,5 m3	Pu239	5.08E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	48.5	48.5 m3	Pu240	1.14E-01	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.28E+00	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	6.64E-06	Curies/m3
Rubber	0.3	0.0	0.0	1996;	0.0	0,0 m3/yr	Am241	5.78E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0,0 m3/ry	Sr90	3.43E-01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	3.59E-01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0,0	2003-2022:	0.0	0.0 m3/yr	Y90	3.43E-01	Curies/m3
Soils	0.0	0.0	0.0			<u> </u>	Ba137m	3,40E-01	Curies/m3
Packaging Materials, Steet	154,0		LJ	TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.67E-04	Curies/m3
Packaging Material, Plastic	1.2						U-enr	8.60E-04	Curies/m3
Comments Upper and lower weights for final		are unknown		 1			U-nat	1.59E-05	Curies/m3

360924

RL-T118 - 2

RL - 115

NAME RL			WA	STE TYPE TRU	HAND	LING CH GEN	ERATOR S	ITE RL		
RL-T118 CONTAINER: Type/Size:		Int	Container Matt: steet Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE					Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/			E ESTIMATED GENERATION		-	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	101720	WASIL	GENERATION	<u>Nuclide</u>	<u>Activity</u>		
Iron-based Metals/Alloys	552.0	0.0	0.0	-	Projected	Final Form	Pu238	9.67E-03	Curies/m3	
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992;	205.0	276.0 m3	Pu239	3.79E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	205.0	276.0 m3	Pu240	8.52E-02	Curies/m3	
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	9.60E-01	Curies/m3	
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.96E-06	Curies/m3	
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4.32E-02	Curies/m3	
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	2.56E-01	Curies/m3	
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	2.68E-01	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0		Y90	2.56E-01	Curies/m3	
Soils	18.0	0.0	0.0	2555-1011.	0.0	0.0 m3/yr	Ba137m	2.54E-01	Curies/m3	
Packaging Materials, Steel	131.0		<u></u> 0.0	TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.00E-04	Curies/m3	
Packaging Material, Plastic	37.0						U-enr	6.43E-04	Curies/m3	
Comments	37.0						U-nat	1.19E-05	Curies/m3	

Upper and lower weights for final waste form are unknown.

SITE NAME RL			WAS	TE TYPE TRU HANDL	ING CH	GENERATOR SI	TE RL
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code		9		300 Area RD TRU Waste (F This waste stream consists		n the Electron Ac	celerator.
	cription Boxes typic conveyor se plexiglass, s Boxes are a contain thes	ally contain whole and sec ections, wire, etc. The com- step benches, polyethylene iso used for disposal of high e fifters and other waste for	nbustible mater bottles, glove jh-efficiency pa	s and rubber. Absorbed comb articulate air filters. Several b	ion rags and cloth pustible liquids suc	ing, plastic sheeti th as oils have als	xture, instrumentation, lools, ing, plastic pipe, tape, ladders, so been placed in some boxes. articulate air filters, while others
PINAL WASTE FORM Defense TRU W Non-Defense TR Commercial TRU Unknown	aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

NAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ENERATOR SITE RL				
RL-T119 CONTAINER: Type/Size:	Standard wa	ste box		Container Mati: steel Liner Type: bag Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic				Number \$ Number Pro	l—		
TYPICAL WASTE DENSITIE	ES FOR F	NAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	OF WASTE	GENERATION	Nuclide	Activity			
fron-based Metals/Alloys	706,7	0.0	0.0		Projected	Final Form	Pu238	1.94E-04	Curies/m3		
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	0.8	0.8 m3	Pu239	7.63E-03	Curies/m3		
Other Metals	0.0	0.0	0.0	End of 1993:	0.8	0.8 m3	Pu240	1.71E-03	Curies/m3		
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.93E-02	Curies/m3		
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	9.99E-08	Curies/m3		
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	8.70E-04	Curies/m3		
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	U-dep	4.40E-02	Curies/m3		
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr					
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr					
Soils	0.0	0.0	0.0								
Packaging Materials, Steel	154.0			TYPICA	L EPA CODE	S APPLICABLE					
Packaging Material, Plastic	1.2										
Comments											

SITE NAME RL				WAST	E TYPE TRU	HANDLING CH	<u> </u>	ENERATOR S	SITE RL	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	<u>c</u>	RL-TB-120 5400			TRU Construction This waste stream		waste from	the construction	on activities.	
Site Matrix Desc	cription Ty wa an co po bo	pically, 70 to aste in drums d sectioned mbustible m lyethylene b xes are also ntain these t	o 80% of waste in a six noncombusting glove boxes, howaterials in boxes offles, gloves an used for dispositiers and other v	n drums is combustible waste, such as failible waste, such as failible ods, ducting, conduit, la may include cotton rag d rubber. Absorbed cot al of high-efficiency party waste forms.	ed machinery, tools athes, pumps, pipin gs and clothing, pla mbustible liquids su	s, glass, concrete, g, fans, light fixtur stic sheeting, plas ich as oils have al Several boxes cor	plumbing : e, instrume tic pipe, ta so been pl ntain only h	and fixture and entation, fools, o pe, ladders, ple aced in some o	soil. Boxes typicall conveyor sections, exiglass, step bench drums and boxes. D	y contain whole wire, etc. The nes, Drums and
NO MIGRATION VAN FINAL WASTE FORM Defense TRU W Non-Defense TR Commercial TRU Unknown	M DESCRII Aste RU Waste	PTORS:	SIGNMENT Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	RU	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	missioning storation	<u>-</u>	Asbestos PCBs Other N/A Unknown	X	

RL-T120 CONTAINER: Type/Size:		ner Matl: steel Vol/Ctnr: 1	.9m3 Li	Number Stored: Number Projected:					
TYPICAL WASTE DENSITII Material Parameters	ES FORF Average	INAL WASTE Lower Limit	FORM (kg/m Upper Limit			-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C Activity	OMPOSITIO
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238 Pu239	8.75E-03	Curies/m3
Aluminum-Based Metals/Alloys Other Metals	168.9	0.0	0.0	End of 1992: End of 1993:	50.1 50.1	50.1 m3	Pu240	3.44E-01 7.72E-02	Curies/m3 Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241 Pu242	8.68E-01 4.50E-06	Curies/m3 Curies/m3
Cellulosics Rubber	0.3	0.0	0.0	1995: 1996:	0.0	0.0 m3/yr 0.0 m3/yr	Am241	3.92E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90 Cs137	1.12E-02 1.19E-02	Curies/m3
Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr	Y90	1.19E-02 1.12E-02	Curies/m3 Curies/m3
Soils	0.0	0.0	0.0			S APPLICABLE	Ba137m	1.13E-03	Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	154.0 1.2			111104	L EFA CODE	3 AFFLICABLE			

RL-T120 - 2

RL - 120

RL-T120 CONTAINER: Type/Size:				Container Mati: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number S Number Proj	<u> </u>
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m Upper Limit			E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics	552.0 87.0 0.0 43.0 105.0 45.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997:	21.5 21.5 21.5 0.0 0.0 0.0	29.0 m3 29.0 m3 29.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137	6.48E-03 2.55E-01 5.72E-02 6.43E-01 3.33E-06 2.90E-02 8.28E-03 8.84E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	15.0 0.0 18.0 131.0 37.0	0.0 0.0 0.0	0.0 0.0 0.0	1998-2002: 2003-2022: <u>TYPICA</u>	0.0 0.0 L EPA CODE	0.0 m3/yr 0.0 m3/yr	Y90 Ba137m	8.28E-03 8.36E-03	Curies/m3 Curies/m3

SITE NAME RL			WAST	TE TYPE TRU HANDLING RH GENERATOR SITE R	iL.
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID WIPP ID RL-T121 Local ID RL-TB-12 5400		DESCRIPTION	105-KE Bldg TRU Waste This waste stream consists of remote-handled TRU waste from the o	operation of the Fuel
Waste Malrix Code Site Matrix Desc	cription Boxes typic conveyor s plexiglass, Boxes are	ally contain whole and se ections, wire, etc. The co step benches, polyethyler	mbustible materi ne bottles, gloves nigh-efficiency pa	xes, hoods, ducting, conduit, lathes, pumps, piping, fans, light fixture, als in boxes may include cotton rags and clothing, plastic sheeting, plastic sheeting, plastic sheeting, plastic sheeting, plastic sheeting, pland rubber. Absorbed combustible liquids such as oils have also ber	lastic pipe, tape, ladders, en placed in some boxes
NO MIGRATION VAI		ASSIGNMENT		TRUCON CODE	
Defense TRU W Non-Defense TF Commercial TRU Unknown	/aste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown	X

300936

RL-T121 - 1

RL - 122

ENAME RL			WAS	TE TYPE TRU	HANDL	ING RH GEN	ERATOR SI	TE RL	
RL-T121 CONTAINER: Type/Size: TYPICAL WASTE DENSITI		(for boxed wast	Int.	13) STORED	J TRU WASTE	Liner Type: ner Material: ESTIMATED		Number S Number Pro ISOTOPIC C	1
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	706,7	0.0	0.0		Projected	Final Form	Pu238	2.83E-03	Curies/m3
,		<u> </u>	0.0	End of 1992:			Pu239	1.11E-01	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0				25.2 m3	Pu240	2.50E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:		25.2 m3	Pu241	2.81E-01	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu242	1.46E-06	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Am241	1.27E-02	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Sr90	9.47E-03	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry		1.01E-02	
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137		Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	9.47E-03	Curies/m3
Soils	0.0	0.0	0.0				Ba137m	9.56E-03	Curies/m3
Packaging Materials, Steel	435,0		LJ	TYPICA	L EPA CODE	ES APPLICABLE			
Packaging Material, Plastic	0.0								
Comments									

Upper and lower weights for final waste form are unknown.

000337

RL-T121 - 2

RL - 123

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE RL
	D RL-T122 D RL-TB-122 5400	STREAM NAME 105-C and 105-N Bldg TRU Waste DESCRIPTION This waste stream consists of TRU waste from the operation of the Reactors.
	waste in drums is noncombustit and sectioned glove boxes, hoo combustible materials in boxes polyethylene bottles, gloves and	drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of le waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain whole items is such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain whole items, conduit, fathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. The may include cotton rags and clothing, plastic sheeting, plastic pipe, tape, fadders, plexiglass, step benches, rubber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and lof high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others aste forms.
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	TRUCON CODE
FINAL WASTE FORM DESC	RIPTORS:	
Defense TRU Waste Non-Defense TRU Wast Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU Suspect Mixed TI Unknown	Rearch and Devel, Waste X Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

RL-T122 CONTAINER: Standard waste box Type/Size:				iner Mati: steel Vol/Ctnr: 1	Number Stored: Number Projected:				
TYPICAL WASTE DENSITI	ES FOR FI	NAL WASTE	FORM (kg/n			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	1.01E-02	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992;	12.9	12,9 m3	Pu239	3.95E-01	Curies/m3
Other Metals	0,0	0.0	0.0	End of 1993:	12.9	12.9 m3	Pu240	8.88E-02	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	9.98E-01	Curies/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	5.17E-06	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4,51E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	7.83E-01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0		Cs137	8.36E-01	Curies/m3
Solidified, Organic matrix	0.0	0,0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	7,83E-01	Curies/m3
Soils	0.0	0.0	0.0	2003-2022.	0.0	0.0 m3/yr	Ba137m	7.91E-01	Curies/m3
Packaging Materials, Steel	154.0	<u> </u>	0,0	TYPICA	L EPA CODE	S APPLICABLE	U-enr	1,46E-01	Curies/m3
Packaging Material, Plastic	1.2								

RL-T122 CONTAINER: Type/Size:				ner Matt: steel Vol/Ctnr: 0.208	Number Stored: Number Projected:				
TYPICAL WASTE DENSITIE	S FOR F	NAL WASTE	FORM (kg/n			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0 0.0 18.0 131.0 37.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992; End of 1993; 1994; 1996; 1996; 1997; 1998-2002; 2003-2022;	0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137 Y90 Ba137m U-enr	6.22E-03 2.44E-01 5.48E-02 6.16E-01 3.20E-06 2.78E-02 4.83E-01 5.16E-01 4.83E-01 9.00E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3

SITE NAME RL	WAST	E TYPE TRU HANDLING CH	GENERATOR SITE AE
WASTE STREAM MWIR ID WIPP ID RL-Local ID RL-MATRIX CODE SITE FINAL FORM IDC	T123 TB-123 DESCRIPTION 0	Argonne Nat Lab Type 1 TRU Waste This waste stream consists of TRU wast	e from the Argonne National Laboratory.
waste	ally, 70 to 80% of waste in drums is combustible in drums is noncombustible waste, such as faile as oils have also been placed in some drums. D	d machinery, tools, glass, concrete, pluл	
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU X Non-Mixed TRU X C Suspect Mixed TRU Unknown	,	SCA Asbestos PCBs Other N/A X
	ı	From Treatment of Waste Maintenance	Unknown

0094

RL-T123 - 1

RL - 127

DI TANO SOUTANION	-		 1			Liner Type: rigid		
RL-T123 CONTAINER:				ner Mati: steei	Number Stored:			
Type/Size:	55-gation		Int. '	Vol/Ctnr: 0.20	Number Projected:			
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/m	3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION
Material Parameters				RATES	F WASTE	GENERATION	Nuclide	Activity
Iron-based Metals/Alloys	Average 552.0	Lower Limit 0.0	Upper Limit 0.0		Deele saad		Pu238	1.85E+00 Curies/m3
Aluminum-Based Metals/Alloys	87,0	0.0	0.0	End of 1992;	Projected 0.1	Final Form	Pu239	7.27E+01 Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.1	0.2 m3 0.2 m3	Pu240	1.63E+01 Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.84E+02 Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	9.52E-04 Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	8.29E+00 Curies/m3
Plastics	107,0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	18.0	0.0	0.0	TVD10 AI				
Packaging Materials, Steet	131.0	<u></u>		TYPICAL	LEPA CODE	S APPLICABLE		
Packaging Material, Plastic	37.0							

SITE NAME RL			WAS	TE TYPE TRU HA	NDLING CH	H GENER	ATOR SITE	E
	e Group Heterogene	D D	ESCRIPTION	Argonne Nat Lab Type N This waste stream con	sists of TRU	waste from the A		ŕ
Site Matrix Des	waste in dri	have also been placed in s	te, such as fai	iled machinery, tools, gla:	ss, concrete, disposal of h	plumbing and fix igh-efficiency par	ture and soil At	hsorbed combustible liquide
FINAL WASTE FOR Defense TRU V Non-Defense TI Commercial TR Unknown	M DESCRIPTORS: Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Wa Operations Waste Residues Decon and Decommiss Environmental Restorat From Treatment of Was Maintenance	oning ion	TSCA Asbe PCBs Other N/A Unkn	; ,	X

00043

RL-T124 - 1

RL - 129

RL-T124 CONTAINER: Type/Size:	·		 -{	iner Mati: steel . Vol/Ctnr: 0.20	08 m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/i	RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
fron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 0.6 m3 0.0 m3/yr Pu238 Pu239 Pu240 Pu241 Pu242 Am241 U-enr U-nat	7.09E-02 2.78E+00 6.25E-01 7.03E+00 3.64E-05 3.17E-01 2.09E-02 6.04E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3	
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	18.0 131.0 37.0	0.0	0.0	TYPICA	L EPA CODE	ES APPLICABLE			

SITE NAME RL		WAST	E TYPE TRU HA	ANDLING CH	GENERATOR S	ITE AE
	ID RL-T125 ID RL-TB-125 5400		Argonne Nat Lab Type This waste stream con		e from the Argonne N	ational Laboratory.
Site Matrix Description	Typically, 70 to 80% of waste in waste in drums is noncombustible and sectioned glove boxes, hoo combustible materials in boxes polyethylene bottles, gloves and boxes are also used for disposa contain these filters and other w	ds, ducting, conduit, la may include cotton rag I rubber. Absorbed con I of high-efficiency part	ed machinery, toois, gla: ithes, pumps, plping, fai is and clothing, plastic s inbustible figuids such a	ss, concrete, plun ns, light fixture, in: sheeting, plastic p is oils have also b ral boxes contain	nbing and fixture and s strumentation, tools, c ipe, tape, ladders, ple) een placed in some dr only high-efficiency pa	soil. Boxes typically contain whole onveyor sections, wire, etc. The kiglass, step benches,
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU Non-Mixed TRU	X 0 F C C C C C C C C C C C C C C C C C C	Rsearch and Devel, Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Wast Maintenance	ioning ion	SCA Asbestos PCBs Other N/A Unknown	×

RL-T125 - 1

RL - 131

	CONTAINER: Standard waste box			Container Matt: steel Liner Type: bag				Number Stored:		
Type/Size:			int	. Vol/Ctnr: 1	.9 m3 Li	iner Material: plastic		Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/			E-ESTIMATED	TYPICAL	ISOTOPIC COMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limi		OF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	706.7	0.0	0.0	2	Projected	Final Form	Sr90	2.57E+02 Curies/m3		
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	6.9	6.9 m3	Cs137	2.80E+02 Curies/m3		
Other Metals	0.0	0.0	0.0	End of 1993:	6.9	6.9 m3	Y90	2.57E+02 Curies/m3		
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Ba137m	2.65E+02 Curies/m3		
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr				
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils '	0.0	0.0	0.0	TYPICA	1 EDA CODE	ES APPLICABLE				
Packaging Materials, Steel	154.0			ITPICA	L EPA COUL	S APPLICABLE				
Packaging Material, Plastic	1.2									
Comments										

ENAME RL			WAS	TE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE AE	
RL-T125 CONTAINER: Type/Size:	55-gallon		Int.	Container Mati: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE RM (kg/m3) STORED TRU WASTE ESTIMATED			Number Stored: Number Projected:		
TYPICAL WASTE DENSITI Material Parameters	Average	Lower Limit	Upper Limit			GENERATION	<u>Nuclide</u>	ISOTOPIC COMPOSITE Activity	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials	552.0 87.0 0.0 43.0	0.0 0.0 0.0	0.0 0.0 0.0	End of 1992: End of 1993: 1994:	Projected 4.4 4.4 0.0	5.9 m3 5.9 m3 0.0 m3/yr	Sr90 Cs137 Y90 Ba137m	1.91E+02 Curies/m3 2.09E+02 Curies/m3 1.91E+02 Curies/m3 1.98E+02 Curies/m3	3 3
Cellulosics Rubber	105.0 45.0	0.0	0.0	1995: 1996:	0.0	0.0 m3/yr 0.0 m3/yr			
Plastics Solidified, Inorganic matrix Solidified, Organic matrix	107.0 15.0 0.0	0.0	0.0	1997: 1998-2002: 2003-2022:	0.0 0.0 0.0	0.0 m3/ry 0.0 m3/yr 0.0 m3/yr			
Soils Packaging Materials, Steel Packaging Material, Plastic	18.0 131.0 37.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE			
Convents Upper and lower weights for final		ire unknown)					

Upper and lower weights for final waste form are unknown.

Waste stream has been identified as TRU waste but its isotopic composition is incomplete.

SITE NAME RL	WA:	STE TYPE TRU HANDLING RH GENERATOR SITE RL	
	ID RL-T126 ID RL-TB-126 5400	ME 300 Area R&D High Activity TRU Waste This waste stream consists of TRU waste from the Chemical Engineering Building Laboratory and Hot Cells.	y
Site Matrix Description	Typically, 70 to 80% of waste in drums is combustible waste, such as fa and sectioned glove boxes, hoods, ducting, conduit combustible materials in boxes may include cotton polyethylene bottles, gloves and rubber. Absorbed boxes are also used for disposal of high-efficiency promises the section of the sec	ble items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain with, lathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. The rags and clothing, plastic sheeting, plastic pipe, tape, tadders, plexiglass, step benches, combustible liquids such as oils have also been placed in some drums and boxes. Drums and particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others.	hole he
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU Re Non-Mixed TRU X	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	

00948

RL-T126 - 1

RL - 134

RL-T126 CONTAINER: Type/Size:		(for boxed was	—-	ainer Mati: Steel . Vol/Ctnr: 0.0	39 m3 Li	Liner Type: ner Material:		Number S Number Proj	
TYPICAL WASTE DENSITI				RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Material Parameters Iron-based Metals/Alloys	706.7	Lower Limit 0.0	Upper Limit	-	Projected	Final Form	Pu238	5.59E-03	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992;	2.5	2.5 m3	Pu239	2,20E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	2.5	2.5 m3	Pu240	4.94E-02	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	5.55E-01	Curies/m3
Cellulosics	11.4	0.0	0.0	1995;	0.0	0.0 m3/yr	Pu242	2.88E-06	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	2.51E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0,0 m3/ry	\$r90	1.78E+03	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1,90E+03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.78E+03	Curies/m3
Soils	0.0	0.0	0.0			·	Ba137m	1,80E+03	Curies/m3
Packaging Materials, Steel	435.0	·	L	TYPICA	<u>L EPA CODE</u>	S APPLICABLE	U-enr	1.02E-02	Curies/m3
Packaging Material, Plastic	0.0								

RL-T126 CONTAINER: Type/Size:	<u> </u>	r (for drums)		Container Matt: Steel Liner Type:				Number Stored: Number Projected:		
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO	
Iron-based Metals/Alloys	552.0	0.0	0.0	Pr	ojected	Final Form	Pu238	4.14E-03	Curies/m3	
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	1.8	2.4 m3	Pu239	1.63E-01	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	1.B	2.4 m3	Pu240	3.66E-02	Curies/m3	
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	4.11E-01	Curies/m3	
Cellulosics	105.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu242	2.13E-06	Curies/m3	
	45.0	0.0	0.0	1996;	0.0	· · · · · · · · · · · · · · · · · · ·	Am241	1.86E-02	Curies/m3	
Rubber			0.0	1997:	0.0	0.0 m3/yr	Sr90	1.32E+03	Curies/m3	
Plastics	107.0	0.0		· · · · · · · · · · · · · · · · · · ·		0.0 m3/ry	Cs137	1.41E+03	Curies/m3	
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	1.32E+03	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Ba137m	1.33E+03	Curies/m3	
Soils Packaging Materials, Steel	18.0 527.0	0.0	0.0	TYPICAL I	EPA CODE	S APPLICABLE	U-enr	7,55E-03	Curies/m3	
Packaging Material, Plastic	26.0									

000350

RL-T126 - 3

RL - 136

SITE NAME RL				WAS	STE TYPE TRU	HANDLING (сн с	SENERATOR S	ITE BABCOCK WILC	OX
WASTE STREAM	MWIR ID WIPP ID	RL-T127			Babcock Wilcox 1					
MATRIX CODE SITE FINAL FORM I		RL-TB-127 5400		DESCRIPTIO	N This waste stream	n consists of TRI	U waste fror	n the Babcock V	Vilcox,	
Waste Matrix Code Site Matrix Des	scription Ty w ar co po bo	ypically, 70 aste in drur nd sectione ombustible obyethylene oxes are als	to 80% of waste in ns is noncombustit d glove boxes, hoo materials in boxes bottles, gloves and	ole waste, such as fa ids, ducting, conduit, may include cotton r f rubber. Absorbed c il of high-efficiency p	ailed machinery, tool: , lathes, pumps, pipir ags and clothing, pla combustible liquids s	ls, glass, concreting, fans, light fixt astic sheeting, pla auch as oils have	e, plumbing ure, instrum astic pipe, ta also been p	and fixture and dentation, tools, of the land of the l	Approximately 20 to soil. Boxes typically conveyor sections, wire xiglass, step benches, rums and boxes. Drur articulate air filters, wh	ontain whole e, etc. The ns and
NO MIGRATION VA	RIANCE P	ΕΤΙΤΙΟΝ Α	SSIGNMENT			TRUCON	CODE			
PINAL WASTE FOR Defense TRU V Non-Defense T. Commercial TR Unknown	Vaste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TI Unknown	RU X	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment o Maintenance	nmissioning storation	TSCA	Asbestos PCBs Other N/A Unknown	X	

Company of the second

RL-T127 CONTAINER:	Standard wa	este box	Contail	Container Matl: steel Liner Type: bag					Number Stored:		
Type/Size:			Int. V	Int. Vol/Ctnr: 1.9 m3 Liner Material: plastic				Number Projected:			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	3) STORED		ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	Nuclide	Activity			
ron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	1.07E-01	Curies/m3		
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	72.7	72.7 m3	Pu239	4.21E+00	Curies/m3		
Other Metals	0.0	0.0	0.0	End of 1993:	72.7	72.7 m3	Pu240	9.45E-01	Curies/m3		
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.06E+01	Curies/m3		
Differ inorganic Materials Cellulosics			0.0	1994:			Pu242	5.50E-05	Curies/m3		
Rubber	11.4	0.0	0.0	- 1	0.0	0.0 m3/yr	Am241	4.79E-01	Curies/m3		
	0.3	0.0	⊢ ——	1996:	0.0	0.0 m3/yr	Sr90	1.68E-03	Curies/m3		
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs137	1.71E-03	Curies/m3		
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	U-dep	7.22E-04	Curies/m3		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U-enr	1.99E-06	Curies/m3		
Soils	0.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-nat	6.71E-08	Curies/m3		
Packaging Materials, Steel	154.0			-	•		Y90	1.68E-03	Curies/m3		
Packaging Material, Plastic	1.2						Ba137m	1.62E-03	Curies/m3		

TE NAME RL			WASTE TY	PETRU HAND	LING CH GEN	NERATOR S	NERATOR SITE BABCOCK WILCOX		
RL-T127 CONTAINER: Type/Size:			Container Ma Int. Vol/Ctr		Liner Type: rigid Liner Material: HDPE		Number S Number Pro	ļ	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE		STORED TRU WAST		TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES OF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	552.0	0,0	0.0	Projected	Final Form	Pu238	7.93E-02	Curies/m3	
Aluminum-Based Metals/Alloys	87.0	0.0		of 1992: 119.0	,	Pu239	3.12E+00	Curies/m3	
Other Metals	0.0	0.0	⊢——-	of 1993: 119.0	\ <u> </u>	Pu240	7.00E-01	Curies/m3	
Other Inorganic Materials	43.0	0.0	0.0	1994: 0.0	l I————————————————————————————————————	Pu241	7.87E+00	Curies/m3	
Cellulosics	105.0	0.0	0.0	1995: 0.0	} 	Pu242	4.08E-05	Curies/m3	
Rubber	45.0	0.0	0.0	1996; 0.0		Am241	3.55E-01	Curies/m3	
Plastics	107.0	0.0	0.0	1997: 0.0		Sr90	1.25E-03	Curies/m3	
Solidified, Inorganic matrix	15.0	0.0		8-2002: 0.0	l	Cs137	1.27E-03	Curies/m3	
Solidified, Organic matrix	0.0	0.0		3-2022: 0.0	 	U-dep	5.35E-04	Curies/m3	
Soils	18.0	0.0	0.0	3-2022.	0.0 m3/yr	U-enr	1.48E-06	Curies/m3	
Packaging Materials, Steel	131.0	L0.0J	L,	TYPICAL EPA COD	ES APPLICABLE	U-nat	4.97E-08	Curies/m3	
Packaging Material, Plastic	37.0					Y90	1.25E-03	Curies/m3	
. ocnoging material, Flastic	37.0					Ba137m	1.20E-03	Curies/m3	
Comments									

000053

RL-T127 - 3

Upper and lower weights for final waste stream are unknown.

SITE NAME RL			WAST	E TYPETRU HAN	IDLING CH	GENERATOR SI	TE BARTLESVILLE
MATRIX CODE SITE FINAL FORM IDC	P ID RL-T128 al ID RL-T8-12 5400	8		Bartleville TRU Waste This waste stream consis	sts of TRU was	te from Bartlesville.	
Waste Matrix Code Gro Site Matrix Descripti NO MIGRATION VARIAN	Typically, 70 waste in dru liquids such	0 to 80% of waste in drum ims is noncombustible wa as oils have also been pl	isle, such as faile	ed machinery, tools, glass ums. Drums are also use	s, concrete, plur	mbing and fixture and s of high-efficiency particu	Approximately 20 to 30 % of soil. Absorbed combustible ulate air filters.
FINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU Wa Commercial TRU Wa Unknown	SCRIPTORS:	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. Was Operations Waste Residues Decon and Decommissio Environmental Restoratio From Treatment of Waste Maintenance	ining	FSCA Asbestos PCBs Other N/A Unknown	X

100054

RL-T128 - 1

RL - 140

RL-T128 CONTAINER:				ner Matt: steel		Liner Type: rigid		Number Stored:		
Type/Size:	55-gallon		Int.	Int. Vol/Clar: 0.208 m3 Liner Material:			E Number Projected:			
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m							
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Sr90	1.85E-03	Curies/m3	
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	0.3	0.4 m3	Cs137	1.98E-03	Curies/m3	
Other Metais	0.0	0.0	0.0	End of 1993:	0.3	0.4 m3	Y90	1.85E-03	Curies/m3	
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Ba137M	1.87E-03	Curies/m3	
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr				
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr				
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry				
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr				
Soils	18.0	0.0	0.0	T /100		· · · · · · · · · · · · · · · · · · ·				
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	ES APPLICABLE				
Packaging Material, Plastic	37.0									
Comments										

SITE NAME RL			WASI	E TYPE TRU	HANDLING	Сн	GENERATOR S	SITE BC
MATRIX CODE SITE FINAL FORM ID	MWIR ID WIPP ID RL-T129 Local ID RL-T8-12 5400 DC e Group Heterogene	29		Battelle Columbus This waste stream o			n Battelle Colum	mbus.
	cription Typically, 7/ waste in dru and section combustible polyethylend boxes are a	O to 80% of waste in drun ims is noncombustible wa ed glove boxes, hoods, d materials in boxes may e bottles, gloves and rubt	uste, such as faill lucling, conduit, is include cotton rag per, Absorbed con igh-efficiency par	eu machinery, toois, athes, pumps, piping, and clothing, plast mbustible liquids suc	glass, concre , fans, light fix tic sheeting, p th as oils bave	ite, plumbing iture, instrum plastic pipe, ta e also been n	and fixture and entation, tools, d ipe, ladders, ple	s. Approximately 20 to 30 % of i soil. Boxes typically contain whole conveyor sections, wire, etc. The exiglass, step benches, drums and boxes. Drums and particulate air filters, while others
NO MIGRATION VAI		ASSIGNMENT			TRUCON	CODE		
Defense TRU W Non-Defense TF Commercial TRU Unknown	Vaste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of W Maintenance	uissioning	TSCA	Asbestos PCBs Other N/A Unknown	X

				TYPETRU		ING CH GEN	ERATOR SI		
RL-T129 CONTAINER	Standard wa	ste box	Container	Mati: steef		Liner Type: bag		Number S	Stored:
Type/Size	:	•	Int. Vol	Number Projected:					
TYPICAL WASTE DENSITI						E-ESTIMATED GENERATION			OMPOSITION
Material Parameters	Average 706.7	Lower Limit	Upper Limit		.		Pu238	3.44E-02	Curies/m3
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	168.9	0.0	0.0		Projected	Final Form	Pu239	1.35E+00	Curies/m3
Other Metals	0.0	0.0		nd of 1992:	4.8	4.8 m3	Pu240	3.03E-01	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	nd of 1993:	4.8	4.8 m3	Pu241	3.41E+00	Curies/m3
Cellulosics	11.4	0.0	0.0	1994:	0,0	0.0 m3/yr	Pu242	1.77E-05	Curies/m3
Rubber	0.3	0.0	0.0	1995: 1996:	0.0	0.0 m3/yr	Am241	1.54E-01	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/yr	Sr90	1.31E-02	Curies/m3
Solidified, Inorganic matrix	4.4	0.0		1998-2002:	0.0	0.0 m3/ry	Cs137	1.40E-02	Curies/m3
Solldified, Organic matrix	0.0	0.0		2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr	U-enr	1.09E-03	Curies/m3
Soils	0.0	0.0	0.0	2003-2022.	0.0	0.0[113791	Y90	1.31E-02	Curies/m3
Packaging Materials, Steel	154.0	<u> </u>	0.0	TYPICA	L EPA CODE	S APPLICABLE	Ba137m	1.32E-02	Curies/m3
Packaging Material, Plastic	1.2								
Comments	_								
Upper and lower weights for final	waste form	are unknown.		7					

RL-T129 CONTAINER: Type/Size:				Container Matt: steel Liner Type: rigid Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE			Number Stored: Number Projected:		
TYPICAL WASTE DENSITI				13) STORED RATES C		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys	Average 552.0	Lower Limit	Upper Limit		One leade d	Etuate	Pu238	2.55E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	-	Projected	Final Form	Pu239	1.00E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1992;	3.9	5.3 m3	Pu240	2.25E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	<u> </u>	End of 1993:	3.9	5.3 m3	Pu241	2.53E+00	Curies/m3
Cellulosics	105.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu242	1.31E-05	Curies/m3
Rubber	45.0	0.0	 	1995:	0.0	0.0 m3/yr	Am241	1.14E-01	Curies/m3
Plastics	107.0	0.0	0.0	1996;	0.0	0.0 m3/yr	Sr90	9.68E-03	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs137	1.04E-02	Curies/m3
Solidified, Organic matrix	0.0		0.0	1998-2002:	0.0	0.0 m3/yr	U-enr	8.08E-04	Curies/m3
Soils	18.0	0.0	0.0	2003-2022: [0.0	0.0 m3/yr	Y90	9.68E-03	Curies/m3
Packaging Materials, Steel	131.0	0.0	0.0	TYPICAL	EPA CODE	S APPLICABLE	Ba137m	9.80E-03	Curies/m3
Packaging Material, Plastic	37.0								

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE BC	
	D RL-T130 D RL-TB-130	STREAM NAME Battelle Columbus Type II TRU Waste DESCRIPTION This waste stream consists of TRU waste from Battelle Columbus.	
MATRIX CODE SITE FINAL FORM IDC	5400	, and the second	
	Typically, 70 to 80% of waste in o waste in drums is noncombustible and sectioned glove boxes, hood combustible materials in boxes m polyethylene bottles, gloves and	drums is combustible Items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of e waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain vist, ducting, conduit, lathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. hay include cotton rags and clothing, plastic sheeting, plastic pipe, tape, ladders, plexiglass, step benches, rubber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and of high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while otherstee.	whole The
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	TRUCON CODE	
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	Rsearch and Devel, Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT SITE NAME RL WASTE TYPE TRU HANDLING CH GENERATOR SITE BC 0960CONTAINER: Standard waste box RL-T130 Container Matt: steel Liner Type: bag Number Stored: Int. Vol/Ctnr: Type/Size: 1.9 m3 Liner Material: plastic Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide Activity **Material Parameters** Lower Limit Average Upper Limit Pu238 1.46E-04 Curies/m3 706.7 fron-based Metals/Alloys 0.0 0.0 Projected Final Form Pu239 5.72E-03 Curies/m3 0.0 0.0 Aluminum-Based Metals/Alloys 168.9 End of 1992: 5.6 5.6 m3 Pu240 1.29E-03 Curies/m3 Other Metals 0.0 0.0 0.0 End of 1993: 5.6 5.6 m3 Pu241 1.44E-02 Curies/m3 Other Inorganic Materials 39.4 0.0 0.0 1994: 0.0 m3/yr 0.0 Pu242 7.49E-08 Curies/m3 Cellulosics 11.4 0.0 0.0 1996: 0.0 0.0 m3/yr Am241 6.52E-04 Curies/m3 Rubber 0.3 0.0 0.0 1996: 0.0 0.0 m3/yr U-enr 1.27E-05 Curies/m3 Plastics 24.2 0.0 0.0 1997: 0.0 0.0 m3/ry 4.4 0.0 0.0 Solidified, Inorganic matrix 1998-2002: 0.0 0.0 m3/yr 0.0 0.0 0.0 0.0 m3/yr Solidified, Organic matrix 2003-2022: 0.0 0.0 0.0 0.0 Soils TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 154.0

Comments

Packaging Material, Plastic

Upper and lower weights for final waste stream are unknown.

1.2

· · · · · · · · · · · · · · · · · · ·						*****				
RL-T130 CONTAINER:			Contai	Container Matt: steel Liner Type: rigid				Number Stored:		
Type/Size:	55-gallon		Int.	Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE				Number Projected:		
TYPICAL WASTE DENSITIE	S FOR F	INAL WASTE	FORM (kg/m	ORM (kg/m3) STORED TRU WASTE ESTIMATED				TYPICAL ISOTOPIC COMPOSITION		
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity		
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	1.08E-04	Curies/m3	
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	4.6	6.2 m3	Pu239	4.24E-03	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	4.6	6.2 m3	Pu240	9.52E-04	Curies/m3	
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	1.07E-02	Curies/m3	
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	5.55E-08	Curies/m3	
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4.83E-04	Curies/m3	
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U-enr	9.44E-06	Curies/m3	
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr				
Solidified, Organic matrix	0.0	0.0	0,0	2003-2022:	0.0	0.0 m3/yr				
Soils	18.0	0.0	0.0	TYDICA	L ERA CORE	S APPLICABLE				
Packaging Materials, Steel	131.0			TIPICA	LEPACODE	S APPLICABLE				
Packaging Material, Plastic	37.0									

000961

RL-T130 - 3

RL - 147

SITE NAME RL			WASTE	TYPETRU HANDLI	NG CH	GENERATOR SI	TE
	MWIR ID WIPP ID RL-T131	ST	REAM NAME	Energy Systems Group TRU	Waste		
MATRIX CODE SITE FINAL FORM IDE			ESCRIPTION	This waste stream consists o	of TRU waste fro	m the Energy Sys	stems Group
Waste Matrix Code Site Matrix Desci	ription Typically, 70 waste in drui	to 80% of waste in drums	le, such as faile		ncrete, plumbing	and fixture and s	Approximately 20 to 30 % of soil. Absorbed combustible liquids r filters.
NO MIGRATION VAR		SSIGNMENT		TRU	CON CODE		
Defense TRU Wa Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

00962

RL-T131 - 1

RL - 148

	<u></u>		· · · · · · · · · · · · · · · · · · ·	
RL-T131	CONTAINER: Drum	Container Matt: steel	Liner Type: rigid	Number Stored:
	Type/Size: 55-gallon	Int. Vol/Ctnr: 0.208 m3	Liner Material: HDPE	Number Projected:

TYPICAL WASTE DENSITI	LS TORT	INAL WASIE	PORM (Kg/II			ESTIMATED GENERATION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	•		
Iron-based Metals/Alloys	552,0	0.0	0.0		Projected	Final Form
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	26.1	35.2 m
Other Metais	0.0	0.0	0.0	End of 1993:	26.1	35.2 m
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 п
Cellulosics	105.0	0.0	0.0	1995;	0.0	0.0 п
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m
Solldified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 п
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 п
Soils .	18.0	0.0	0.0	TVDIO A		
Packaging Materials, Steel	131.0			TTPICA	L EPA CODE	S APPLICABL
Packaging Material, Plastic	37.0					
Comments						

<u>R</u>	ATES	OF WASTE	GENERATIO	N.
		Projected	Final Form	
End of	1992:	26.1	35.2	m3
End of	1993:	26.1	35.2	m3
	1994:	0.0	0.0	m3/yr
	1995;	0.0	0.0	m3/yr
	1996:	0.0	0.0	m3/yr
	1997:	0.0	0.0	m3/ry
1998	-2002:	0.0	0.0	m3/yr
2003	-2022:	0.0	0.0	m3/yr
			ــــــــــــــــــــــــــــــــــــــ	

TYPICAL I	SOTOPIC C	OMPOSITION
Nuclide	Activity	
Pu238	1.74E-02	Curies/m3
Pu239	6.83E-01	Curies/m3
Pu240	1.53E-01	Curies/m3
Pu241	1.72E+00	Curies/m3
Pu242	8.93E-06	Curies/m3
Am241	7.78E-02	Curies/m3
Sr90	3.25E-01	Curies/m3
Cs137	3.54E-01	Curies/m3
Y90	3.25E-01	Curies/m3
Ba137m	3.35E-01	Curies/m3
U-dep	2.24E-05	Curies/m3
U-enr	3.01E-04	Curies/m3
U-nat	2.36E-07	Curies/m3

Upper and lower weights for final waste form are unknown.

SITE NAME RL			WAS	TE TYPE TRU HANDL	ING CH	GENERATOR S	ITE EXXON
	Group Heterogene	2 Dus	DESCRIPTION	Exxon Type 1 TRU Waste This waste stream consists of			: Approximately 20 to 30 % of
NO MIGRATION VAI	waste in dru	ms is noncompustible war have also been placed in	ste, such as fai	led machinery, lools, glass, co Orums are also used for dispo	oncrete, plumbina	and fixture and	soil. Absorbed combuetible liquide
PINAL WASTE FORM Defense TRU WASTE FORM Non-Defense TRU Commercial TRU Unknown	/aste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

00000

RL-T132 - 1

RL - 150

SITE NAME RL

000965

WASTE STREAM PROFILE FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

WASTE TYPE TRU

HANDLING CH

GENERATOR SITE EXXON

Nuclide

Pu238

RL-T132 CONTAINER: Drum Container Matt: steel Liner Type: rigid Number Stored:
Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Materiat: HDPE Number Projected:

TUDIONI WASTE DENSITI	SC FOD F	INIAL MARTE	EODM (ka/m	2
TYPICAL WASTE DENSITI	ES FURT	INAL WASIE	FORM (Kyrm	2
Material Parameters	<u>Average</u>	<u>Lower Limit</u>	Upper Limit	
Iron-based Metals/Alloys	552.0	0.0	0.0	
Aluminum-Based Metals/Alloys	87.0	0,0	0.0	١
Other Metals	0.0	0.0	0.0	1
Other Inorganic Materials	43.0	0.0	0.0	
Cellulosics	105.0	0.0	0.0	
Rubber	45.0	0.0	0.0	
Plastics	107.0	0.0	0.0	
Solidified, Inorganic matrix	15.0	0.0	0.0	
Solldified, Organic matrix	0.0	0.0	0.0	
Soils	18.0	0.0	0.0	
Packaging Materials, Steel	131.0			

37.0

RATES	OF WASTE	GENERATIO	N
	Projected	Final Form	
End of 1992:	0.6	0.8	m3
End of 1993:	0.6	0.8	m3
1994:	0.0	0.0	m3/yr
1995:	0.0	0.0	m3/yr
1996:	0.0	0.0	m3/yr
1997:	0.0	0.0	m3/ry
1998-2002:	0.0	0.0	m3/yr
2003-2022;	0.0	0.0	m3/yr

TYPICAL EPA CODES APPLICABLE

STORED TRU WASTE ESTIMATED

Pu239 5.82E+00 Curies/m3 Pu240 1.31E+00 Curies/m3 Pu241 1.47E+01 Curies/m3 Pu242 7.62E-05 Curies/m3 6.64E-01 Am241 Curies/m3 Sr90 2.34E-03 Curies/m3 Cs137 2.50E-03 Curies/m3 2.34E-03 Y90 Curies/m3 Ba137m 2.36E-03 Curies/m3 U-enr 1.28E-04 Curies/m3

TYPICAL ISOTOPIC COMPOSITION

Curies/m3

Activity

1,48E-01

Comments

Packaging Materials, Steel Packaging Material, Plastic

Upper and lower weights for final waste form are unknown.

SITE NAME RL		WAST	E TYPE TRU HANDLIN	NG CH C	SENERATOR SI	TE EXXON
•	D RL-T133 D RL-TB-133 5400		Exxon Type I TRU Waste This waste stream consists of	f TRU waste fron	п Еххон.	
Site Matrix Description NO MIGRATION VARIANCE	such as oils have also been pla	ole waste, such as faile	d machinery, tools, glass, cor rums are also used for dispos	ncrete, plumbing	and fixture and s	ail Absorbed combustible liquids
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU	RU F	Rsearch and Devel. Waste Dperations Waste Residues Decomand Decommissioning Environmental Restoration From Treatment of Waste Maintenance		Asbestos PCBs Other N/A Unknown	X

				<u></u> -					
RL-T133 CONTAINER:	Drum		Conta	iner Mati: steel		Liner Type: rigid		Number S	Stored:
Type/Size:	55-gallon		int.	Vol/Ctnr: 0.2	08 m3 LI	iner Material: HDPE		Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORE	TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	1.85E+00	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	21.3	28.7 m3	Pu239	7.26E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	21.3	28.7 m3	Pu240	1.63E+01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.83E+02	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	9.50E-04	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	8.27E+00	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U-nat	2.57E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	18.0	0.0	0.0	TYPIC	L EDA CODE	C ADDI (CADI E			
Packaging Materials, Steel	131.0			TTPICA	IL EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								
Comments									
Upper and lower weights for final	waste form a	re unknown.							

SITE NAME RL			WAST	E TYPE TRU HAND	LING CH	GENERATOR S	LB
	D RL-T134 D RL-TB-134 5400			Lawrence Berkeley Nat La This waste stream consists		om the Lawrence	Berkeley National Laboratories.
Waste Matrix Code Group Site Matrix Description	Typically, 70 to 8 waste in drums is	s noncombustible was	te, such as faile	items such as wood, plasti ed machinery, tools, glass, Drums are also used for dist	concrete, plumbii	og and fixture and	s. Approximately 20 to 30 % of soil. Absorbed combustible liquids ir fifters.
NO MIGRATION VARIANCE		GNMENT		<u>TR</u>	UCON CODE		
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	e No	xed TRU on-Mixed TRU Ispect Mixed TRU Iknown	X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioni Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X

300368

RL-T134 - 1

RL - 154

RL-T134 CONTAINER:	Drum		Conta	iner Matt: steel		Liner Type: rigid		Number S	itored:
Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.20	8m3 L	iner Material: HDPE		Number Pro	jecled:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r	n3) STORED		E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	<u>Nuclide</u>	Activity	
on-based Metals/Alloys	552.0	0.0	0.0		Prolected	Final Form	Pu238	1.04E-02	Curies/m3
luminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	0.1	0.1 m3	Pu239	4.07E-01	Curies/m3
ther Metals	0.0	0.0	0.0	End of 1993:	0.1	0.1 m3	Pu240	9.14E-02	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.03E+00	Curies/m3
ellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	5.33E-06	Curies/m3
lubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4.64E-02	Curies/m3
lastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	5.56E+00	Curies/m3
olidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	5.94E+00	Curies/m3
olidified, Organic matrix	0.0	0,0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	5,56E+00	Curies/m3
oils	18.0	0.0	0.0	1000-1011.	0.0	0.0 1113771	Ba137m	5.62E+00	Curies/m3
ackaging Materials, Steel	131.0	0.0	0.0	TYPICAL	L EPA CODE	ES APPLICABLE			
ackaging Material, Plastic	37.0								

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE LL						
WASTE STREAM MWIR ID WIPP ID RL-T135 Local ID RL-TB-135 MATRIX CODE SITE FINAL FORM IDC	STREAM NAME Lawrence Livermore Type I TRU Waste DESCRIPTION This waste stream consists of TRU waste from the Lawrence Livermore National Laboratories.						
waste in drums is noncombusti	drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of cole waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Absorbed combustible een placed in some drums. Drums are also used for disposal of high-efficiency particulate air filters.						
FINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed T Unknown Unknown	RSearch and Devel. Waste X TSCA Asbestos PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance						

ENAME RL			WAS	TE TYPE TRU	HAND	LING CH GEN	IERATOR SI	ITE [LL	
RL-T135 CONTAINER: Drum Type/Size: 55-gallon TYPICAL WASTE DENSITIES FOR FINAL WASTE FO			Int.	L		Liner Type: rigid iner Material: HDPE	Number Stored: Number Projected:		
Material Parameters	Average	Lower Limit	Upper Limit			E ESTIMATED GENERATION	Nuclide	Activity	OMPOSITION
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	3.11E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	0.2	0.3 m3	Pu239	1.22E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.3 m3	Pu240	2.74E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.08E+00	Curies/m3
Cellulosics	105.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu242	1.60E- 05	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.39E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.39E-04	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.48E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/уг	Y90	1.39E-04	Curies/m3
Soils	18.0	0.0	0.0	77/710.41			Ba137m	1.40E-04	Curies/m3
Packaging Materials, Steel	131.0		· · · · · · · · · · · · · · · · · · ·	ITPICAL	L EPA CODI	ES APPLICABLE	U-dep	2.34E-02	Curies/m3
Packaging Material, Plastic	37.0								
Comments									
Upper and lower weights for final	waste form a	re unknown.							

SITE NAME RL			WAST	E TYPETRU HAND	LING CH	GENERATOR SI	TE LL
WASTE STREAM MATRIX CODE SITE FINAL FORM II	MWIR ID WIPP ID RL-T136 Local ID RL-TB-13 5400			Lawrence Livermore Nat L This waste stream consist			Livermore National Laboratories.
Waste Matrix Cod	e Group Heterogene scription Typically, 7 waste in dri	0 to 80% of waste in dru ums is noncombustible t	waste, such as faile	items such as wood, plast ed machinery, tools, glass, ums. Drums are also used	concrete, plumbin	g and fixture and s	Approximately 20 to 30 % of soil. Absorbed combustible ulate air filters.
NO MIGRATION VA		ASSIGNMENT		<u>TF</u>	RUCON CODE		
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioni Environmental Restoration From Treatment of Waste Maintenance	ing	A Asbestos PCBs Other N/A Unknown	X

Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: HDPE Number Projected:	RL-T136 CONTAINER:				iner Mati: steel		Liner Type: rigid	Number Stored:		
Material Parameters Average Lower Limit Upper Limit Iron-based Metals/Alloys 552.0 0.0	Type/Size:	55-gallon		Int.	Vol/Ctnr: 0.20)8 m3 Lí	ner Material: HDPE		Number Proj	ected:
Projected Final Form Pu238 1.05E-02 Curies/m3					RATES					OMPOSITION
Solid Final Form Final Fo										Curies/m3
Alumnum-Based Metals/Alloys 87.0 0.0 0.0 0.0 End of 1992: 0.1 0.1 m3 Pu240 9.26E-02 Curles/m3 Other Metals 0.0 0.0 0.0 1994: 0.0 0.1 m3 Pu241 1.04E+00 Curles/m3 Cellulosics 105.0 0.0 0.0 1996: 0.0 0.0 m3/yr Pu242 5.40E-06 Curles/m3 Rubber 45.0 0.0 0.0 1996: 0.0 0.0 m3/yr Am241 4.70E-02 Curles/m3 Plastics 107.0 0.0 0.0 1997: 0.0 0.0 m3/yr U-dep 2.52E+01 Curles/m3 Solidified, Inorganic matrix 15.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Soils 18.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE	_		——							
Other Metals 0.0 0.0 0.0 0.0 End of 1993: 0.1 0.1 m3 Pu241 1.04E+00 Curies/m3 Other Inorganic Materials 43.0 0.0 0.0 1994: 0.0 0.0 m3/yr Pu242 5.40E-06 Curies/m3 Cellulosics 105.0 0.0 0.0 1995: 0.0 0.0 m3/yr Am241 4.70E-02 Curies/m3 Rubber 45.0 0.0 0.0 1996: 0.0 0.0 m3/yr U-dep 2.52E+01 Curies/m3 Plastics 107.0 0.0 0.0 1997: 0.0 0.0 m3/yr U-nat 1.62E-01 Curies/m3 Solidified, Inorganic matrix 15.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr U-nat 1.62E-01 Curies/m3 Soils 18.0 0.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr Packaging Materials, Steel 131.0 0.0 0.0 1998-2002: 0.0 0.0 0.0 0.0	-	87.0	0.0	0.0	End of 1992:	0.1	0.1 m3			
Other Inorganic Materials 43.0 0.0 0.0 1994: 0.0 0.0 m3/yr Pu242 5.40E-06 Curies/m3 Cellulosics 105.0 0.0 0.0 1995: 0.0 0.0 m3/yr Am241 4.70E-02 Curies/m3 Rubber 45.0 0.0 0.0 1996: 0.0 0.0 m3/yr U-dep 2.52E+01 Curies/m3 Plastics 107.0 0.0 0.0 1997: 0.0 0.0 m3/ry U-dep 2.52E+01 Curies/m3 Solidified, Inorganic matrix 15.0 0.0 0.0 1998-2002: 0.0 0.0 m3/yr U-nat 1.62E-01 Curies/m3 Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr U-nat 1.62E-01 Curies/m3 Soils 18.0 0.0 0.0 1997-2022: 0.0 0.0 0.0 1997-2022: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	-	0.0	0.0	0.0	End of 1993:	0.1	0.1 m3			
Cellulosics 105.0 0.0 0.0 1995: 0.0 0.0 m3/yr Am241 4.70E-02 Curies/m3	Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr			
Rubber 45.0 0.0 0.0 1996: 0.0 0.0 m3/yr U-dep 2.52E+01 Curies/m3	Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr			
Plastics 107.0 0.0 0.0 1997: 0.0 0.0 m3/ry U-nat 1.62E-01 Curies/m3	Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr			
Solidified, Inorganic matrix 15.0 0.0 0.0 1998-2002; 0.0 0.0 m3/yr	Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	-		-
Solidified, Organic matrix	Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	 ′	U-nat	1.62E-01	Curies/m3
Packaging Materials, Steel 131.0 TYPICAL EPA CODES APPLICABLE	Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0				
Packaging Materials, Steel 131.0	Soils	18.0	0.0	0.0			·			
	Packaging Materials, Steel	131.0		L	TYPICA	L EPA CODE	S APPLICABLE			
	'									
	Comments Upper and lower weights for final	waste form	are unknown							

SITE NAME RL			WASTE TYPE TRU	HANDLING CH	GENERATOR SI	TE KERR MCGEE
W	WIR ID RL-T137 ocal ID RL-T8-137 5400		HAME Kerr McGee TRU		aste from Kerr McGee.	
	Typically, 70 to 80 waste in drums is and sectioned glo combustible mate polyethylene bottl boxes are also us contain these filte	noncombustible waste, such we boxes, hoods, ducting, co- rials in boxes may Include co- les, gloves and rubber. Abso- sed for disposal of high-efficients and other waste forms.	h as failed machinery, tools onduit, lathes, pumps, pipin otton rags and clothing, plas orbed combustible liquids su	, glass, concrete, pi g, fans, light fixture, stic sheeting, plastic ch as oils have also Several boxes conta	lumbing and fixture and s , instrumentation, tools, co c pipe, tape, ladders, plex o been placed in some dn ain only high-efficiency pa	Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The siglass, step benches, ums and boxes. Drums and articulate air filters, while others
FINAL WASTE FORM D Defense TRU Wast Non-Defense TRU Commercial TRU W Unknown	e X Mix Waste Noi	red TRU n-Mixed TRU spect Mixed TRU known	Rsearch and Devel X Operations Waste Residues Decon and Decomi Environmental Resi	πissloning toration	TSCA Asbestos PCBs Other N/A Unknown	X

300974

RL-T137 - 1

RL - 160

RL-T137 CONTAINER: Type/Size:			— ↓	iner Mati: steel Vol/Ctnr: 1	.9m3 Li	Liner Type: bag ner Material: plastic	Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/r			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	1.16E-01	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	1.0	1.0 m3	Pu239	4.56E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	1.0	1.0 m3	Pu240	1.02E+00	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	1.15E+01	Curies/m3
Cellulosics	11.4	0,0	0.0	1995:	0.0	0.0 m3/yr	Pu242	5.96E-05	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	5.19E-01	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.10E-01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0		Cs137	1.21E-01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	1.10E-01	Curies/m3
Soils	0.0	0.0	0.0	2003-2022,	0,0	0.0 m3/yr	Ba137m	1.14E-01	Curies/m3
Packaging Materials, Steel	154.0	<u>0.0</u>	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-dep	6.39E-04	Curies/m3
Packaging Material, Plastic	1.2						U-enr	2.29E-04	Curies/m3
garig material, 1 to sto	1.2						U-nat	7.32E-06	Curies/m3

51 -14-		· · · · · · · · · · · · · · · · · · ·						·	
RL-T137 CONTAINER:	L		Container Matt: steel Liner Type: rigid				Number Stored:		
Type/Size:	55-gallon		Int. \	/ol/Ctnr: 0,2	08 m3 Li	ner Material: HDPE		Number Pro	jected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m		TRU WASTE	E-ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
fron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	8.59E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	99.1	134.0 m3	Pu239	3.38E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	99.1	134.0 m3	Pu240	7.58E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	8.52E+00	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.42E-05	Curies/m3
Rubber	45.0	0.0	0.0	1996;	0.0	0.0 m3/yr	Am241	3.85E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	8.18E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	8.93E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Y90	8.18E-02	Curies/m3
Soils	18.0	0.0	0.0	•			Ba137m	8.45E-02	Curies/m3
Packaging Materials, Steel	131.0		<u></u>	TYPICA	L EPA CODE	S APPLICABLE	U-dep	4.74E-04	Curies/m3
Packaging Material, Plastic	37.0						U-enr	1.70E-04	Curies/m3
Comments							U-nat	5.42E-06	Curies/m3

SITE NAME RL			WAS	TE TYPE TRU	HANDLING CH	GE	NERATOR S	ITE GE	
	NIPP ID RL-T138 ocal ID RL-TB-13			Pleasanton Type i		orm General	Electric Pleas	santon.	
SITE FINAL FORM IDC Waste Matrix Code C Site Matrix Descri	Froup Heterogene iption Boxes typic conveyor se plexiglass, s Boxes are a	ally contain whole and se ections, wire, etc. The co- step benches, polyehtyler	mbustible mate ne bottles, glove ligh-efficiency p	rials in boxes may in es, and rubber. Abso	iclude cotton rags orbed combustible	and clothing liquids such	, plastics she as oits have	fixture, instrumentation, tool eting, plastic pipe, tape, lad also been placed in some b particulate air filters, while o	lders, ooxes.
NO MIGRATION VARI	ANCE PETITION				TRUCON C	ODE			
Defense TRU Was Non-Defense TRU Commercial TRU ^o Unknown	Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	imissioning	C t	Asbestos PCBs Other N/A Jaknown	×	

000977

RL-T138 - 1

RL - 163

RL-T138 CONTAINER:	·				Container Matt: steel Liner Type: bag			Number Stored:		
Type/Size:			Int.	. Vol/Ctnr: 1	.9 m3 LI	iner Material: plastic		Number Pro	jected:	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/	m3) STORED		E ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION	
Material Parameters	Average	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	<u>Nuclide</u>	<u>Activity</u>		
ron-based Metals/Alloys	706.7	0.0	0.0	•	Projected	Final Form	Pu238	1.36E-05	Curies/m3	
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	40,9	40.9 m3	Pu239	5.35E-04	Curies/m3	
Other Metals	0.0	0.0	0.0	End of 1993:	40.9	40.9 m3	Pu240	1.20E-04	Curies/m3	
Other Inorganic Materials	39,4	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	1.35E-03	Curies/m3	
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	7.00E-09	Curies/m3	
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	6.09E-05	Curies/m3	
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	2.76E-04	Curies/m3	
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	2.93E-04	Curies/m3	
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	2.76E-04	Curies/m3	
ioits	0.0	0.0	0.0				Ba137m	2.77E-04	Curies/m3	
ackaging Materials, Steel	154.0	التسميا		TYPICA	L EPA CODE	ES APPLICABLE	U-nat	2.05E-08	Curies/m3	
ackaging Material, Plastic	1.2									

SITE NAME RL			WAST	E TYPETRU HA	ANDLING CH	GENERATOR	SITE GE
	WWIR ID WIPP ID RL-T139 Local ID RL-TB-13 5400	9		Pleasanton Type II TR This waste stream con		vaste from General Elec	stric Pleasanton.
Waste Matrix Code (·						
Site matrix Desci	conveyor si plexiglass, : Boxes are a	ections, wire, etc. The c step benches, polyethyl	ombustible materia ene bottles, gloves high-efficiency par	als in boxes may includ and rubber. Absorbed	de cotton rags a I combustible liq	and clothing, plastic she quids such as oils have	t fixture, instrumentation, tools, eting, plastic pipe, tape, ladders, also been placed in some boxes. r particulate air filters, while others
NO MIGRATION VAR	ANCE PETITION	ASSIGNMENT			TRUCON CO	DDE	
FINAL WASTE FORM	DESCRIPTORS:						
Defense TRU Wa Non-Defense TRU Commercial TRU Unknown	J Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel. W Operations Waste Residues Decomand Decommiss Environmental Restora From Treatment of Was Maintenance	sioning	TSCA Asbestos PCBs Other N/A Unknown	X

RL-T139 - 1

RL - 165

RL-T139 CONTAINER: Type/Size:	}			iner Matl: steel Vol/Ctnr: 1	.9 m3 Li	Liner Type: bag ner Material: plastic		Number S Number Proj	L
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE		RATES		ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	706.7	0.0	Upper Limit 0.0	•	Desirated	Plant Production	Pu238	3.30E-03	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0		Projected 46.0	Final Form	Pu239	1.30E-01	Curles/m3
Other Metals	0.0	0.0	0.0	End of 1992; End of 1993;	146.0	146 0 m3	Pu240	2.91E-02	Curies/m3
Other Inorganic Materials	39.4	0.0			146.0	146.0 m3	Pu241	3.27E-01	Curies/m3
Cellulosics	11.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu242	1.70E-06	Curies/m3
Rubber	0.3	0.0	0.0	1995: 1996:	0.0	0.0 m3/yr	Am241	1.48E-02	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/yr	Sr90	1.31E-02	Curies/m3
Solidifled, Inorganic matrix	4.4	0.0		-		0.0 m3/ry	Cs137	1.40E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	1998-2002: 2003-2022:	0.0	0.0 m3/yr	Y90	1.31E-02	Curies/m3
Solls	0.0	0.0	0,0	2003-2022:	0.0	0.0 m3/yr	Ba137m	1.32E-02	Curies/m3
Packaging Materials, Steel	154.0	0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-nat	7.08E-04	Curies/m3
Packaging Material, Plastic	1.2								

RL-T139 - 2

RL - 166

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE RF
WASTE STREAM MWIR ID WIPP ID RL-T140 Local ID RL-T8-140 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME Rocky Flats Type I TRU Waste DESCRIPTION This waste stream consists of TRU waste from Rocky Flats.
waste in drums is noncompus	in drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of stible waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Absorbed combustible been placed in some drums. Drums are also used for disposal of high-efficiency particulate air filters. **TRUCON CODE**
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed Unknown Unknown	- PCBS

RL-T140 CONTAINER Type/Size	: Drum : 55-gallon	*		ner Matt: steel Vol/Ctnr: 0,20	8 m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Proj	1
TYPICAL WASTE DENSIT	IES FOR F	INAL WASTE	FORM (kg/n			GENERATION	TYPICAL Nuclide	ISOTOPIC C Activity	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys	552.0 87.0	0.0	0.0	End of 1992:	Projected 6.9	Final Form 9.3 m3	Pu238 Pu239	1.26E-02 4.94E-01	Curies/m3 Curies/m3
Other Metals Other Inorganic Materials	0.0 43.0	0.0	0.0	End of 1993; 1994;	6.9	9.3 m3	Pu240 Pu241	1.11E-01 1.25E+00	Curies/m3 Curies/m3
Cellulosics Rubber	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr 0.0 m3/yr	Pu242 Am241	6.47E-06 5.63E-02	Curies/m3 Curies/m3
Plastics	45.0 107.0	0.0	0.0	1996: 1997:	0.0	0.0 m3/yr 0.0 m3/ry	Sr90 Cs137	9.16E-03 9.78E-03	Curies/m3 Curies/m3
Solidified, Inorganic matrix Solidified, Organic matrix	15.0 0.0	0.0	0.0	1998-2002; 2003-2022;	0.0	0.0 m3/yr 0.0 m3/yr	Y90 Ba137m	9.16E-03 9.25E-03	Curies/m3
Soils Packaging Materials, Steel	18.0 131.0	0.0	0.0	TYPICAL	EPA CODE	S APPLICABLE	D413/[II	5. ∠3€-UJ	Curies/m3
Packaging Material, Plastic	37.0								

SITE NAME RL			WAST	E TYPE TRU HAN	NDLING CH	GENERATOR S	ITE RF
WASTE STREAM	MWIR ID WIPP ID RL-T14 Local ID RL-TB-			Rocky Flats Type II TRU This waste stream consi		asta from Pooky Elate	
MATRIX CODE SITE FINAL FORM ID	5400 OC		<u>scom non</u>	The Waste Stream const	313 01 11(0 4)	ssie nom Rocky Piats.	
Waste Matrix Code	Group Heteroger	neous					
NO MIGRATION VA	waste in c such as o	trums is noncombustible ils have also been place	e waste, such as fail	ed machinery, tools, glass Drums are also used for d	s, concrete, pl lisposal of high	umbing and fixture and n-efficiency particulate a	. Approximately 20 to 30 % of soil. Absorbed combustible liquids ir filters.
NO MICHARION VA	MANUE I ETTIO	- HOSIGIAMETAT			TRUCON COL	<u> </u>	
FINAL WASTE FOR	M DESCRIPTORS	<u>:</u>					
Defense TRU W Non-Defense Ti Commercial TR' Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	' \Box	Rsearch and Devel, Was Operations Waste Residues Decon and Decommissio Environmental Restoratio From Treatment of Waste Maintenance	ening on	TSCA Asbestos PCBs Other N/A Unknown	X

RL-T141 CONTAINER: Type/Size:				ner Mati: sleel Vol/Ctnr: 0.20)B m3 Li	Liner Type: rigid ner Material: HDPE	Number Stored: Number Projected:		
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/m Upper Limit	STORED RATES (TRU WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys	552.0	0.0	0.0	•	Projected	Final Form	Pu238	2.59E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	74.1	100.0 m3	Pu239	1.02E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	74.1	100.0 m3	Pu240	2.28E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	2.57E+00	Curies/m3
Cellutosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	1.33E-05	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.16E-01	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	5.82E-03	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	· · · · · · · · · · · · · · · · · · ·	Cs137	6.27E-03	Curies/m3
Solidified, Organic matrix	0.0	0,0	0.0	2003-2022:	0.0	0.0 m3/yr 0.0 m3/yr	Y90	5.82E-03	Curies/m3
Soils	18.0	0.0	0.0	1000-1011.	0,0	0.0/11/3/91	Ba137m	5.94E-03	Curies/m3
ackaging Materials, Steel	131.0	تــــــــــــــــــــــــــــــــــــــ		TYPICAL	EPA CODE	S APPLICABLE	U-dep	3.03E-01	Curies/m3
Packaging Material, Plastic	37.0						U-enr	1.25E-02	Curies/m3
Comments							U-nat	7.65E-04	Curies/m3

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE SALT LAKE CITY
	D RL-T142 D RL-T8-142 5400	STREAM NAME Salt Lake City TRU Waste DESCRIPTION This waste stream consists of TRU waste from Salt Lake City.
Site Matrix Description	Boxes typically contain whole and conveyor sections, wire, etc. The plexiglass, step benches, polyeth Boxes are also used for disposal contain these filters and other was	d sectioned glove boxes, hoods, ducting, conduit, lathes, pumps, piping, fans, light fixture, Instrumentation, tools, e combustible materials in boxes may include cotton rags and clothing, plastic sheeting, plastic pipe, tape, ladders, lylene bottles, gloves and rubber. Absorbed combustible liquids such as oils have also been placed in some boxes. of high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others stee forms. TRUCON CODE
FINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU	Rsearch and Devel. Waste X TSCA Asbestos Coperations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

NAME RL			WASTE	TYPETRU	HANDLI	NG CH GEN	ERATOR S	ITE SALT LA	KE CITY
RL-T142 CONTAINER: Type/Size: TYPICAL WASTE DENSITI		INAL WASTE	Int. Vol	Mati: steel /Ctnr: 1.9 m3	Lin	Liner Type: bag er Material: plastic		Number S Number Pro	· I
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments Upper and lower weights for final	706.7 168.9 0.0 39.4 11.4 0.3 24.2 4.4 0.0 0.0 154.0	O.0	0.0 0.0 0.0 0.0 0.0 0.0	Project	0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6ENERATION Final Form 0.9 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 6.0 m3/yr	Nuclide Sr90 Cs137 Y90 Ba137m	Activity 9.37E-05 1.00E-04 9.37E-05 9.46E-07	Curles/m3 Curles/m3 Curles/m3 Curles/m3

SITE NAME RL	WASTE TYPE TRU HANDLING CH GENERATOR SITE GE]
WASTE STREAM MWIR ID WIPP ID RL-T143 Local ID RL-TB-143 MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous	STREAM NAME GE San Jose and Vallecitos TRU Waste DESCRIPTION This waste consists of typically contact-handled TRU waste from the General Electric Plants at San Jose and Vallecitos. A volume of 1.10E+2 m3 is radioactive sources from General Electric Vallecitos Plant, generated in 1974.	 t c
waste in drums is noncombusti and sectioned glove boxes, how combustible materials in boxes polyethylene bottles, gloves an boxes are also used for disposicontain these fitters and other v	In drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of ble waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain who bods, ducting, conduit, lathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. The may include cotton rags and clothing, plastic sheeting, plastic pipe, tape, tadders, plexiglass, step benches, dirubber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and all of high-efficiency particulate air filters. Several boxes contain only high-efficiency particulate air filters, while others waste forms. The waste consists of irradiated fuel from R&D activitiers, both in complete assemblies or pins of irradiated its and resultant waste generated from irradiated fuel experiments and/or examinations, such as polishing residue, metal fines.	9
NO MIGRATION VARIANCE PETITION ASSIGNMENT	TRUCON CODE	
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Unknown	Rsearch and Devel, Waste X TSCA Asbestos Coperations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance	

100987

RL-T143 - 1

RL - 173

RL-T143 CONTAINER: Type/Size:				Iner Matt: steel Vol/Ctnr: 1	.9m3 Li	Liner Type: bag ner Material: plastic		Number S Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/n	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	706.7 168.9 0.0 39.4 11.4 0.3 24.2 4.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002;	9.1 49.1 0.0 0.0 0.0 0.0 0.0	Final Form 49.1 m3 49.1 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137	2.34E-02 9.18E-01 2.06E-01 2.32E+00 1.20E-05 1.05E-01 6.19E-04 6.59E-04	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 154.0 1.2	0.0	0.0	2003-2022: <u>TYPICA</u>	0.0 L EPA CODE	0.0 m3/yr	Ba137m U-enr U-nat	6.24E-04 4.46E-04 2.53E-04	Curies/m3 Curies/m3 Curies/m3

RL-T143 - 2

RL - 174

RL-T143 CONTAINER:	Drum		Contai	ner Mati: steel		Liner Type: rigid		Number 9	Stored:
Type/Size:	55-gallon		Int. V	Vol/Ctnr: 0.2	08 m3 Li	ner Material: HDPE		Number Pro	jected;
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	1.74E-02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	4.2	5.7 m3	Pu239	6.85E-01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	4.2	5.7 m3	Pu240	1.54E-01	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	1.73E+00	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	8.97E-06	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	7.81E-02	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	4.62E-04	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	4.92E-04	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	4.62E-04	Curies/m3
Soils	18.0	0.0	0.0	2000-2022.	0.0	0.0 1113/y1	Ba137m	4.66E-04	Curies/m3
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE	U-enr	3.33E-04	Curies/m3
Packaging Material, Plastic	37.0						U-nat	1.89E-04	Curies/m3

Upper and lower weights for final waste form are unknown.

SITE NAME RL			WAST	E TYPE TRU	HANDLING C	H (GENERATOR	SITE GE, WARD	
MATRIX CODE SITE FINAL FORM ID		3-144	DESCRIPTION	GE Vallecitos and This waste stream waste from Ward.			π the General i	Electric Plant at Vallecitos a	and
Waste Matrix Code Site Matrix Des	cription Typically waste in and sect combust polyethy boxes ar	y, 70 to 80% of waste in drums is noncombustit dioned glove boxes, hoo lible materials in boxes lene bottles, gloves and	ods, ducting, conduit, la may include cotton rag d rubber. Absorbed cor at of high-efficiency par	ithes, pumps, pipings stand clothing, plas phystible liquids su	, grass, concrete, g, fans, light fixtur stic sheeting, plas	plumbing re, instrum stic pipe, to	and lixture and entation, tools, ape, ladders, pi	is. Approximately 20 to 30 d soil. Boxes typically contr , conveyor sections, wire, e lexIglass, step benches, drums and boxes. Drums particulate air filters, while	ain whole to. The
NO MIGRATION VA					TRUCON C	ODE			
PINAL WASTE FOR Defense TRU W Non-Defense TR Commercial TRI Unknown	Vaste X	S: Mixed TRU Non-Mixed TRU Suspect Mixed TF Unknown	RU X I	Rsearch and Devel Operations Waste Residues Decon and Decomr Environmental Resi From Treatment of	missioning loration	TSCA	Asbestos PCBs Other N/A Unknown	X	

000390

RL-T144 - 1

RL - 176

RL-T144 CONTAINER: Type/Size:			Int.		9]m3 Li	Liner Type: bag ner Material: plastic		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	n3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITE
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	3.00E-02	Curies/m:
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	313.0	313.0 m3	Pu239	1.18E+00	Curies/m
Other Metals	0.0	0.0	0.0	End of 1993;	313.0	313.0 m3	Pu240	2.65E-01	Curies/m
Other Inorganic Materials	39.4	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	2.98E+00	Curies/m3
Cellulosics	11.4	0.0	0.0	1995;	0.0	0.0 m3/yr	Pu242	1.54E-05	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.34E-01	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	4.30E+01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	4.37E+01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	4.30E+01	Curies/m3
Soils	0.0	0.0	0.0	L			Ba137m	4.14E+01	Curies/m3
Packaging Materials, Steel	154.0	L		TYPICAL	EPA CODE	S APPLICABLE	U-dep	2.36E-04	Curies/m3
Packaging Material, Plastic	1.2						U-enr	1.32E-03	Curies/m3
Comments							U-nat	1.13E-04	Curies/m3

RL-T144 CONTAINER: Type/Size:	· L			ainer Mati: steel t. Vol/Ctnr: 0.2	08 m3 Li	Liner Type: rigid iner Material: HDPE		Number S Number Pro	L
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES	TRU WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002; 2003-2022;	Projected 76.3 76.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Final Form 103.0 m3 103.0 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137 Y90 Ba137m	2.28E-02 8.96E-01 2.01E-01 2.26E+00 1.17E-05 1.02E-01 3.26E+01 3.26E+01 3.14E+01	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	18.0 131.0 37.0	0.0	0.0	TYPICA	L EPA CODE	ES APPLICABLE	U-dep U-enr U-nat	1.79E-04 1.01E-03 8.55E-05	Curies/m3 Curies/m3 Curies/m3

SITE NAME RL		WASTE TYPE TRU HANDLING CH GENERATOR SITE WARD
	ID RL-T145 ID RL-TB-145 5400	STREAM NAME Ward TRU Waste DESCRIPTION This waste stream consists of TRU waste from Ward.
Waste Matrix Code Group Site Matrix Description	Typically, 70 to 80% of waste waste in drums is noncombus and sectioned glove boxes, his combustible materials in boxe polyethylene bottles, gloves a	n drums is combustible items such as wood, plastics, paper, absorbents, rubber, rags. Approximately 20 to 30 % of ible waste, such as failed machinery, tools, glass, concrete, plumbing and fixture and soil. Boxes typically contain whole ods, ducting, conduit, lathes, pumps, piping, fans, light fixture, instrumentation, tools, conveyor sections, wire, etc. The may include cotton rags and clothing, plastic sheeting, plastic pipe, tape, ladders, plexiglass, step benches, d rubber. Absorbed combustible liquids such as oils have also been placed in some drums and boxes. Drums and all of high-efficiency particulate air fifters. Several boxes contain only high-efficiency particulate air fifters, while others
NO MIGRATION VARIANCE	<u></u> -	TRUCON CODE
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	X Mixed TRU e Non-Mixed TRL	Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration From Treatment of Waste Maintenance

RL-T145 CONTAINER: Type/Size:				iner Matt: steel Vol/Ctnr: 1	.9m3 Li	Liner Type: bag iner Material: plastic		Number S Number Pro	
TYPICAL WASTE DENSITI Material Parameters	ES FOR F Average	INAL WASTE	FORM (kg/r	RATES		E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
ron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	9,63E-04	Curies/m3
Numinum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:		78.0 m3	Pu239	3.78E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	78.0	78.0 m3	Pu240	8.49E-03	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994;	0.0	0.0 m3/yr	Pu241	9.55E-02	Curies/m3
Cellulosics	11,4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.95E-07	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	4.31E-03	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Sr90	1.28E-02	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Cs137	1.37E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Y90	1.28E-02	Curies/m3
Soils	0.0	0.0	0.0	,			Ba137m	1.30E-02	Curies/m3
ackaging Materials, Steel	154.0			TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.35E-04	Curies/m3
ackaging Material, Plastic	1.2						U-enr	4.66E-05	Curies/m3
Comments							U-nat	6.93E-06	Curies/m3

RL-T145 CONTAINER: Type/Size:	·		 -	tainer Mati: steel t. Vol/Ctnr: 0.20	D8 m3 L	Liner Type: rigid iner Material: HDPE		Number : Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg.	RATES		E_ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992; End of 1993; 1994; 1995; 1996; 1997; 1998-2002;	22.0 22.0 22.0 0.0 0.0 0.0 0.0	29.7 m3 29.7 m3 29.7 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Am241 Sr90 Cs137	7.13E-04 2.80E-02 6.29E-03 7.07E-02 3.67E-07 3.19E-03 9.48E-03 1.02E-02 9.48E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Soils Packaging Materials, Steel Packaging Material, Plastic Comments	18.0 131.0 37.0	0.0	0.0	2003-2022: <u>TYPICA</u>	0.0 L EPA CODE	0.0 m3/yr	Ba137m U-dep U-enr U-nat	9.60E-03 1.74E-04 3.45E-05 5.13E-06	Curies/m3 Curies/m3 Curies/m3 Curies/m3

060995

RL-T145 - 3

RL - 181

SITE NAME RL		WASTI	E TYPE TRU	HANDLING CH	GENERATOR S	SITE RL
	RL-T146 RL-TB-146 5400	DESCRIPTION	234 52 High Pu238 This waste stream Finishing Plant. W	consists of TRU w	vaste from the High Pu23 m an off-site R&D activit	38 routed through the Plutonium y.
Site Matrix Description	Typically, 70 to 80% of waste in waste in drums is noncombustit and sectioned glove boxes, hos combustible materials in boxes polyethylene bottles, gloves and other wontain these filters and other waste in the section of the sectio	ods, ducting, conduit, (at may include cotton raged trubber. Absorbed com of high-efficiency part	thes, pumps, piping s and clothing, plas bustible liquids suc	, glass, concrete, p g, fans, light fixture stic sheeting, plast ch as oils have ale	plumbing and fixture and e, instrumentation, tools, ic pipe, tape, ladders, ple so been placed in some c lain only high-efficlency p	s. Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The exiglass, step benches, drums and boxes. Drums and particulate air filters, while others
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: X Mixed TRU	RU R E F	Rsearch and Devel. Detations Waste Residues Decomand Decommental Restorm Treatment of Valutional Restormance	. Waste X	TSCA Asbestos PCBs Other N/A Unknown	X

RL-T146 CONTAINER: Type/Size:			Int.		.9m3 Li	Liner Type: bag ner Material: plastic		Number S Number Proj	
TYPICAL WASTE DENSITI	ES FOR F	<u>INAL WASTE</u>	FORM (kg/n	n3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSI
Material Parameters	<u>Av</u> erage	Lower Limit	Upper Limit	RATES (OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	5.50E+02	Curies/r
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	83.0	83.0 m3	Pu239	2.08E+01	Curies/n
Other Metals	0.0	0,0	0.0	End of 1993:	83.0	83.0 m3	Pu240	4.68E+00	Curies/n
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	5.26E+01	Curies/n
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.72E-04	Curies/n
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	2.37E+00	Curies/m
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	U-dep	1.80E-06	Curles/m
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	U-enr	3.42E-05	Curies/m
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U-nat	3.47E-06	Curies/m
Soils	0.0	0.0	0.0						
Packaging Materials, Steet	154.0			TYPICAL	LEPA CODE	S APPLICABLE			
Packaging Material, Plastic	1.2								

RL-T146 - 2

ENAME RL			WASTI	E TYPE TRU	HANDL	ING CH GEN	ERATOR S	TE RL	
RL-T146 CONTAINER: Type/Size:				er Matl: steel ol/Ctnr: 0.2	08 m3 Li	Liner Type: rigid ner Malerial: HDPE		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m3	STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	552.0	0.0	0.0		Projected	Final Form	Pu238	4.08E+02	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0		End of 1992:	79.8	108.0 m3	Pu239	1.54E+01	Curies/m3
Other Metals	0.0	0.0	 	End of 1993:	79.8	108.0 m3	Pu240	3.46E+00	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	3.89E+01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.02E-04	Curies/m3
Rubber	45.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	1.76E+00	Curies/m3
Plastics	107.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U-dep	1.33E-06	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	U-enr	2.53E-05	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	U-nat	2.57E-06	Curies/m3
Soils	18.0	0.0	0.0		J				
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	37.0								
Comments									

2

Type/Size		r (for boxed wast	Int.	L	9 m3 Lt	Liner Type: ner Material:		Number S Number Pro	I
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m	13) STORED		ESTIMATED	TYPICAL	ISOTOPIC C	OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	2.30E+00	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	0.5	0.5 m3	Pu239	1.44E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.5	0.5 m3	Pu240	7.19E+00	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	4.51E+02	Curies/m3
Cellulosics	11.4	0.0	0,0	1995;	0.0	0.0 m3/yr	Pu242	2.05E-04	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Sr90	6.46E+00	Curies/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs137	6.89E+00	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	6.46E+00	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Ba137m	6.52 E+ 00	Curies/m3
Soils	0.0	0.0	0.0	L			U-đep	2.37E-03	Curies/m3
Packaging Materials, Steel	435.0			TYPICAL	LEPA CODE	S APPLICABLE	U-enr	4.10E-02	Curies/m3
Packaging Material, Plastic	0.0						U-nat	9.61E-05	Curies/m3

NAME RL			WASTE TYP	ETRU HANDL	ING RH GEI	NERATOR S	ITE RL	
RL-T147 CONTAINER: Type/Size:		r (for drum waste) Container Mat		Liner Type: ner Material:		Number S Number Pro	
TYPICAL WASTE DENSITI	ES FOR F Average	INAL WASTE	FORM (kg/m3) S Upper Limit	TORED TRU WASTE ATES OF WASTE	ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Solls Packaging Materials, Steel	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0 0.0 18.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 End o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2003	Projected 1 1992: 1.2 1 1993: 1.2 1994: 0.0 1995: 0.0 1996: 0.0 1997: 0.0 -2002: 0.0 -2022: 0.0	1.6 m3 1.6 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Sr90 Cs137 Y90 Ba137m U-dep U-enr	1.66E+00 1.04E+01 5.20E+00 3.26E+02 1.48E-04 4.67E+00 4.67E+00 4.72E+00 1.71E-03 2.96E-02	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Material, Plastic	26.0					U-nat	6.95E-05	Curies/m3
Upper and lower weights for final	waste form a	ire Unknown.						

SITE NAME RL			WAST	TE TYPE TRU	HANDLING CH	GENERATOR S	ITE RL
MATRIX CODE SITE FINAL FORM ID	MWIR ID WIPP ID RL-T148 Local ID RL-TB-14 5400 DC Group Heterogene	8		327 C, L Oper High This waste stream c Test Laboratory.			waste from the Post Irradiation
	cription Boxes typic conveyor se plexiglass, s Boxes are a	ally contain whole and se ections, wire, etc. The cou step benches, polyethylen	mbustible materia e bottles, gloves igh-efficiency pa	als in boxes may incli and rubber. Absorbe	ude cotton rags a ed combustible lid	and clothing, plastic sheet guids such as oils have al	ixture, instrumentation, tools, ting, plastic pipe, tape, ladders, lso been placed in some boxes. particulate air filters, while others
NO MIGRATION VA		ASSIGNMENT			TRUCON CO	DDE	
PINAL WASTE FOR Defense TRU W Non-Defense TI Commercial TRI Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Operations Waste Residues Decon and Decomm Environmental Resto From Treatment of W Maintenance	issioning pration	TSCA Asbestos PCBs Other N/A Unknown	X

RL-T148 CONTAINER Type/Size				ner Matl: steel Vol/Ctnr: 1	.9 m3 Li	Liner Type: bag ner Material: plastic		Number S Number Proj	ļ
TYPICAL WASTE DENSIT	ES FOR F	INAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL	ISOTOPIC C	 OMPOSITIO
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	706.7	0.0	0.0		Projected	Final Form	Pu238	8.29E-01	Curies/m3
Aluminum-Based Metals/Alloys		0.0	0.0	End of 1992:	0.8	0.8 m3	Pu239	3.26E+01	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.8	0.8 m3	Pu240	7.31E+00	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	8.22E+01	Curles/m3
Cellulosics	11.4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	4.26E-04	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	3.71E+00	Curles/m3
Plastics	24.2	0.0	0.0	1997:	0.0	0.0 m3/ry	S r90	4.59E+01	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002;	0.0	0.0 m3/yr	Cs137	5.00E+01	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr	Y90	4.59E+01	Curies/m3
Soils	0.0	0.0	0.0	ı			Ba137m	4.73E+01	Curies/m3
Packaging Materials, Steel	154.0		L	TYPICA	L EPA CODE	S APPLICABLE	U-dep	2.10 E -02	Curies/m3
Packaging Material, Plastic	1.2						U-enr	1.43E-01	Curies/m3
Comments							U-nat	2.41E-04	Curies/m3

RL-T148 - 2

RL - 189

SITE NAME RL				WAST	E TYPE TRU HANDL	ING RH	GENERATOR S	SITE RL
WASTE STREAM MATRIX CODE		RL-T149 RL-TB-149 5400	9	DESCRIPTION	325 A R&D TRU Calsson W This waste stream consists Radiochemistry Building.		from the Cesium Ri	ecovery Facility of the
SITE FINAL FORM I Waste Matrix Cod Site Matrix Des	le Group F scription T w a c	ypically, 70 raste in dru- nd sectione ombustible olyethylene	to 80% of waste in ome is noncombustibled glove boxes, hood materials in boxes me bottles, gloves and	e waste, such as faile is, ducting, conduit, la nay include cotton rag rubber. Absorbed cor	ed machinery, tools, glass, co Athes, pumps, piping, fans, lig Is and clothing, plastic sheeti Inbustible liquids such as oils	oncrete, plumb pht fixture, insti ing, plastic pipe have also bee	ing and fixture and umentation, tools, o e, tape, ladders, ple en placed in some d	s. Approximately 20 to 30 % of soil. Boxes typically contain whole conveyor sections, wire, etc. The exiglass, step benches, frums and boxes. Drums and particulate air filters, while others
NO MIGRATION VA	RIANCE F	ETITION A	e liiters and other wa	sle forms.		CON CODE		
Defense TRU \ Non-Defense T Commercial TF Unknown	Naste RU Waste	X	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	v x	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance		CA Asbestos PCBs Other N/A Unknown	X

101004

RL-T149 - 1

RL - 190

ENAME RL	AIR PROF	ILE FOR IN		TE TYPE TRU	_	INVENTORY RELING RH GEN	EPORT IERATOR S	ITE RL	
RL-T149 CONTAINER: Type/Size: TYPICAL WASTE DENSITI		r (for box waste)	Int,	n3) STORED	TRU WASTI	Liner Type: iner Material: E ESTIMATED	TYPICAL	Number 9 Number Pro	jected:
Material Parameters	Average	Lower Limit	Upper Limit	RATES	OF WASTE	GENERATION	Nuclide	Activity	
Iron-based Metals/Ailoys	706.7	0.0	0.0		Projected	Final Form	Pu238	2.87E-03	Curies/m3
Aluminum-Based Metals/Alloys	168.9	0.0	0.0	End of 1992:	0.4	0.4 m3	Pu239	1.80E-02	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0.4	0.4 m3	Pu240	8.99E-03	Curies/m3
Other Inorganic Materials	39.4	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu241	5.64E-01	Curies/m3
Cellulosics	11,4	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu242	2.56E-07	Curies/m3
Rubber	0.3	0.0	0.0	1996:	0.0	0.0 m3/yr	0e1 2	8.18E-03	Curies/m3
Plastics	24.2	0.0	0.0	1997;	0.0	0.0 m3/ry	Cs137	8.74E-03	Curies/m3
Solidified, Inorganic matrix	4.4	0.0	0.0	1998-2002:	0.0	0.0 m3/yr	Y90	8.18E-03	Curies/m3
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022;	0.0	0.0 m3/yr	Ba137m	8.27E-03	Curies/m3
Soils	0.0	0.0	0.0	1					
Packaging Materials, Steel	435.0	 ,		TYPICA	L EPA CODE	S APPLICABLE			
Packaging Material, Plastic	0.0								
Comments									

Upper and lower weights for final waste form are unknown.

RL-T149 CONTAINER: Type/Size:	(for drum waste	`	ainer Matl: Steel . Vol/Ctnr: 0.	Number Stored: Number Projected:					
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/	RATES		E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITIO
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	552.0 87.0 0.0 43.0 105.0 45.0 107.0 15.0 0.0 18.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0	0.4 m3 0.4 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/ry 0.0 m3/yr 0.0 m3/yr	Pu238 Pu239 Pu240 Pu241 Pu242 Sr90 Cs137 Y90 Ba137m	2.13E-03 1.34E-02 6.66E-03 4.18E-01 1.90E-07 6.06E-03 6.47E-03 6.12E-03	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Packaging Materials, Steel Packaging Material, Plastic	527.0 26.0								

SITE NAME RL			WAST	E TYPE TRU HANDLIN	ICH (SENERATOR SI	TE RL
WASTE STREAM	MWIR ID WIPP ID RL-	-T150	STREAM NAME	234 5Z High Activity TRU CH	Waste	· · · · · · · · · · · · · · · · · · ·	
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code		10		This waste stream consists of high in fission product activity.		n the Plutonium F	inishing Plant that is relatively
Site Matrix Des	waste and se combu polyeti boxes	in drums is noncombust ectioned glove boxes, ho ustible materials in boxes thylene bottles, gloves an	lble waste, such as faile ods, ducting, conduit, la may include cotton rag of rubber. Absorbed cor al of high-efficiency par	ethes, pumps, piping, fans, ligh gs and clothing, plastic sheeting mbustible liquids such as oils h	icrete, plumbing it fixture, instrum g, plastic pipe, t nave also been p	and fixture and si entation, tools, co spe, ladders, plex laced in some dri	oil. Boxes typically contain whole onveyor sections, wire, etc. The lqtass, step benches.
NO MIGRATION VA	RIANCE PETIT	TION ASSIGNMENT		TRUC	ON CODE		
FINAL WASTE FOR	M DESCRIPTO	DRS:					
Defense TRU W Non-Defense TF Commercial TRI Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed 1 Unknown	TRU X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	x

	n3) STORED	_ TRU WASTE	Liner Type: bag iner Material:plastic E-ESTIMATED		Number S Number Pro	
	NATES C			TYPICAL		
nit Upper Limit		JE WASTE	GENERATION			OMPOSITION
Opper Cillin			SCHERATION	Nuclide	<u>Activity</u>	
0.0	1	Projected	Final Form		2.43E-01	Curies/m3
0.0	End of 1992:	127.0	127 0 m3	Pu239	9.55E+00	Curies/m3
0.0	End of 1993:			Pu240	2.14E+00	Curies/m3
0.0	1994:		}	Pu241	2.41E+01	Curies/m3
0.0	- 1.		· · · · · · · · · · · · · · · · · · ·	Pu242	1.25E-04	Curies/m3
ł	· · · · · .			Am241	1.09E+00	Curies/m3
-	· L			Sr90	3.53E-02	Curles/m3
4 1				Cs137	3.77E-02	Curies/m3
	L			Y90	3.53E-02	Curies/m3
	2003-2022: [0.0	0.01 m3/yr	Ba137m	3.57E-02	Curies/m3
) [TYPICAL	EPA CODE	S APPLICABLE	U-dep	8,79E-07	Curies/m3
		_		U-enr	8.29E-05	Curies/m3
				U-nat	6.50E-07	Curies/m3
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 End of 1992: 0.0 End of 1993: 0.0 1994: 0.0 1996: 0.0 1997: 0.0 1998-2002: 0.0 2003-2022:	0.0 End of 1992: 127.0 0.0 End of 1993: 127.0 0.0 1994: 0.0 0.0 1996: 0.0 0.0 1997: 0.0 0.0 1998-2002: 0.0 0.0 2003-2022: 0.0	0.0	0.0	0.0

RL-T150 CONTAINER: Type/Size:				ainer Mati: steel . Vol/Ctnr: 0.20)8m3 Li	Liner Type: rigid ner Material: HDPE		Number S Number Pro	<u> </u>
TYPICAL WASTE DENSITII Material Parameters	ES FOR F	INAL WASTE	FORM (kg/ Upper Limi	RATES (ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
Iron-based Metals/Alloys	552.0	0.0	0.0	-	Drainatad	Einal Form	Pu238	1.80E-01	Curies/m3
Aluminum-Based Metals/Alloys	87.0	0.0	0.0	End of 1992:	Projected 122.0	Final Form 164.0 m3	Pu239	7.07E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	122.0	164.0 m3	Pu240	1.59E+00	Curies/m3
Other Inorganic Materials	43.0	0.0	0.0	1994:	0.0	 	Pu241	1.79E+01	Curies/m3
Cellulosics	105.0	0.0	0.0	1995;	0.0	0.0 m3/yr	Pu242	9.25E-05	Curies/m3
Rubber	45.0	0.0	0.0			0.0 m3/yr	Am241	B.06E-01	Curies/m3
Plastics	107.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Sr90	2.62E-02	Curies/m3
Solidified, Inorganic matrix	15.0	0.0	0.0	1997:	0.0	0.0 m3/ry	Cs137	2.79E-02	Curies/m3
Solidified, Organic matrix	0.0	0.0		1998-2002:	0.0	0.0 m3/yr	Y90	2.62E-02	Curies/m3
Soils	18.0		0.0	2003-2022: [0.0	0.0 m3/yr	Ba137m	2.64E-02	Curies/m3
		0.0	0.0	TYPICA	L EPA CODE	S APPLICABLE	U-dep	6.51 E -07	Curies/m3
Packaging Materials, Steel	131.0			•			U-enr	6.14E-05	Curies/m3
Packaging Material, Plastic	37.0						U-nat	4.81E-07	Curies/m3

00100

RL-T150 - 3

RL - 195

SITE NAME RL		WAST	E TYPE TRU HANDLING RH GENERATOR SITE RL
WASTE STREAM MWI	R ID P ID RL-T202	STREAM NAME	Projected RH-TRU Waste
Loc MATRIX CODE SITE FINAL FORM IDC	5400 001		The waste stream consists of projected TRU waste from 1994 to 2022. A major portion of the projected waste is from facility transition activities at former fuel reprocessing facilities at the Hanford Site.
	* *	cs, paper, absorbents,	falled machinery, tools, glass, concrete, plumbing, fixtures, and soils. The composition will vary TRUCON CODE
FINAL WASTE FORM DE	SCRIPTORS;		
Delense TRU Waste Non-Delense TRU W Commercial TRU Was Unknown	··· · · · · · · · · · · · · · · ·	RU	Rsearch and Devel Waste X TSCA Asbestos Operations Waste X PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

01010

RL-T202 - 1

RL - 196

SITE NAME RL

WASTE TYPE TRU

HANDLING RH

Page RL-T202 - 2

RL-T202

7**23.**

CONTAINER; RH Canister Type/Size: RH Canister Container Mati: Steel 0.89 m3 Int. Vol/Ctnr:

Liner Type: Liner Material:

Number Stored: **Number Projected:**

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

Material Parameters	Average	Lower Limit	Upper Limi
Iron-based Metals/Alloys	17.0	0.7	410.0
Aluminum-Based Metals/Alloys	4.0	0.2	110.0
Other Metals	0.0	0.0	0.0
Other Inorganic Materials	0.0	0.0	0.0
Cellulosics	27.0	0.0	481.0
Rubber	11.0	0.0	139.0
Plastics	28.0	1.8	456.0
Solidified, Inorganic matrix	0.0	0.0	0.0
Solidified, Organic matrix	0.0	0.0	0.0
Solls	7.0	0.4	193.0
Packaging Materials, Steel	435.0		

0.0

<u>it</u>	RATES	OF WASTE	GENERATIO	N.
		Projected	Final Form	
	End of 1992:	0.0	0.0	m3
	End of 1993:	0.0	0.0	m3
	1994:	2.0	2.0	m3/yr
	1995:	103.0	103.0	m3/yr
	1996:	39.0	39.0	m3/yr
	1997:	2.0	2.0	m3/ry
	1998-2002:	16.0	16.0	m3/yr
	2003-2022:	51.0	51.0	m3/vr

STORED TRU WASTE ESTIMATED

TYPICAL EPA CODES APPLICABLE

TYPICAL ISOTOPIC COMPOSITION

<u>Nuclide</u>	Activity
Pu239	Curles/m3
Pu240	Curies/m3
Sr90	Curies/m3
Y90	Curies/m3
Cs137	Curies/m3
Ba137m	Curies/m3

Comments

Packaging Material, Plastic

Activity for these radionuclides is unknown.

Footnotes

An additional 11, 861 m3 of "suspect" nonmixed RH-TRU waste has been reported by Hanford in the data submittals. Sufficient information is currently unavailable on the processes that are anticipated to generate this waste, to ascertain if this waste would be eligible for disposal in WIPP as RH-TRU. Additional information has been requested from Hanford to resolve this issue in Revision 2 of the WTWBIR.

Sandia National Laboratory - New Mexico

SANDIA NATIONAL LABORATORIES/NEW MEXICO (SA) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the SA waste stream profiles:

- Final Waste Form Groups were not provided by SA. In order to permit roll-ups of the data, the WTWBIR team assigned Final Waste Form Groups based on the descriptions and parameters provided by SA.
- · ITRI waste stream(s) are included in the SA submittal.

SITE NAME SA		WAST	TE TYPE TRU HANDLIN	NG CH GENERATOR	SITE
WI Lo MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Gro	PP ID SA-T001 cal ID None 8900 pup Heterogeneous tion Waste is in final form.	DESCRIPTION	Lovelace ITRI Waste Stream Heterogeneous mixture of me and aluminum parts, paper, pl	etals and combusitble lab trash	including stainless steel foil, brass ss. There are no liquids.
NO MIGRATION VARIAN	NCE PETITION ASSIGNMENT		TRUC	CON CODE	
PINAL WASTE FORM DE Defense TRU Waste Non-Defense TRU W Commercial TRU W Unknown	X Mixed TRU Vaste Non-Mixed T	RU X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA Asbestos PCBs Other N/A Unknown	X

001014

SA-T001 - 1

SA - 1

SA-T001 CONTAINER: Drum Type/Size: 55-gallon				Container Matt: steel Liner Type: Int. Vol/Ctnr: 0.208 m3 Liner Material: PVC			Number Stored: Number Projected:		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n	NATES (TRU WASTI OF WASTE	E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC COMPOS	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	20.0 3.0 6.0 15.0 3.0 4.0 40.0 3.0	10.0 1.0 2.0 10.0 1.0 2.0 20.0 1.0	30.0 5.0 10.0 20.0 5.0 6.0 60.0 5.0	End of 1992: End of 1993; 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	7.0 7.0 0.0 5.0 0.0 0.0 0.2 0.1	7.0 m3 7.0 m3 7.0 m3 9.0 m3/yr 9.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.1 m3/yr 0.1 m3/yr	Am241 Cm244 Pu239 Np237	2.50E-01 Curies/ 8.00E-01 Curies/ 5.00E-01 Curies/ 1.20E-02 Curies/	
Packaging Materials, Steel Packaging Material, Plastic Comments	80.0 10.0					SAFEIGABLE		-	

SA-T001 - 2

SA - 2

SITE NAME SA				WAST	TE TYPE MTRU HANDLING CH GENERATOR SITE SA
WASTE STREAM MATRIX CODE SITE FINAL FORM ID Waste Matrix Code	Local ID C Group Ho	SA-W134 none 8900 eterogeneo	T -11 -11 -11 -11 -11 -11 -11 -11 -11 -1		Transuranic Waste at Hot Cell Facility Predominately metal lab trash including saw blades, copper & brass fittings. Balance of waste is combustible lab trash including rubber gloves and Tygon tubing. There are no liquids.
Site Matrix Desc					TRUCON CODE
FINAL WASTE FORM Defense TRU W Non-Defense TR Commercial TRU Unknown	/aste ₹U Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste X TSCA Asbestos Operations Waste PCBs Residues Other Decon and Decommissioning N/A X Environmental Restoration Unknown From Treatment of Waste Maintenance

SA-W134 - 1

SA - 3

SA-W134 CONTAINER: Type/Size:	·		 -	ainer Mati: steel t. Voi/Ctnr: 0.2	08m3 Li	Liner Type: ner Material: PVC		Number 9 Number Pro	- -
TYPICAL WASTE DENSITI Material Parameters	ES FOR F	INAL WASTE	FORM (kg/	RATES		E-ESTIMATED GENERATION	TYPICAL Nuclide	ISOTOPIC C	OMPOSITION
iron-based Metals/Alloys	2.0	1.0	3.0	<u>•</u>	Projected	Final Form	Am241	1.00E-02	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:		1.0 m3	Pu239	5.00E-06	Curies/m3
Other Metals	2.0	1.0	3.0	End of 1993:		1.0 m3			
Other Inorganic Materials	1.0	1.0	1.0	1994:	0.0	0.0 m3/yr			
Cellulosics	2.0	1.0	3.0	1995:	0.0	0.0 m3/yr			
Rubber	2.0	1.0	3.0	1996:	0.0	0.0 m3/yr			
Plastics	2.0	1.0	3.0	1997:	0.0	0.0 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr			
Soils	0.0	0.0	0.0	Tomas a	4 554 2025				
Packaging Materials, Steel	80.0			IYPICA		S APPLICABLE			-
Packaging Material, Plastic	10.0				UNK				
Comments									

SA-W134 - 2

SA - 4

SAVANNAH RIVER SITE (SR) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the SR waste stream profiles:

- SR Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by SR.
- SR provided total projections for the years 1993 to 2022 instead of annual waste generation rates. The WTWBIR team modified the site data by dividing the SR total projections equally across the years 1993 to 2022. This was necessary to maintain consistency with the other sites and to roll-up the volumes correctly. The years to which the volumes are assigned may not be meaningful.
- An RH-TRU waste stream has been compiled from IDB volumes and information from SR to make the RH-TRU in the WTWBIR consistent with that in the IDB.

SITE NAME SR	·		WAST	E TYPE TRU HA	NDLING CH	GENERATOR SITE	E SR]
MATRIX CODE SITE FINAL FORM II Waste Matrix Cod Site Matrix Des	e Group Solidified O	DE	EAM NAME	Non-mixed TRU derived	d from IDB.			
NO MIGRATION VA		ASSIGNMENT			TRUCON COL	DE		
Defense TRU V Non-Defense T Commercial TR Unknown	Vaste X RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	X I	Rsearch and Devel, Wa Operations Waste Residues Decon and Decommissi Environmental Restorati From Treatment of Wast Maintenance	X X Ianing Iani	TSCA Asbestos PCBs Other N/A Unknown	- X	

01020

SR-T001 - 1

SR - 1

ENAME SR			WA	STE TYPE TRU	HANDL	ING CH GEN	ERATOR S	ITE SR	
SR-T001 CONTAINER: Type/Size: TYPICAL WASTE DENSITI	55-gallon	INAL WASTE	Int.	m3) STORED	TRU WASTE	Liner Type: ner Material: ESTIMATED		Number S Number Pro	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	RATES	DF WASTE	GENERATION	Nuclide	<u>Activity</u>	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu238	5.98E+01	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	198.2	396.4 m3	Pu239	1.05E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	202.4	404.8 m3	Pu240	2.60E-01	Curles/m3
Other Inorganic Materials	548.1	206.7	673.1	1994;	4.2	8.3 m3/yr	Pu241	1.25E+01	Curies/m3
Cellulosics	0.0	0.0	0.0	1995:	4.2	8.3 m3/yr	Am241	1.70E+00	Curies/m3
Rubber	0.0	0.0	0.0	1996:	4.2	8.3 m3/yr	Others	1.00E-02	Curies/m3
Plastics	0.0	0.0	0.0	1997:	4.2	8.3 m3/ry			
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	4.2	8.3 m3/yr			
Solidified, Organic matrix	394.2	149.0	485.6	2003-2022:	4.2	8.3 m3/yr			
Soils	0.0	0.0	0.0	ι					
Packaging Materials, Steel	131.0		L	TYPICA	L EPA CODE	S APPLICABLE			-
Packaging Material, Plastic	0.0								
Comments Other radionuclides present - act	ivity is report	ed as less than 0	.01 curies/m3						

Footnotes

Numbers of containers in storage is from "End of 1993 Projected" numbers (202.35 m3 = 973 drums). Number of projected containers equals 973 drums from repackaging of stored waste to final form plus the number of containers from final form of newly generated waste (1157 drums).

SITE NAME SR			WASTE TYPE TRU	HANDLING CH	GENERATOR SIT	TE SR
WASTE STREAM MATRIX CODE SITE FINAL FORM ID	MWIR ID SR-T002 Local ID		SCRIPTION Non-mixed TR	U deried from IDB.		
Waste Matrix Cod	e Group Combustible	<u> </u>				
Site Matrix Des	<u></u>					
NO MIGRATION VA	RIANCE PETITION	ASSIGNMENT		TRUCON CO	ODE	
FINAL WASTE FOR	RM DESCRIPTORS:	•				· ·
Defense TRU V Non-Defense T Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and D X Operations Wa Residues Decon and Dec Environmental From Treatmer Maintenance	commissioning Restoration	TSCA Asbestos PCBs Other N/A Unknown	X

01022

SR-T002 - 1

SR - 3

WASTE TYPE TRU

HANDLING CH

GENERATOR SITE SR

SR-T002

CONTAINER: Drum
Type/Size: 55-gallon

Container Mati; steel
Int. Vol/Cinr: 0.208 m3

Liner Type: Liner Material: Number Stored: 19552 Number Projected: 57512

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3)

_		
<u>A verage</u>	<u>Lower Limit</u>	<u>Upper Limit</u>
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
2.9	0.0	7.2
575.6	105.8	961.5
55.2	55.2	163.5
165.6	105.8	288.5
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
131.0		
	0.0 0.0 2.9 575.6 55.2 165.6 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 575.6 105.8 55.2 55.2 165.6 105.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

STORE	D TR	U WAST	E ESTIMATE	D
RATES	OF	WASTE	GENERATIO	N

	Projected	Final Form
End of 1992:	3654.3	3654.3 m3
End of 1993;	4066.8	4066.8 m3
1994:	412.5	412.5 m3/yr
1995:	412.5	412.5 m3/yr
1996:	412.5	412.5 m3/yr
1997:	412.5	412.5 m3/ry
1998-2002:	412.5	412.5 m3/yr
2003-2022;	412.5	412.5 m3/yr

TYPICAL EPA CODES APPLICABLE

TYPICAL ISOTOPIC COMPOSITION

Nuclide	<u>Activity</u>	
Pu238	5.98E+01	Curies/m3
Pu239	1.05E+00	Curies/m3
Pu240	2.60E-01	Curies/m3
Pu241	1.25E+01	Curies/m3
Am241	1.70E+00	Curies/m3
Others	1.00E-02	Curies/m3

Comments

Packaging Material, Plastic

Other radionuclides present - activity is reported as less than 0.01 curies/m3.

0.0

SITE NAME SR	WASTE TYPE TRU HANDLING RH GENERATOR SITE SR
WASTE STREAM MWIR ID TS-01 WIPP ID SR-T003 Local ID 049/050 MATRIX CODE 5400 SITE FINAL FORM IDC Waste Matrix Code Group Heterogeneous Site Matrix Description This waste is concepted a river of	STREAM NAME RH TRU Waste DESCRIPTION Heterogeneous Debris generated from the SRTC High Level Caves.
no MIGRATION VARIANCE PETITION ASSIGNMENT FINAL WASTE FORM DESCRIPTORS:	y through research activities from on-site laboratories. This waste stream is primarily solids consisting of labware, aste. TRUCON CODE
Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed TRU Unknown Unknown	Rearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown
Footnotes	

This waste stream has been created for the WTWBIR by the WTWBIR to be consistent with Draft Rev. 10 of the IDB.

NAME SR			WAS	TE TYPE TRU	IDNAH	ING RH GEN	ERATOR S	ITE SR	
SR-T003 CONTAINER: Type/Size:			Int.	ner Matt: Steet Vol/Ctnr: 0.20	08/m3 Li	Liner Type: iner Material:		Number S Number Pro	ected: (
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/n			ESTIMATED GENERATION			OMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	TOTAL S	OI WASIL	GENERATION	<u>Nuclide</u>	Activity	
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	SR90	3.28E+00	Curles/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992;	0.0	0.0l m3	Y90	3.28E+00	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993;	0.0	0.0 m3	Cs137	3.28E+00	Curies/m3
Other Inorganic Materials	2.9	0.0	7.2	1994:	2.0	4,0 m3/yr	Ba137m	3.10E+00	Curies/m3
Cellulosics	575.6	105.8	961.5	1995:	1,1	2.1 m3/yr	Pm147	8.13E-01	Curies/m3
Rubber	55.2	55.2	163.5	1996:	1.1	2.1 m3/yr	Pu238	1.69E-01	Curies/m3
Plastics	165.6	105.8	288.5	1997:	1.1	2.1 m3/ry	Cm244	2,43E+00	Curles/m3
Solldified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	1,1	2.1 m3/yr			
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	1,1	2.2 m3/yr			
Soils	0.0	0.0	0.0						
Packaging Materials, Steel	0.0	L	<u> </u>	TYPICA	L EPA CODE	S APPLICABLE			-
Packaging Material, Plastic	0.0								

Footnotes

For this waste stream profile the generation of this waste stream has been projected to 2022, two mroe years than in the Draft IDB, Rev. 10.

SITE NAME SR	WASTE TYPE MTRU HANDLING CH GENERATOR SITE SR
WASTE STREAM MWIR ID SR-W006 WIPP ID SR-W006 Local ID 2000 SITE FINAL FORM IDC Waste Matrix Code Group Solidified Organics Site Matrix Description Laboratory waste from plutoni	STREAM NAME Organic liquids DESCRIPTION Mixed TTA/Xylene Jum extractions generated in the Savannah River Technology Center (SRTC) 773-A Facility. Homogeneous, liquid,
flammable, xylene-based chel	lating agent. TTA - Thenoyl trifluoroacetone.
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste X Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste Suspect Mixed Unknown Unknown	

ENAME SR			WAS	STE TYPE MTRU	」 HAND	LING CH GEN	IERATOR S	SITE SR
SR-W006 CONTAINER: Type/Size: TYPICAL WASTE DENSITE	55-gallon	INAL WASTE	Int.	Vol/Cinr: 0.20	1	<u> </u>		Number Stored: 1 Number Projected: 0
Material Parameters				RATES (DE WASTE	E-ESTIMATED GENERATION		
*	Average	Lower Limit	Upper Limit		<u>·</u>			Activity
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	Pu239	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0				Am241	Curies/m3
Other Metals	0.0	0.0	├					
Other Inorganic Materials	548.1	206.7						
Cellulosics	0.0	0.0		· · · · · · · · · · · · · · · · · · ·				
Rubber	0.0	0.0	1——	· · · · · · · · · · · · · · · · · · ·		— —		
Plastics	0.0	0.0						
Solidified, Inorganic matrix	0.0	0.0	——					
Solidified, Organic matrix	394.2	149.0		J.		}		
Soils	0.0	0.0		1000 1011.		0.00 1113/y1		
Packaging Materials, Steel	131.0		Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: 0 TEFORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity					
Packaging Material, Plastic	0.0				D001A			

Footnotes

SRS reported the following activities: Pu239 10E+05 microcuries/gram; Am241 10E+03 dpm/m

SITE NAME SR				WAS	TE TYPE MTRU	HANDLING CI	H G	ENERATOR S	SITE SR	
WASTE STREAM	MWIR ID WIPP ID Local ID	SR-W026			Heterogeneous De					
MATRIX CODE SITE FINAL FORM (I		5400		DESCRIP HOP	. Thirds TNO Waste					
Waste Matrix Code Site Matrix Des	cription 20	00 Areas (F her job con	and H Separations	aste is generated pri	ste is primarily solids imarily through separ					
NO MIGRATION VA	RIANCE PI	<u>ΕΠΠΟΝ Α</u>	SSIGNMENT			TRUCON C	ODE			
PINAL WASTE FOR Defense TRU V Non-Defense T Commercial TR Unknown	Vaste RU Waste	X X	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	RU X	Rsearch and Devel Operations Waste Residues Decon and Decomi Environmental Res From Treatment of Maintenance	missioning toration	TSCA	Asbestos PCBs Other N/A Unknown	X	

301028

WASTE TYPE MTRU HANDLING CH SITE NAME SR GENERATOR SITE SR CONTAINER: Drum SR-W026 Container Matt: steel Liner Type: Number Stored: 534 Type/Size: 55-gallon int. Voi/Cinr: 0.208 m3 Liner Material: Number Projected: 12859 TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide Activity Material Parameters **Lower Limit** Upper Limit Average Pu238 5.98E+01 Curies/m3 0.0 Iron-based Metals/Alloys 0.0 0.0 Projected Final Form Pu239 1.05E+00 Curies/m3 0.0 0.0 0.0 End of 1992: 66.9 133.8 m3 Aluminum-Based Metals/Alloys Pu240 2.60E-01 Curies/m3 0.0 0.0 End of 1993: 111.1 222.2 m3 Other Metals 0.0 Pu241 1.25E+01 Curies/m3 2.9 0.0 7.2 Other Inorganic Materials 1994: 44.2 88.4 m3/yr Am241 1.70E+00 Curies/m3 575.6 105.8 961.5 1995: 44.2 88,4 m3/yr Cellulosics Others 1.00E-02 Curies/m3 55.2 55.2 163.5 1996: 44.2 88.4 m3/yr Rubber 105.8 288.5 44.2 **Plastics** 165,6 1997: 88.4 m3/rv 0.0 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 44.2 88.4 m3/yr 0.0 0.0 0.0 2003-2022: 44.2 88.4 m3/yr Solidified, Organic matrix 0.0 0.0 Soils 0.0 TYPICAL EPA CODES APPLICABLE 131.0 Packaging Materials, Steel D001C Packaging Malerial, Plastic 0.0 D003D Comments D004A Other radiouclides present - activity is reported as less than 0.01 curies/m3. D006A **Footnotes** D007A Number of containers in storage is from "End of 1993 Projected" numbers (111.1 D008A m3 = 534 drums). Number of projected containers equals 534 drums from repackaging of stored waste to final form plus the number of containers from final D009A form of newly generated waste (12325 drums). D011A D018 D019 D022 D023 D024 D025 D026 P012

SR-W026 · 2

3

À

SR - 10

SITE NAME SR	WASTE TYPE MTRU HANDLING CH GENERATOR SITE SR
	P015
	P048
	P113
	P120
	U002
	U032
	U052
	U080
	U133
	U134
	U144
	U151c
	U154
	U161
	U209
	U211
	U220
	U226
	1/220

SITE NAME SR		WASTE TYPE MTRU HANDLING CH GENERATOR SITE SR
WIPI Loca MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Grou	n 200 Areas (F and H Separation includes small amounts of TRU	STREAM NAME Heterogeneous Debris DESCRIPTION Solvent TRU Waste as Facilities). This waste is generated primarily through separation activities in the course of plutonium production and waste from on site laboratories. This waste stream is primarily solids consisting of booties, lab coats, floor sweepings,
NO MIGRATION VARIANC	labware, rags, and other job con	TRUCON CODE
PINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Was Commercial TRU Was Unknown	X Mixed TRU Ste Non-Mixed TRU	RSearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A V Unknown

301031

SR-W027 - 1

SR - 12

			 -				ERATOR S	<u> </u>	
SR-W027 CONTAINER: Type/Size:				iner Matl: steel Vol/Ctnr: 0.20	18 m3 Li	Liner Type: ner Material:		Number S Number Proj	Stored: 23
TYPICAL WASTE DENSITE	ES FOR FINA	_ WASTE F	ORM (kg/n	n3) STORED	TRU WASTE	ESTIMATED	TYPICAL	ISOTOPIC C	 OMPOSIT
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 0.0 0.0 2.9 575.6 55.2 165.6 0.0 0.0	0.0 0.0 0.0 0.0 105.8 55.2 105.8 0.0 0.0	961.5 163.5 288.5 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	Projected 4955.5 4955.5 0.0 0.0 0.0 0.0 0.0	### GENERATION Final Form 9910.0 m3 9910.0 m3/yr 0.0 m3/y	Nuclide Pu238 Pu239 Pu240 Pu241 Am241 Others	Activity 5.98E+01 1.05E+00 2.60E-01 1.25E+01 1.70E+00 1.00E-02	Curies/m Curies/m Curies/m Curies/m Curies/m
Packaging Materials, Steel Packaging Material, Plastic	131.0 0.0			111100	D001C	S ATT CIONDEC			•
Comments					D003D				
Other radionuclides present - act	vity is reported as	less than 0.0	1 curies/m3.		D004A				
Footnotes					D006A				
Number of containers in storage (4955.5m3 = 23825 drums). Nun stored waste.	s from "End of 19 nber of projected o	93 Projected" containers is fr	numbers om repackag	ging	D007A D008A D009A D011A				
					D011A D018 D019				
					D022 D023				
					D024 D025				
					D026 F001				

SR - 13

SITE NAME SR	WASTE TYPE MTRU HANDLING CH GENERATOR SITE SR
	F002
	F003
	F005A
	P012
	P015
•	P048
	P113
	P120
	U002
	U032
	U052
	U080
	U133
	U134
	U144
	U151C
	U154
	U161
	U209
	U211
	U22()
	U226
	U239

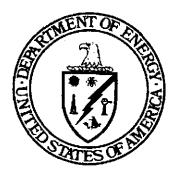
SITE NAME SR			TZAW	E TYPE MTRU HANDLI	NG CH	GENERATOR SI	TE SR
WASTE STREAM	MWIR ID SR-W053 WIPP ID SR-W063 Local ID		STREAM NAME	Ash Rocky Flats Incinerator Ash			
MATRIX CODE SITE FINAL FORM ID Waste Matrix Code		rganics					•
Site Matrix Desc	material was	Rocky Flats incinerato sent to SRS to investig π and the flow sheet ex	gate possible flow	sheets for the recovery of SNA	rch purposes. It M (plutoníum). T	is stored in a sat he ash was class	deliite area in 235-F. The sample sified as waste by the Colorado
NO MIGRATION VAR		SSIGNMENT		TRUC	ON CODE		
PINAL WASTE FORM Defense TRU WASTE TRU Non-Defense TR Commercial TRU Unknown	aste X U Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown		Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	X TSCA	Asbestos PCBs Other N/A Unknown	X

いっぱいけば

SR-W053 - 1

SR - 15

TE NAME SR			WA	STE TYPE MTR	J HANDI	LING CH GEN	ERATOR S	SITE SR
SR-W053 CONTAINER: Type/Size:	55-gallon		Int		08]m3 L	Liner Type: iner Material:		Number Stored: 0 Number Projected: 0
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solldified, Inorganic matrix Solldified, Organic matrix Solls Packaging Materials, Steel	0.0 0.0 0.0 489.0 0.0 0.0 0.0 208.9 0.0 131.0	NAL WASTE Lower Limit	FORM (kg/ Upper Limit 0.0 0.0 0.0 754.8 0.0 0.0 0.0 519.2 0.0	End of 1992: End of 1993: 1994: 1996: 1997: 1998-2002: 2003-2022:	Projected	E ESTIMATED GENERATION Final Form 0.04 m3 0.00 m3/yr 0.00 m3/yr 0.00 m3/yr 0.00 m3/yr 0.00 m3/yr 0.00 m3/yr 0.00 m3/yr	TYPICAI Nuclide Pu239	L ISOTOPIC COMPOSITION Activity Curies/m3
Packaging Material, Plastic Footnotes Pu239 activity reported as 10E+0	0,0	s/gram			D005A D006A D007A D008A D009A D010A D011A F001 F002 F005X			

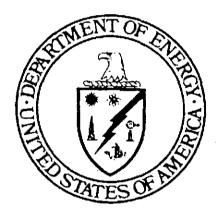

SANDIA NATIONAL LABORATORIES TECHNICAL LIBRARY

AO-94-1005 Revision 1

SANDIA NATIONAL LABORATORIES NWMP LIBRARY 6352 P. O. BOX 5800 ALBUQUERQUE, NM 87185-1330

cy,2

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report


February 1995

Volume 3

001036

PROPERTY NWW LIERARY

Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report

February 1995

Prepared by WIPP Technical Assistance Contractor for U.S. Department of Energy under Contract No. DE-AC04-93AL-96904

Volume 3

Information Only

001037

APPENDIX B

Site Name: AMES LAB

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AL-W005	0	0.1	0.1
Total Volume:	0.00	0.10	0.10

Material Parameters (kg/	m3) Maximum	Average	<u>Minimum</u>
Inorganics Iron B	used 0.0	0.0	0.0
Aluminum B	ased 0.0	. 0.0	0.0
Other Me	tals 0.0	0.0	0.0
Other Inorga	nics 528.8	394.2	173.1
Organics Cellu	lose 0.0	0.0	0.0
Rub	ber 0.0	0.0	0.0
Plas	tics 0.0	0.0	0.0
Solidified Materials Inorga	nic 528.6	399.0	173.1
Orga	nic 0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: ANL-E

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
AE-W041	0.7	0	0.7
AE-W042	0.4	0	0.4
Total Volume:	1.10	0.00	1.10

Material Parameters (kg/m3)	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics Iron Based	256.1	93.1	0.0
Aluminum Based	27.8	10.1	0.0
Other Metals	913.5	201.7	24.7
Other Inorganics	29.3	10.7	0.0
Organics Cellulose	45.3	2.7	0.0
Rubber	0.0	0.0	0.0
Plastics	67.6	5.5	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: ANL-E

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AE-T001	17.96	0.56	18.52
AE-W038	4.685	0.56	5,245
AE-W040	0.4	0	0.4
Total Volume:	23.05	1.12	24.17

<u>Material Pa</u>	rameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	528.8	105.9	101.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0,0
Solidified Mate	erials Inorganic	528.8	219.3	168.3
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: ANL-E

Final Waste Form: Solidified Organics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AE-W039	0,025	0	0.025
Total Volume:	0.03	0.00	0.03

Material Param	eters (kg/m3)	Maximum	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
Alu	minum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
Oth	er Inorganics	548.1	351.0	28.8
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Material	s Inorganic	0.0	0.0	0.0
	Organic	726.0	346.2	101.0
Soils		0.0	0.0	0.0

Site Name: ANL-E

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AE-T003	4.96	0.56	5.52
Total Volume:	4.96	0,56	5.52

Material Parameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	913.5	302.9	76.9
Other Inorganics	0.0	0.0	0.0
Organics Cellulose	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	0.0	0.0	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: ANL-W

Final Waste Form: Heterogeneous

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
AW-T001	0	3.36	3,36
Total Volume:	0.00	3,36	3.36

Material Paramo	eters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	337.3	162.5	141.3
Aluı	minum Based	49.7	29.8	27.9
(Other Metals	35.0	4.5	0.1
Oth	er Inorganics	56.4	19.0	13.4
Organics	Cellulose	552.7	275.5	58.9
	Rubber	133.3	36.4	28.5
	Plastics	290.1	114.5	62.5
Solidified Materials	s Inorganic	4.9	2.6	2.5
	Organic	2.7	0.2	0.1
Soils		8.9	2.7	2.4

Site Name: ANL-W

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AW-M001	0	1.9	1.9
AW-M002	0.02	0.58	0.6
Total Volume:	0.02	2.48	2.50

Material P	arameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.9	0.2	0.0
	Aluminum Based	0.1	0.0	0.0
	Other Metals	145.0	121.1	3.2
	Other Inorganics	320.9	39.9	0.0
Organics	Cellulose	264,0	202.5	3.8
	Rubber	190,4	23.6	0.0
	Plastics	28.7	13.6	1.0
Solidified Ma	terials Inorganic	237.0	180.7	2.5
	Organic	0,0	0.0	0.0
Soils		1.2	0.1	0.0

Site Name: BT

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
BT-T002	0	15.2	15.2
BT-T003	0	108.2	108.2
BT-T004	0	0.208	0.208
BT-T005	0	0.208	0.208
Total Volume:	0.00	123.82	123.82

Material Parameters (kg/m3)		<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	700.0	301.8	0.0
	Aluminum Based	40.0	4.3	0.0
	Other Metals	10.0	0.1	0.0
	Other Inorganics	40.0	14.1	0.0
Organics	Cellulose	20.0	7.1	0.0
	Rubber	10.0	0.9	0.0
	Plastics	40.0	4.3	0.0
Solidified Ma	terials Inorganic	4.8	0.0	0.0
	Organic	0.0	0.0	0.0
Sqils		10.0	0.1	0.0

Site Name: ETEC

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
ET-T001	1.66	5.2	6.86
Total Volume:	1.66	5.20	6.86

Material Parameters	(kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iro	on Based	130.0	95.5	0.0
Aluminu	m Based	0.0	0.0	0.0
Othe	r Metals	300.0	34.8	0.0
Other Inc	organies	2100.0	1549.0	5.0
Organics (Cellulose	30.0	3.9	0.0
	Rubber	30.0	3.9	0.0
	Plastics	250.0	27.3	0.0
Solidified Materials Ir	organic	60.0	21.2	0.0
	Organic	400.0	49.4	0.0
Soils		0.0	0.0	0.0

Site Name: ETEC

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	<u>Retrievably</u> Stored (m3)	Projected (m3)	Total (m3)
ET-M001	0.21	0	0.21
Total Volume:	0.21	0.00	0.21

Material Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	185.0	185.0	185.0
Other Inorganics	0.0	0.0	0.0
Organics Cellulose	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	0.0	0.0	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: HANFORD

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M009	19.22	239.904	259,124
RL-M010	0.42	5,505	5.925
RL-M011	0.84	10,445	11.285
RL-M012	0.21	2,743	2.953
RL-M013	0.62	7,702	8.322
RL-M014	4.6	57.781	62.381
RL-M015	15.1	189.267	204.367
RL-M016	1.67	20.915	22.585
RL-T026	116.1	2810.303	2926.403
RL-T029	367.7	8924.462	9292.162
Total Volume:	526.48	12269.03	12795.51

Site Name: HANFORD

Final Waste Form: Combustible

Material Parameters (kg/m3)		<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1048.3	25.9	0,0
Alu	minum Based	1048.3	6.5	0.0
•	Other Metals	0.0	0.0	0.0
Oth	er Inorganics	0.0	0.0	0.0
Organics	Cellulose	480.8	21.0	0.0
	Rubber	211.2	10.6	0.0
	Plastics	456.1	26.1	0,0
Solidified Material	s Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		192.7	5.7	0.0

Site Name: HANFORD

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M004	4.2	565,392	569.592
RL-M006	1.63	254.063	255.693
RL-M031	0.63	7.702	8.332
RL-T101	450	0	450
RL-T102	210.45	0	210.45
RL-T104	4.95	0	4.95
RL-T105	63.5	0	63.5
RL-T106	8.07	0	8.07
RL-T107	4250	0	4250
RL-T108	28.3	0	28.3
RL-T109	15.42	0	15.42
RL-T110	402.9	0	402.9
RL-T111A	10.6	0	10.6
RL-T112	101.4	0	101.4
RL-T113	31	0	31
RL-T114	19.81	0	19.81
RL-T115	710	0	710
RL-T116	10.63	0	10.63
RL-T117	0.142	0	0.142
RL-T118	324.5	0	324.5
RL-T119	0.765	0	0.765
RL-T120	79.1	0	79.1
RL-T122	13.325	0	13.325

W			
Site Name: HANFORD			
Final Waste Form: Hete	erogeneous		
RL-T123	0.155	0	0.155
RL-T124	0,566	0	0.566
RL-T125	12.77	0	12.77
RL-T127	232.7	0	232.7
RL-T128	0.43	0	0.43
RL-T129	10.1	. , 0	10.1
RL-T130	11.8	0	11.8
RL-T131	35.2	0	35,2
RL-T132	0.849	0	0.849
RL-T133	28.7	0	28.7
RL-T134	0.143	0	0.143
RL-T135	0.287	0	0.287
RL-T136	0.141	0	0.141
RL-T137	135	0	135
RL-T138	40.9	0	40.9
RL-T139	146	0	146
RL-T140	9.27	0	9.27
RL-T141	100	0	100
RL-T142	0.85	0	0.85
RL-T143	54.82	0	54.82
RL-T144	416	0	416
RL-T145	107.7	0	107.7
RL-T146	191	0	191
RL-T148	0.847	0	0.847
RL-T150	291	0	291

B - 14

001052

Site Name: HANFORD

Final Waste Form: Heterogeneous

Total Volume:

8568.55

827.16

9395.71

Material P	arameters (kg/m3)	Maximum	<u>Average</u>	Minimum
Inorganics	Iron Based	706.7	561.8	0.0
	Aluminum Based	168.9	110.3	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	43.0	37.8	0.0
Organics	Cellulose	105.0	61.3	0.0
	Rubber	91.4	24.9	0.0
	Plastics	107.0	66.4	0.0
Solidified Mat	terials Inorganic	15.0	9.7	0.0
	Organic	0.0	0.0	0.0
Soils		18.0	9.6	0.0

Site Name: HANFORD

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M019	1.25	0.116	1.366
RL-M020	1.88	0.174	2.054
Total Volume:	3.13	0.29	3.42

Material P	arameters (kg/m3)	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	940.4	226.6	0.1
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	67.3	11.4	0.1
	Rubber	123.8	43.8	11.2
	Plastics	86.7	28.6	1.2
Solidified Mat	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		77.0	23.6	7.2

Site Name: HANFORD Final Waste Form: Soils

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M007	11.86	37.095	48.955
RL-T028	0.63	272.175	272.805
RL-T103	99.2	0	99.2
Total Volume:	111.69	309.27	420.96

Material Pa	rameters (kg/m3)	Maximum	Average	Minimum
Inorganics	Iron Based	38.8	2.7	0.0
	Aluminum Based	38.8	0.7	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	67.3	14.0	0.0
	Rubber	210.4	3.5	0.0
	Plastics	132.2	64.5	0.0
Solidified Mate	erials Inorganic	0.0	0.0	0.0
	Organic	0,0	0.0	0.0
Soils		603.4	404.6	98.6

Site Name: HANFORD

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M032	0.21	32.462	32.672
RL-T027	1.25	2892.297	2893.547
Total Volume:	1.46	2924.76	2926.22

Material Pa	rameters (kg/m3)	Maximum	Average	<u>Minimum</u>
Inorganics	Iron Based	153.9	26.7	0.0
	Aluminum Based	153.9	6.7	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	77.5	5.3	1.4
	Rubber	11.1	5.0	0.0
	Plastics	50.5	12.7	0.0
Solidified Mate	erials Inorganic	192.0	72.3	72,0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

001056

B - 18

Site Name: HANFORD

Final Waste Form: Solidified Organics

Waste Stream ID	<u>Retrievably</u> Stored (m3)	Projected (m3)	Total (m3)
RL-M017	0.28	1.979	2.259
RL-M018	1.89	13.269	15,159
Total Volume:	2.17	15.25	17.42

<u>Material P</u>	arameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0,0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	42.9	21.0	8.6
	Rubber	0.0	0.0	0.0
	Plastics	121.1	93.8	18.9
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	83.2	39.2	32.6
Soils		0.0	0.0	0.0

Site Name: HANFORD

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	<u>Total (m3)</u>
RL-M001	7.14	963.725	970.865
RL-M002	11.34	1529,117	1540.457
RL-M003	3.17	424.039	427.209
RL-M008	48.2	: 1165.253	1213.453
RL-T025	33.5	808.814	842.314
Total Volume:	103,35	4890,95	4994.30

Material Paran	neters (kg/m3)	Maximum	Average	Minimum
Inorganics	Iron Based	2096.0	131.2	0.0
Alu	minum Based	915.3	32.8	0.0
	Other Metals	0.0	0.0	0.0
Oti	er Inorganics	0.0	0.0	0.0
Organics	Cellulose	139.0	8.1	0.5
	Rubber	245.6	1.4	0.0
	Plastics	750.8	20.1	. 1.3
Solidified Material	s Inorganic	0.0	0.0	0.0
	Organic	· 0.0	0.0	0.0
Soils		48.7	1.0	0.0

Site Name: INEL

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W198	163.8	0	163.8
IN-W202	109.9	0	109.9
IN-W205	1.18	0	1.18
IN-W250	55.97	0	55.97
IN-W252	208	0	208
IN-W254	13.44	0	13.44
IN-W256	34.9	0	34.9
IN-W305	63.3	0	63.3
IN-W325	0.42	0	0.42
IN-W327	5.76	0	5.76
IN-W330	10.09	0,	10.09
IN-W336	4.14	0	4.14
Total Volume:	670.90	0.00	670.90

Site Name: INEL

Final Waste Form: Combustible

Material Parameters (kg/m3)	Maximum	Average	<u>Minimum</u>
Inorganics Iron Based	98.6	3.9	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	474.5	33.2	0.0
Other Inorganics	119.0	17.1	0.0
Organics Cellulose	961.5	43.2	0.0
Rubber	629.0	149.2	0.0
Plastics	706.7	30.6	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Filter

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
IN-W214	0.89	0	0.89
IN-W306.4	322.67	0	322.67
Total Volume:	323.56	0.00	323.56

Material P	arameters (kg/m3)	Maximum	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	500.0	162.1	10.5
Organics	Cellulose	9.6	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mat	erials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Graphite

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W272	1.9	0	1.9
IN-W275	8.7	0	8.7
IN-W276	532.5	0	532.5
IN-W369	16.8	0	16.8
IN-W370	90.8	0	90.8
Total Volume:	650.70	0.00	650.70

Material Parameters (kg/m	Maximum	Average	<u>Minimum</u>
Inorganics Iron Base	o.o	0.0	0.0
Aluminum Base	d 0.0	0.0	0.0
Other Meta	ls 0.3	0.0	0.0
Other Inorgani	es 468.0	229.9	16.9
Organics Cellulo	se 9.8	4.1	0.0
Rubb	er 0.0	0.0	0.0
Plasti	cs 51.4	4.7	0.0
Solidified Materials Inorgan	ie 0.0	0.0	. 0.0
Organ	ic 0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	<u>Total (m3)</u>
IN-W169	4331	0	4331
IN-W170	0.44	1	1.44
IN-W171	3.6	0	3.6
IN-W172	165.57	0	165.57
IN-W186	2695.1	0	2695.1
IN-W189	8.2	0	8.2
IN-W197	632.7	o	632.7
IN-W203	71.9	0	71.9
IN-W204	3.2	0	3.2
IN-W225	6.1	0	6,1
IN-W259	58.8	0	58.8
IN-W265	47.8	0	47.8
IN-W269A	34.8	0	34.8
IN-W271	0.42	0	0.42
IN-W281	348	0	348
IN-W283	1	0	1
IN-W285	85	0	85
IN-W289	25.4	0	25.4
IN-W291	639	0	639
IN-W302	144.1	0	144.1
IN-W306.3	322.67	0	322.67
IN-W329	1.14	. 0	1.14
IN-W334	7.48	0	7.48

B - 25

001063

Total Volume:	9649.50	1.00	9650.50
IN-W351	1.48	o	1.48
IN-W345	14.6	0	14.6
Final Waste Form:	Heterogeneous		
Site Name: INEL			

Material Parameters (kg/m3)		<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	1634.6	38.0	0.0
	Aluminum Based	38.2	1.2	0.0
	Other Metals	233.0	17.2	0.0
	Other Inorganics	1442.3	17.9	0.0
Organics	Cellulose	961.5	245.1	0.0
	Rubber	330.0	43.7	0.0
	Plastics	887.0	148.1	0.0
Solidified Mat	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		144.2	0.2	0.0

Site Name: INEL

Final Waste Form: Inorganic Non-metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W161	134.9	0	134.9
IN-W230	24.7	0	24.7
IN-W240	169.1	0	169.1
IN-W243	235.7	0	235.7
IN-W245	226.7	0	226.7
IN-W247	241.7	0	241.7
IN-W249	3.46	0	3.46
IN-W366	3.43	0	3.43
IN-W374	13.2	0	13.2
Total Volume:	1052.89	0.00	1052.89

Site Name: INEL

Final Waste Form: Inorganic Non-metal

Material Parameters (kg/	n3) <u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics Iron Ba	sed 0.0	0.0	0.0
Aluminum Ba	sed 0.0	0.0	0.0
Other Me	tals 13.1	0.3	0.0
Other Inorga	nics 1250.0	206.9	0.0
Organics Cellu	ose 850.0	58.5	0.0
Rub	ber 8.7	0.2	0.0
Pias	tics 69.9	11.5	0.0
Solidified Materials Inorga	nic 69.9	5.2	0.0
Orga	nic 0.0	0.0	0.0
Soils	865.8	0.6	0.0

Site Name: INEL

Final Waste Form: Salt Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W311	8.89	0	8.89
IN-W312	4.34	0	4.34
IN-W314	1.43	0	1.43
IN-W354	0.21	0	0.21
IN-W355	1.71	0	1.71
IN-W356	6.33	0	6.33
Total Volume:	22.91	0.00	22,91

Material Parameters (kg/m3)		Maximum	Average	Minimum
Inorganics	Iron Based	57.7	9.2	0.0
Al	uminum Based	0.0	0.0	0.0
	Other Metals	212.0	33.4	0.0
O	ther Inorganics	625.0	166.0	2.9
Organics	Cellulose	26.2	3.7	0.0
	Rubber	0.0	0.0	0.0
	Plastics	35.0	4.5	0,0
Solidified Materi	als Inorganic	0.0	0.0	
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Soils

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W263	3.8	0	3.8
Total Volume:	3.80	0.00	3.80

Material Paran	neters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.1	0.1	0.0
Alu	uminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
Oti	her Inorganics	33.9	6.4	4.6
Organics	Cellulose	19.0	19.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materia	als Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		671.5	613.0	457 4

Site Name: INEL

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-T001	6748	0	6748
IN-W157	308	0	308
IN-W166	96.2	0	96.2
IN-W177	239.4	0	239.4
IN-W179	7.8	0	7.8
IN-W181	9.51	0	9.51
IN-W188	2.67	o	2.67
IN-W216	2581	0	2581
IN-W220	753	0	753
IN-W221	14.42	0	14.42
IN-W222	18.8	0	18.8
IN-W228	1003	0	1003
IN-W306.1	322.67	0	322.67
IN-W332	0.83	0	0.83
IN-W347	58,77	0	58.77
IN-W353	0.21	0	0.21
Total Volume:	12164.28	0.00	12164.28

Site Name: INEL

Final Waste Form: Solidified Inorganics

Material Parameters (k	<u>e/m3)</u>	Maximum	Average	<u>Minimum</u>
Inorganics Iron	Based	33.4	5.1	0.0
Aluminum	Based	23.1	0.6	0.0
Other I	Metals	3.4	0.9	0.0
Other Inor	ganics	754.8	87.9	0.0
Organics Cel	llulose	85.2	0.5	0.0
R	ubber	1.7	0.4	0.0
P	lastics	68.3	4.0	0.0
Solidified Materials Inc	rganic	973.9	544.4	0.0
O	rganic	1357.0	24.8	0.0
Soils		0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Solidified Organics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W167	222.6	0	222.6
IN-W174	206.8	0	206.8
IN-W309	483.2	0	483.2
Total Volume:	912.60	0.00	912.60

Material P	arameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	673.1	168.3	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	25.7	4.1	0.0
Solidified Ma	terials Inorganic	528.8	66.3	0.0
	Organic	1072.0	414.8	0.0
Soils		0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W260A	11.91	0	11.91
IN-W280	48.2	0	48.2
IN-W287	212	0	212
IN-W294	492.7	. , 0	492.7
IN-W296	4785.4	0	4785.4
IN-W298	97.9	0	97.9
IN-W300	1513	0	1513
IN-W304	80.1	0	80.1
IN-W306.2	322.67	0	322.67
IN-W371	0.21	0	0.21
	<u> </u>		0.21
Total Volume:	7564.09	0.00	7564.09

Site Name: INEL

Final Waste Form: Uncategorized Metal

Material Param	eters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	764.4	120.1	0.0
Alu	minum Based	73.7	10.8	0.0
	Other Metals	538.0	114.2	0.0
Oth	er Inorganics	812.5	23.0	0.0
Organics	Cellulose	115.0	6.3	0.0
	Rubber	9.8	1.1	0.0
	Plastics	67.6	21.4	0.0
Solidified Material	s Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0,0

Site Name: INEL

Final Waste Form: Unknown

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W308	1642.2	0	1642.2
IN-W338	1.27	0	1.27
IN-W339	11,8	0	11.8
IN-W342	0.43	0	0.43
IN-W350	0.21	0	0.21
Total Volume:	1655.91	0.00	1655.91

Material F	Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: KAPL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
KA-T001	2.4	0	2.4
Total Volume:	2.40	0.00	2.40

Material Paran	neters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1634.6	98.2	0.0
Alı	ıminum Based	1.6	0.8	0.0
	Other Metals	22.7	0.1	0.0
Otl	her Inorganics	24.0	2.4	0.0
Organics	Cellulose	184.6	80.0	0.0
	Rubber	16.4	7.3	0.0
	Plastics	149.0	64.9	0.0
Solidified Materia	ds Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: LANL

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LA-T004	1515.9	1740	3255.9
LA-W004	252.43	724.6	977.03
Total Volume:	1768.33	2464.60	4232.93

Material Para	meters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	265.2	257.7	254.0
Al	luminum Based	0.4	0.4	0.4
	Other Metals	89.7	18.8	18.8
O	ther Inorganics	6.B	6.8	6.8
Organics	Cellulose	68.7	64.0	59.2
	Rubber	1.2	1.1	1.0
	Plastics	5.7	5.3	4.9
Solidified Materia	als Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: LANL

Final Waste Form: Soils

Waste Stream ID	Retrievably Stored (m3)	Projected (m3) Total (n	
LA-T008	109.37	144.6	253.97
Total Volume:	109.37	144.60	253.97

Material Parame	eters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
Alur	ninum Based	0.0	0.0	0.0
•	Other Metals	0.0	0.0	0.0
Othe	er Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materials	s Inorganic	0,0	0.0	0.0
	Organic	0.0	0.0	Q.O
Soils		1600.0	1200.0	1000.0

Site Name: LANL

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LA-T006	4.52	29.5	34.02
LA-W002	3052.97	580	3632.97
LA-W003	1277.42	580	1857.42
LA-W006	513.47	.869.53	1383
Total Volume:	4848.38	2059.03	6907.41

Material Par	rameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
1	Other Inorganics	48.1	8.9	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mate	rials Inorganic	2180.0	1227.4	721.0
	Organic	0.0	0.0	0.0
Soils	•	0.0	0.0	0.0

Site Name: LANL

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LA-T001	74.55	580.45	655
LA-T005	1449.1	1160	2609.1
LA-T007	6.87	58.1	64.97
LA-T009	42.35	57.6	99.95
LA-W001	2206.41	144.59	2351
LA-W005	212.85	725.1	937.95
LA-W009	142.67	280.33	423
Total Volume:	4134.80	3006.17	7140.97

Material Parameters	(kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iro	n Based	265.2	128.0	0.0
Aluminu	m Based	0.0	0.0	0.0
Other	r Metals	913.5	302.9	76.9
Other Inc	organics	6.8	6.3	0.0
Organics (Cellulose	68.7	27.8	0.0
	Rubber	1.2	0.5	0.0
	Plastics	5.7	2.3	0.0
Solidified Materials In	norganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: LBL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LB-T001	0.84	4.42	5.26
Total Volume:	0.84	4.42	5.26

Material Parame	ters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	800.0	390.0	40.0
Alur	ninum Based	0.0	0.0	0.0
(Other Metals	850.0	425.0	50.0
Othe	er Inorganics	0,0	0.0	0.0
Organics	Cellulose	200.0	150.0	60.0
	Rubber	0.0	0.0	0.0
	Plastics	600.0	450.0	150.0
Solidified Materials	Inorganic	0.0	0.0	0.0
	Organic	250.0	150.0	50.0
Soils		0.0	0.0	0.0

Site Name: LLNL

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LL-M001	5.2	11.648	16.848
LL-T002	43,682	360.672	404.354
Total Volume:	48.88	372.32	421.20

Material P	arameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	365.0	5.0	0.0
	Aluminum Based	365.0	5.0	0.0
	Other Metals	365.0	2.0	0.0
	Other Inorganics	200.0	1.0	0.0
Organics	Cellulose	365.0	100.0	0.0
	Rubber	200.0	5.0	0.0
	Plastics	365.0	100.0	5.0
Solidified Mat	terials Inorganic	100.0	5.0	0.0
	Organic	100.0	5.0	0.0
Soils		0.0	0.0	0.0

Site Name: LLNL

Final Waste Form: Salt Waste

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
LL-T004	0.624	2.912	3,536
Total Volume:	0.62	2.91	3.54

Material Parameters (kg/m3)	Maximum	Average	Minimum
Inorganics Iron Based	100.0	20.0	0.0
Aluminum Based	80.0	5.0	0.0
Other Metals	50.0	2.0	0.0
Other Inorganics	365.0	290.0	100,0
Organics Cellulose	50.0	2.0	0.0
Rubber	20.0	. 1.0	0.0
Plastics	100.0	20.0	5.0
Solidified Materials Inorganic	10.0	1.0	0.0
Organic	10.0	1.0	0.0
Soils	0.0	0.0	0.0

Site Name: LLNL

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LL-T001	12.48	59.7	72.18
LL-W019	0.823	6.448	7.271
Total Volume:	13.30	66.15	79.45

Material Parame	eters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	100.0	30.0	0.0
Aluı	minum Based	50.0	5.0	0,0
ı	Other Metals	20.0	1.0	0.0
Oth	er Inorganics	20.0	1.0	0.0
Organics	Cellulose	100.0	10.0	0.0
	Rubber	20.0	1.0	0.0
	Plastics	100.0	20.0	5.0
Solidified Material	s Inorganic	365,0	100.0	50.0
	Organic	365.0	100.0	50.0
Soils		0.0	0.0	0.0

Site Name: LLNL

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LL-T003	142.426	220.4	362.826
LL-W018	1.9	26.6	28.5
Total Volume:	144.33	247.00	391.33

Material F	Parameters (kg/m3)	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	800.0	160.7	0.0
	Aluminum Based	800.0	21.6	0.0
	Other Metals	800.0	10.9	0.0
	Other Inorganics	0.008	5.4	0.0
Organics	Cellulose	500.0	5.5	0.0
	Rubber	100.0	2.3	0.0
	Plastics	200.0	4.3	0.0
Solidified Ma	terials Inorganic	300.0	1.9	0.0
	Organie	300.0	1.9	0.0
Soils		5.0	0.0	0.0

Site Name: MOUND

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
MD-T002	3.536	0	3.536
MD-T008	1.45	0	1.45
MD-T009	0.208	0	0.208
MD-T013	0.416	. 0	0.416
Total Volume:	5.61	0.00	5.61

Material Paramete	rs (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics 1	Iron Based	0.0	0.0	0.0
Alumin	num Based	0.0	0.0	0.0
Ot	her Metals	358.2	24.9	0.0
Other	Inorganics	0.0	0.0	0.0
Organics	Cellulose	50.0	1.9	0.0
	Rubber	0.0	0.0	0.0
	Plastics	850.5	269.2	0.0
Solidified Materials	Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: MOUND

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
MD-T010	0.416	0	0.416
Total Volume:	0.42	0.00	0.42

Material Parameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics Iron Based	350.0	200.0	50.0
Aluminum Based	200.0	100.0	5.0
Other Metals	0.0	0.0	0.0
Other Inorganics	350.0	200.0	50.0
Organics Cellulose	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	0.0	0.0	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	150.0	100.0	10.0

Site Name: MOUND Final Waste Form: Soils

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
MD-T003	116.88	0	116.88
MD-T005	30	0	30
Total Volume:	146.88	0,00	146.88

Material Paramete	ers (kg/m3)	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
Alumi	num Based	0.0	0.0	0.0
Ot	her Metals	0.0	0.0	0.0
Other	Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materials	Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		415.7	371.9	17.8

Site Name: MOUND

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
MD-T001	4.784	0	4.784
MD-W002	2.496	0	2.496
Total Volume:	7.28	0.00	7,28

Material Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron Based	33.4	3.2	0.0
Aluminum Based	23.1	0.4	0.0
Other Metals	0.5	0.1	0.0
Other Inorganics	150.7	35.4	0.0
Organics Cellulose	2.1	0.3	0.0
Rubber	1.7	0.3	0.0
Plastics	9.4	1.1	0.0
Solidified Materials Inorganic	973.9	752.4	487.3
Organic	20.3	4.2	0.0
Soils	0.0	0.0	0.0

001088

B - 50

Information Only

Site Name: MOUND

Final Waste Form: Uncategorized metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
MD-T004	21.48	0	21.48
MD-T006	59.59	0	59.59
MD-T007	5	0	5
MD-T011	16.206	0	16.206
Total Volume:	102.28	0.00	102.28

Material Par	rameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	680.6	440.0	0.0
•	Aluminum Based	141.4	0.1	0.0
	Other Metals	466.3	0.6	0.0
•	Other Inorganics	200.0	0.3	0.0
Organics	Cellulose	340.0	0.5	0.0
	Rubber	18.0	0.0	0.0
	Plastics	82.1	0.1	0.0
Solidified Mate	rials Inorganic	3.7	0.0	0.0
	Organic	3.7	. 0.0	0.0
Soils		2.9	0.0	0.0

Site Name: MU

Final Waste Form: Heterogeneous

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
MU-W002	0.06	1.604	1.664
Total Volume:	0.06	1.60	1.66

Material Pa	rameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	20.0	11.3	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	60.0	25.0	0.0
Organics	Cellulose	10.0	2.5	0.0
	Rubber	50.0	25.0	. 0.0
	Plastics	80.0	37.5	0.0
Solidified Mate	erials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: NTS

MIS

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
NT-W001	619.5	0	619.5
Total Volume:	619.50	0.00	619,50

Material Para	ameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	554.0	72.8	0.0
A	duminum Based	512.0	12.4	0.0
	Other Metals	483.0	5.9	0.0
C	ther Inorganics	475.0	4.9	0.0
Organics	Cellulose	318.0	52.2	0.0
	Rubber	168.0	3.8	0.0
	Plastics	318.0	49.8	1.9
Solidified Mater	ials Inorganic	177.0	11.7	0.0
	Organic	177.0	11.7	0.0
Soils		0.1	0.0	0.0

Site Name: ORNL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
OR-W044	517.4	263.9	781.3
OR-W045	3.63	0	3.63
OR-W047	151.95	0	151.95
Total Volume:	672.98	263.90	936,88

Material Para	meters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1716.4	96.1	0.0
A	luminum Based	1.6	0.0	0.0
	Other Metals	21.3	0.0	0.0
o	ther Inorganics	24.0	2.4	0.0
Organics	Celiulose	184.8	80.9	0.0
	Rubber	17.9	7.4	0.0
	Plastics	149.0	64.9	0.0
Solidified Materi	als Inorganic	0.0	0.0	0.0
	Organic	3.0	0.0	0.0
Soils		0.0	0.0	0.0

001092

B - 54

Information Only

Site Name: ORNL

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
OR-W042	110	0	110
Total Volume:	110.00	0.00	110.00

Material Param	neters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
Alu	minum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
Oth	ner Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materia	ls Inorganic	1057.7	793.3	346.2
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: PA

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
PA-W014	0.75	0	0,75
PA-W015	1.2	0	1.2
PA-W015A	1.5	0	1.5
Total Volume:	3.45	0.00	3.45

Material I	Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	33.4	9.2	0.7
	Aluminum Based	23.1	1.0	0.7
	Other Metals	0.5	0.4	0.4
·	Other Inorganics	150.7	103.3	63.1
Organics	Cellulose	2.1	0.9	0.3
	Rubber	1.7	0.8	0.2
	Plastics	9.4	3.3	2.3
Solidified Ma	terials Inorganic	973.9	639.4	487.3
	Organic	20.3	12.4	6.9
Soils		0.0	0.0	0.0

Site Name: PANTEX

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
PX-T001	0.624	0	0.624
Total Volume:	0.62	0.00	0.62

Material Parameters (kg/m3)	Maximum	Average	Minimum
Material Latameters (Re/ms)	MAXIMUM	<u> 11111ago</u>	141111111111111111111111111111111111111
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganics	95.6	87.0	78.4
Organics Cellulose	0.0	0.0	0.0
Rubber	12.4	11.3	10.2
Plastics	12.4	11.3	10.2
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Filter

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	<u>Total (m3)</u>
RF-T066	37.7	133.52	171.22
RF-T067	1.08	0	1.08
RF-W066	43.9	520.3	564.2
RF-W067	21.28	433.77	455,05
Total Volume:	103.96	1087.59	1191.55

Material Para	meters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	595.3	8.5	0.0
Al	iuminum Based	440.7	15.2	0.0
	Other Metals	0.0	0.0	0.0
O	ther Inorganics	342.4	48.6	0.0
Organics	Ccliulose	496.1	20.2	0.0
	Rubber	11.3	0.8	0.0
	Plastics	596.6	26.9	0.0
Solidified Materi	als Inorganic	427.6	54.2	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Graphite

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-T060	17.64	6.6	24.24
RF-W060	0.42	36.8	37.22
Total Volume:	18.06	43.40	61.46

<u>Material P</u>	arameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	17.3	8.6	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	386.6	312.6	51.8
Organics	Cellulose	0.0	0.0	. 0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-M002	1.89	0	1.89
RF-T002	39.5	181.88	221.38
RF-T007	0.21	0	0.21
RF-T036	1.26	2	3.26
RF-W008	1.89	0	1.89
RF-W012	265.8	611.9	877.7
RF-W036	2.31	8.8	11.11
Total Volume:	312.86	804.58	1117.44

Material P	arameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	865.8	2.0	0.0
Organics	Cellulose	681.8	64.1	0.0
	Rubber	681.8	6.1	0.0
	Plastics	681.8	18.6	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0,0
Soils		865.8	0.1	0.0

001098

B - 60

Site Name: RFP

Final Waste Form: Inorganic Non-metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-T003	0	0	0
RF-T052	84.2	7.12	91.32
RF-T056	1.26	0.6	1.86
RF-T057	6.72	3.68	10.4
RF-W026	0.21	0	0.21
RF-W032	2.74	11.78	14.52
RF-W052	13.66	276.32	289.98
RF-W056	1.26	3	4.26
RF-W057	0.63	16.18	16.81
Total Volume:	110.68	318.68	429.36

Site Name: RFP

Final Waste Form: Inorganic Non-metal

Material Pa	rameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	23.8	0.2	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	828.4	232.3	2.2
Organics	Cellulose	9.6	1.3	0.0
	Rubber	1.1	1.0	0.0
	Plastics	53.8	18.6	0.0
Solidified Mate	erials Inorganic	8.3	0.0	0.0
	Organic	8.3	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Lcad/Cadmium Metal Waste

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
RF-W028	3.78	7.98	11.76
RF-W029	21.63	104.77	126.4
RF-W041	26.46	11.43	37.89
Total Volume:	51.87	124.18	176.05

Material Pa	rameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	1438.3	39.6	0.0
	Other Inorganics	370.1	172.5	0.0
Organics	Cellulose	10.1	5.0	0.0
	Rubber	217.3	101.3	0.0
	Plastics	30.3	15.2	0.0
Solidified Mate	erials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Salt Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-T004	0	8.6	8.6
RF-W058	9.45	48	57.45
Total Volume:	9,45	56.60	66.05

Material Par	ameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	28.6	23.8	4.8
A	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
C	Other Inorganics	719.1	261.9	124.3
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mater	ials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-M001	72.51	2790.2	2862.71
RF-T001	7.35	6.09	13.44
RF-T005	0	0	0
RF-T006	0.93	34.65	35.58
RF-T010	0.63	25.41	26.04
RF-T038	2.1	27.67	29.77
RF-T059	0	0	0
RF-T063	0	0	0
RF-T076	0	0	0
RF-W010	143.64	83.03	226.67
RF-W038	1.47	21.06	22.53
RF-W040	0	0	0
RF-W059	0	0	0
RF-W063	0	o	0
RF-W065	0	0	0
RF-W068	0	0	0
RF-W076	0	0	0
Total Volume:	228.63	2988.11	3216.74

Site Name: RFP

Final Waste Form: Solidified Inorganics

Material Parameters (kg	/m3) <u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron I	Based 68.3	30.8	0.0
Aluminum I	Based 23.1	0.0	0.0
Other M	letals 0.5	0.0	0.0
Other Inorg	anics 1122.0	488.9	44.2
Organics Cell	ulose 2.1	0.0	0.0
Rı	bber 1.7	0.0	0.0
Pl	astics 9.4	0.0	0.0
Solidified Materials Inor	ganic 973.9	226.0	44.3
Or	ganic 567.3	4.6	0.0
Soils	0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Solidified Organics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-T069	11.97	0	11.97
RF-W013	111.3	0	111.3
RF-W069	9.53	48.82	58.35
Total Volume:	132.80	48.82	181.62

Material Pa	rameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	728.3	503.6	199.1
Organics	Cellulose	0.0	0.0	0.0
-	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mate	erials Inorganic	0.0	0.0	0.0
	Organic	652.8	365.1	135.3
Soils		0.0	0.0	0.0

Site Name: RFP

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RF-T011	91.01	75.7	166.71
RF-T037	1.26	3,6	4.86
RF-W011	67.93	330.2	398.13
RF-W037	4.62	. , 20	24.62
Total Volume:	164.82	429.50	594.32

Material Parameters (kg	<u>/m3)</u> <u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron I	Based 695.4	165.7	0.0
Aluminum I	lased 238.9	17.7	0.0
Other M	(etals 1057.7	22.4	0.0
Other Inorg	anics 79.6	19.3	0.0
Organics Cell	ulose 22.3	5.2	0.0
Ru	bber 0.0	0.0	0.0
Pi	astics 41.0	9.6	0.0
Solidified Materials Inor	ganic 0.0	0.0	0.0
Or	ganic 0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: SNL/NM

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
SA-T001	7	7	14
SA-W134	1.04	0	1.04
Total Volume:	8.04	7,00	15.04

Material Parameters (<u>kg/m3)</u>	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics Iron	Based	30.0	18.8	1.0
Aluminun	n Based	5.0	2.8	0.0
Other	Metals	10.0	5.7	1.0
Other Ino	rganics	20.0	14.0	1.0
Organics C	cliulose	5.0	2.9	1.0
j	Rubber	5.0	2.9	1.0
]	Plastics	6.0	3.9	1.0
Solidified Materials Inc	organic	60.0	37.2	0.0
(Organic	5.0	2.8	0.0
Soils		0.0	0.0	0.0

Site Name: SRS

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
SR-T002	4066,8	11962.5	16029.3
Total Volume:	4066.80	11962.50	16029.30

Material Parameters (kg/m3)	Maximum	Average	Minimum
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganics	7.2	2.9	0.0
Organics Cellulose	961,5	575.6	105.8
Rubber	163.5	55.2	55.2
Plastics	288.5	165.6	105.8
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: SRS

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
SR-W026	222.2	2563.6	2785.8
SR-W027	9910	0	9910
Total Volume:	10132.20	2563,60	12695.80

Material P	arameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	7.2	2.9	0.0
Organics	Cellulose	961.5	575.6	105.8
	Rubber	163.5	55.2	55.2
	Plastics	288,5	165.6	105,8
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0 .0
Soils		0.0	0.0	0.0

Site Name: SRS

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
SR-W053	0.04	0	0.04
Total Volume:	0.04	0.00	0.04

Material Para	meters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
A	luminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
0	ther Inorganics	754.8	489.0	28.8
Organics	Cellulose	. 0,0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materi	als Inorganic	519.2	208.9	101.0
	Organic	0.0	0.0	0.0
Soils	•	0.0	0.0	0.0

Site Name: SRS

Final Waste Form: Solidified Organics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
SR-T001	404.8	240.7	645,5
SR-W006	0.05	0	0.05
Total Volume:	404.85	240.70	645,55

Material Paramete	rs (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
Alumi	num Based	0.0	0.0	0.0
Ot	her Metals	0.0	0.0	0.0
Other	Inorganics	673.1	548.1	206.7
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Materials	Inorganic	0.0	0.0	0.0
	Organic	485.6	394.2	149.0
Soils		0.0	0.0	0.0

Site Name: ANL-W Final Waste Form: Filter

Waste Stream ID	<u>Retrievably</u> <u>Stored (m3)</u>	Projected (m3)	Total (m3)
AW-M003	0.89	2.09	2.98
Total Volume:	0.89	2.09	2.98

Material Parameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganics	241.2	232.5	214.9
Organics Cellulose	0.0	0.0	0.0
Rubber	0.0	0.0	0.0
Plastics	8.8	8.8	8.8
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0,0

Site Name: ANL-W

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AW-W020	0.59	0.08	0.67
Total Volume:	0.59	0.08	0,67

Material Param	eters (kg/m3)	Maximum	<u>Average</u>	Minimum
Inorganics	Iron Based	337.3	162.5	141.3
Alu	minum Based	49.7	29.8	27.9
	Other Metals	35.0	4.5	0.1
Oth	er Inorganics	56.4	19.0	13.4
Organics	Cellulose	552.7	275.5	58.9
	Rubber	133.3	36.4	28.5
	Plastics	290.1	114.5	62.5
Solidified Materia	ls Inorganic	4.9	2.6	2.5
	Organic	2.7	0.2	0.1
Soils		8.9	2.7	2.4

Site Name: ANL-W

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AW-W016	0	0.26	0.26
AW-W022	0	0.1	0.1
Total Volume:	0.00	0.36	0.36

<u>Material Para</u>	meters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics	Iron Based	256.1	185.0	0.0
Al	luminum Based	27.8	20.1	0.0
	Other Metals	24.7	17.8	0.0
O	ther Inorganics	754.8	157.0	2.3
Organics	Cellulose	45.3	5.3	0.0
	Rubber	0.0	0.0	0,0
	Plastics	67.6	10.9	0.0
Solidified Materi	als Inorganic	619.2	57.5	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: ANL-W

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AW-W018	7.06	0.88	7.94
AW-W019	0.112	0	0.112
AW-W021	0	0.48	0,48
Total Volume:	7.17	1.36	8,53

Material Parameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics Iron Based	256.1	256.1	256.1
Aluminum Based	27.8	26.2	0.0
Other Metals	24.7	23.3	0.0
Other Inorganics	29.3	27.7	0.0
Organics Cellulose	45.3	7.4	0.0
Rubber	0.0	0.0	0.0
Plastics	67.6	15.1	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: ANL-W

Final Waste Form: Unknown

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
AW-T002	0	23.736	23.736
Total Volume:	0.00	23.74	23.74

Material Par	rameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	Minimum
Inorganics	Iron Based	0,0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mate	erials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: BCLDP

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
BC-T001	. 0	71	71
Total Volume:	0.00	71.00	71.00

Material Parameters (kg/m3)	Maximum	Average	Minimum
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	0.0	0.0	0.0
Other Inorganics	2000.0	2000.0	2000.0
Organics Cellulose	0.0	0.0	0.0
Rubber	0.0	0.0	. 0.0
Plastics	0.0	0.0	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: BT

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
BT-T001	0	1.557	1,557
Total Volume:	0.00	1.56	1.56

Material Parameters (kg/m3)	Maximum	Avcrage	Minimum
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	500.0	425.0	350.0
Other Inorganics	0.0	0.0	0.0
Organics Cellulose	20.0	10.0	0.0
Rubber	0.0	0.0	0.0
Plastics	550.0	450.0	350.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: HANFORD

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
RL-M201	0	1727.71	1727.71
RL-TIIIB	0.23	0	0.23
RL-T121	25.2	0	25.2
RL-T126	4.87	0	4.87
RL-T147	2.072	0	2.072
RL-T149	0.791	0	0.791
RL-T202	0	1246	1246
Total Volume:	33.16	2973.71	3006.87

Material P	arameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	1052.0	115.7	0.7
	Aluminum Based	263.0	28.7	0.2
	Other Metals	0.0	0.0	0.0
	Other Inorganies	43.0	0.4	0.0
Organies	Celiulose	481.0	13.4	0.0
	Rubber	139.0	4.6	0.0
	Plastics	456.0	21.2	1.8
Solidified Ma	terials Inorganic	15.0	0.1	0.0
	Organic	0.0	0.0	0.0
Soils		193.0	2.9	0.0

001119

B - 81

Information Only

Site Name: INEL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-M002	0.624	2.8	3.424
IN-W139	5.43	0	5.43
IN-W269B	0.26	0	0.26
IN-W323	1.91	0	1.91
IN-W358	5.41	0	5.41
Total Volume:	13.63	2.80	16,43

Material Par	ameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1634.6	125.0	0.0
,	Aluminum Based	49.7	16.3	0.0
	Other Metals	35.0	2.5	0.0
•	Other Inorganics	56.4	11.4	0.0
Organics	Cellulose	552.7	201.1	0.0
	Rubber	133.3	22.4	0.0
	Plastics	290.1	86.5	0.0
Solidified Mater	rials Inorganic	4.9	1.4	0.0
	Organic	2.7	0.1	0.0
Soils		8.9	1.4	0.0

Site Name: INEL

Final Waste Form: Lead/Cadmium Metal Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-M004	0	2.8	2.8
IN-M005	0	2.8	2.8
Total Volume:	0.00	5.60	5.60

Material Paramo	eters (kg/m3)	Maximum	Average	<u>Minimum</u>
Inorganics	Iron Based	0.9	0.9	0.9
Alur	minum Based	0.1	0.1	0.1
(Other Metals	109.6	45.2	3.2
Othe	er Inorganics	320.9	166.3	1.2
Organics	Celiulose	13.1	7.8	3.8
	Rubber	190.4	98.3	1.0
	Plastics	28.7	15.4	1.0
Solidified Materials	s Inorganic	2.8	2.6	2.5
	Organic	0.0	0.0	0.0
Soils		1.2	0.4	0.2

Site Name: INEL

Final Waste Form: Salt Waste

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-M001	0	2.8	2.8
Total Volume:	0.00	2.80	2.80

Material Parameters (kg/m3)	Maximum	<u>Average</u>	<u>Minimum</u>
Inorganics Iron Based	28.6	20.1	3.7
Aluminum Based	3.1	0.2	0.0
Other Metals	16.9	8.4	1.6
Other Inorganics	591.1	239.2	106.3
Organics Cellulose	3.8	1.0	0.0
Rubber	0.8	0.0	0.0
Plastics	5.2	1.9	1,1
Solidified Materials Inorganic	0.4	0.0	0.0
Organic	0.4	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Solidified Inorganics

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-W146	2.1	0	2.1
Total Volume:	2.10	0.00	2.10

Material Par	ameters (kg/m3)	Maximum	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
A	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
(Other Inorganics	528.8	394.2	173.1
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Mater	rials Inorganic	528.8	399.0	173.1
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: INEL

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
IN-M003	0	5.6	5.6
IN-W260B	2.2	0	2.2
IN-W322	1.91	0	1.91
Total Volume:	4.11	5.60	9.71

Material Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron Based	380.3	158.5	70.7
Aluminum Based	141.4	16.1	3.5
Other Metals	466.3	119.8	24.7
Other Inorganics	34.6	15.3	2.3
Organics Cellulose	45.3	12.5	0.0
Rubber	18.0	0.7	0.0
Plastics	82.1	14.0	0.0
Solidified Materials Inorganic	3.7	0.0	0.0
Organic	3.7	0.0	0.0
Soils	2.9	0.2	0.0

Site Name: INEL

Final Waste Form: Unknown

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	<u>Total (m3)</u>
IN-W337	0.21	0	0.21
IN-W341	0.21	0	0.21
IN-W349	6.36	0	6.36
IN-W359	0.64	0	0.64
IN-W360	0.21	, 0	0.21
IN-W372	3.5	0	3.5
Total Volume:	11.13	0.00	11.13

Material Pa	arameters (kg/m3)	<u>Maximum</u>	Average	Minimum
Inorganics	Iron Based	0.0	0.0	0.0
	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
	Other Inorganics	0.0	0.0	0.0
Organics	Cellulose	0.0	0.0	0.0
	Rubber	0.0	0.0	0.0
	Plastics	0.0	0.0	0.0
Solidified Ma	terials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: KAPL

Final Waste Form: Heterogeneous

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
KA-W016	11.23	25.23	36.46
Total Volume:	11.23	25.23	36,46

Material Para	meters (kg/m3)	Maximum	Average	<u>Minimum</u>
Inorganics	Iron Based	1634.6	98.2	0.0
A	luminum Based	1.6	0.8	0.0
	Other Metals	22.7	0.1	0.0
O	ther Inorganics	24.0	2.4	0.0
Organics	Cellulose	184.5	80.9	0.0
	Rubber	16.4	7.3	0.0
	Plastics	149.0	64.9	0.0
Solidified Mater	ials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

Site Name: LANL

Final Waste Form: Combustible

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LA-T010	14.84	3.16	18
Total Volume:	14.84	3.16	18.00

Material Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron Based	265.2	257.7	254.0
Aluminum Based	0.4	0.4	0.4
Other Metals	89.7	18.8	18.8
Other Inorganics	6.8	6.8	6.8
Organics Cellulose	68.7	64.0	59.2
Rubber	1.2	1.1	1.0
Plastics	5.7	5.3	4.9
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: LANL

Final Waste Form: Uncategorized Metal

Waste Stream ID	Retrievably Stored (m3)	Projected (m3)	Total (m3)
LA-T011	50.98	60	110.98
LA-T012	10.51	4.5	15.01
LA-WR01	2.1	0	2.1
LA-WR05	12.87	15	27.87
Total Volume:	76.46	79.50	155.96

Material Parameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics Iron Based	265.2	229.4	0.0
Aluminum Based	0.0	0.0	0.0
Other Metals	913.5	302.9	76.9
Other Inorganics	6.8	6.1	0.0
Organics Cellulose	68.7	0.9	0.0
Rubber	1.2	0.0	0.0
Plastics	5.7	0.1	0.0
Solidified Materials Inorganic	0.0	0.0	0.0
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: ORNL

Final Waste Form: Heterogeneous

Waste Stream ID OR-W040	Retrievably Stored (m3)	Projected (m3)	Total (m3)
OR-W040	382.81	182.7	565.51
Total Volume:	382.81	182.70	565.51

Material Para	ameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	1716.4	96.2	0.0
	Aluminum Based	1.6	0.0	0.0
	Other Metals	21.3	0.0	0.0
C	Other Inorganics	24.0	2.4	0.0
Organics	Cellulose	184.8	80,9	0.0
	Rubber	17.9	7.4	0.0
	Plastics	149.0	64,9	0.0
Solidified Mater	ials Inorganic	0.0	0.0	0.0
	Organic	3.0	0.0	0.0
Soils	*	0.0	0.0	0.0

Site Name: ORNL

Final Waste Form: Solidified Inorganics

Waste Stream ID OR-W046	Retrievably Stored (m3)	Projected (m3)	Total (m3)
OR-W046	611	174	785
Total Volume:	611,00	174.00	785.00

Material Parameters (kg/m3)	<u>Maximum</u>	<u>Average</u>	<u>Minimum</u>
Inorganics Iron Based	0.0	0.0	0.0
Aluminum Based	0.0	0.0	0.0
Other Metal	0.0	0.0	0.0
Other Inorganic	0.0	0.0	0.0
Organics Cellulos	0.0	0.0	0.0
Rubbe	0.0	0.0	0.0
Plastic	0.0	0.0	0.0
Solidified Materials Inorgania	1057.7	793.3	346.2
Organic	0.0	0.0	0.0
Soils	0.0	0.0	0.0

Site Name: SRS

Final Waste Form: Heterogeneous

Waste Stream ID	Stored (m3)	Projected (m3)	Total (m3)
SR-T003	0	63.92	63.92
Total Volume:	0.00	63.92	63.92

Material Par	ameters (kg/m3)	<u>Maximum</u>	Average	<u>Minimum</u>
Inorganics	Iron Based	0.0	0.0	0.0
A	Aluminum Based	0.0	0.0	0.0
	Other Metals	0.0	0.0	0.0
(Other Inorganics	7.2	2.9	0.0
Organics	Cellulose	961.5	575.6	105.8
÷	Rubber	163.5	55.2	55.2
	Plastics	288.5	165,6	105.8
Solidified Mate	rials Inorganic	0.0	0.0	0.0
	Organic	0.0	0.0	0.0
Soils		0.0	0.0	0.0

APPENDIX C

Sandia National Laboratories

Managed and Operated by Sandia Corporation a subsidiary of Martin Manetta Corporation Albuquerque, New Mesico 87185-1328

date:

June 24, 1994

to:

P.E. Drez, [Drez Environmental Associates]

from ·

L. C. Sanchez, Org 6342, MS-1328 (505)848-0685

subject :

Comments on May 9, 1994 Communications

The following is a synopsis of communications that took place on May 9, 1994 [1]. In those communications you requested responses to the following two questions:

- [1] In the radionuclide table (Table 3-3.1) located in SAND92-0700/3, there are a series of radionuclide inventories listed by isotope. This is the list that we have to replace in the WTWBIR. On the list, I thought that only isotopes with half-lives greater than 20 years were listed, but for instance, Cf-252 is listed which has a half-life of 2.64 years. Is this because it decays to Cm-248, which has a long half life? There are other isotopes which have half-lives greater than 20 years which are not reported in Table 3-3.1. Is this because of their overall low curie content in the inventory? If so what is the "cut-off" used as to whether an isotope appears in the table?
- [2] One of the strong comments by Karen Knudtsen was that we need to put in a strong justification for the different waste parameters that will be documented in the inventory. Can one or both of you work with the PA and model development people (e.g., Larry Brush) and fill in the table attached?

Per your request [1] I had talked with several people to get responses to your two questions. The responses obtained on May 9, 1994 and relayed to you were [2]:

- [1] In talking to Andy Peterson, he said that the table of radionuclides (Table 3.3-1) is a synopsis of all the available data from the sites. Any radionuclides not reported were probably due to the sites: 1) not identifying them in the waste, 2) they had been of undetectable quantities, etc. Also, the decay chains of interest (Figure 3.3-5) were those identified by SNL scientists as being the chains of interest.
- [2] The matrix which identifies the justification of waste parameters was reviewed by (see attachment):

Matrix Column	Reviewer
Current Models	Palmer Vaughn Andy Peterson
Under Development Possible Future Overall	Jim Schreiber Barry Butcher Larry Brush Larry Brush (none)

REFERENCES

- Informal Communications from P.E. Drez [Drez Environmental Associates] to R.D. Waters (Dept. 6622) and L.C. Sanchez (Dept. 6342) dated May 9, 1994.
- [2] Informal Communications from L.C. Sanchez (Dept. 6342) to P.E. Drez [Drez Environmental Associates] dated May 9, 1994.

LCS:6342:lcs/(94-2029)

Copy to (with attachment):

MS-1328, D.R. Anderson [Dept. 6342]

MS-1328, M.G. Marietta [Dept. 6342]

MS-1328, J.D. Schreiber [Dept. 6342]

MS-1328. P. Vaughn [Dept. 6342]

MS-1341, B.M. Butcher [Dept. 6345]

MS-1341, L.H. Brush [Dept. 6348]

MS-1341, A.C. Peterson [Dept. 6348]

MS-1328, Day File [Dept. 6342]

MS-1328, L.C. Sanchez [Dept. 6342]

Justification of Waste Parameters

Waste Parameter	Input Variab <u>Curren</u> Models	<u>t</u> PA	Input Variable in PA Model Under Development	Input Variable in Possible Future PA Model	Remaining Matrix Variable to Provide Overall Waste Form Information
Iron-Based Metals and Alloys	×	×	×	×	
Aluminum- Based Metals and Alloys		X	×	×	
Other Metals		×		\times	
Other Inorganics		1	\times	×	
Cellulosics	X	×	×	×	
Plastics		X	X	×	
Rubbers	1/2	×	×	×	
Solidified Inorganics		×	×	×	
Solidified Organics Matrix		×	\succ	×.	
Soils		×	?	?	

CAS CHANGOL TO THE CHANGE COLLAR METERS TO S

APPENDIX D

Instructions for Completing Table 11, TRU and TRU Mixed Waste Characterization for the WIPP TRU Waste Baseline Inventory Report (WTWBIR)

Table 11 forms have been provided to those sites with mixed waste streams listed in the Mixed Waste Inventory Report (MWIR) (DOE, 1994) or TRU waste listed in the Integrated Data Base (IDB) for 1993 (DOE, 1994d). Please review and make corrections to these forms.

NOTE: Remember the waste forms being asked for are "final waste forms" that would be shipped and emplaced in the Waste Isolation Pilot Plant (WIPP).

FIRST PAGE OF FORM

1. SITE NAME: Enter the name of your site.

WASTE TYPE: Enter either TRU (non-mixed) or MTRU (mixed TRU).

HANDLING: Enter either CH (contact-handled) or RH (remote-handled).

2. WASTE STREAM -

MWIR ID: Enter the MWIR identifier or assign a new MWIR identifier for TRU or new MTRU waste streams.

Local ID: Enter any relevant local stream identification number(s).

- 3. STREAM NAME: Enter the site name for the waste stream.
- 4. <u>DESCRIPTION</u>: Enter a description of the waste stream. If this stream is a new stream created from changing another waste stream into final form for WIPP, please include the identifier of the original waste stream in the MWIR or provide an equivalent number.

MATRIX CODE -

Fm MWIR: If available, this number should come from the MWIR. Otherwise enter the proper waste matrix (treatment) code for the identified waste stream.

Assigned: Leave blank. This entry is used for evaluation purposes.

Final Waste Form Group: Of the eleven waste groups identified in the WTWBIR (e.g., Heterogeneous), select the most appropriate one for the final waste form of this waste stream and enter in this block.

Site Matrix Description: Enter a reasonably detailed description of the waste matrix and other relevant information.

6. FINAL WASTE FORM IDC's -

From Site: Enter the appropriate Item Description Code (IDC) (DOE, 1992) for this waste stream.

Information Only

Assigned Equivalent IDC: Leave blank. This block will be used for evaluation purposes.

7. <u>CONTAINERS</u> - There should be a line for each container type (i.e., 55-gallon drum and/or standard waste box) in which this waste stream would be shipped to WIPP.

NOTE: For each type of waste container, there should be a continuation page.

The numbers provided for stored and projected containers were accidently incorporated from the non-radionuclide inventory database (NID) and should be ignored and replaced with the correct inventory volumes.

The standard 55-gallon drum has an internal volume of 0.208 m³. The internal value of a standard waste box is 1.9 m³.

8. <u>CHECK BOXES</u> - Please check the appropriate boxes for this waste stream, observing the notes which apply to them.

SECOND PAGE OF FORM

- 9. HEADER DATA on continuation sheet is repeated from page 1.
- 10. <u>WASTE CONTAINER</u> Type: Identify the applicable container type (i.e., 55-gallon drum, standard waste box).
- 11. TYPICAL WASTE MATERIAL WEIGHTS FOR FINAL WASTE FORM For the listed waste stream, identify the "typical" Average, Lower Limit, and Upper Limit estimates in kg/m³ for each waste material parameter listed for the particular container type (i.e., 55-gallon drum or standard waste box). If the estimates are zero, enter a zero in the column. Do not leave any blanks. Include any pertinent comments in the Comment box.
- 12. <u>STORED TRU WASTE AND ESTIMATED RATES OF TRU WASTE GENERATION</u> These dates should be entered as pairs of numbers:
 - The upper number is the actual stored and projected waste volumes, identical to that reported in the MWIR for MTRU waste streams.
 - The lower box is the volume of waste changed to account for its conversion into the final WIPP waste form.
 - NOTE: The volumes to be reported for the years 1998-2002 and 2003-2022 are per year estimates. The years 1998-2002 are for a 5-year period; the years 2003-2022 are for a 20-year period.
- 13. <u>TYPICAL ISOTOPIC COMPOSITION</u> Enter the radionuclides and average anticipated activity (curies) for those radionuclides in the waste stream which comprise greater than 1% of the stream's activity.
- 14. SIGNATURE: Please print and sign your name, and date each form.

Table 11: TRU AND TRU MIXED WASTE CHARACTERIZATION FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT

<u>SITE NAME</u> ()	WASI	TE TYPE H.	ANDLING	Page 1 of
WASTE STREA	M MWIR ID	STREAM NAME			
	Local ID	DESCRIPTION	¥		
MATRIX CODE	Fm MWIR:				
<u> </u>	Assigned:				
Final Waste	Form Group]		<u></u>
Stie Matri	x Description				
FINAL WASTE	FORM IDC's From	She: Assigned	d Equivalent IDC:		
Containers (for final waste form)	sent to WIPP. Each Type/Size	container type should have an accompany Container Material External Vo	bl/Ctnr (m3) Liner Type	Nbr Stored	Nbr Projected 1993 - 2022
PLEASE CHE	CK ALL OF THE FOLLO	DWING BOXES THAT APPLY TO THIS S	TREAM IN ITS FINAL FORM		
Defense TRU Non-Defense Commercial T Unknown (check only 1	TRU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown (check only 1 of boxes above) Retrievably Stored Burled	Rsearch and Devel, Waste Operations Waste Residues Environmental Restoration Decommissioning From Treatment of Waste Maintenance	TSCA Asbestos PCBs Other N/A Unknown	

	AO-94-
	_
	0
T	င္တ
	\sim
<u> </u>	U
•	•
¥	_
ž	ď
ž	₽
ופות	Ð
ž	Hevi
ž	Hevis
ž	Hevision
יאמער ז	Hevision
יאמער ז	Hevision
יאמער ז	Hevision
ž	Hevision 1

O

Table 11: TRU AND TRU MIXED WASTE CHARACTERIZATION FOR THE WIPP TRU WASTE BASELINE INVENTORY REPORT **Continuation Page** SITE NAME (WASTE TYPE HANDLING Page of WASTE STREAM MWIR ID STREAM NAME Note: There should be one of these continuation pages for each container listed on page 1 for this stream. WASTE CONTAINER Type TYPICAL WASTE MATERIAL WEIGHTS FOR FINAL WASTE FORM (kg/m3) Material Parameters Average Lower Limit Upper Limit Comment Iron-based Metal Aluminum-Based Metal Other Metals Other Inorganic Materials Cellulosics Rubber **Plastics** Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic STORED TRU WASTE AND ESTIMATED RATES OF TRU WASTE GENERATION End of 1992: m3 Projected: Incorporating Volume Changes for Final Waste Form >-End of 1992; m3 Projected: End of 1993 (m3) 1994 (m3) 1995 (m3) 1996 (m3) 1997 (m3) 1998-2002 (m3/yr) 2003-2022 (m3/yr) **Projected Actual** in Final Waste Form TYPICAL ISOTOPIC COMPOSITION Radionuclide Typical Activity (Curles/m3) Radionuclide Typical Activity (Curies/m3) Radionuclide Typical Activity (Curies/m3)

Information Only

APPENDIX E

001141

Information Only

Site-Specific Stored Radionuclide Inventories from Draft Revision 10 IDB

Remote-Handled

APPENDIX E

Nuclide	ANLE	HANF	INEL	KAPL	LANL	NVTS	ORNL	Total Curies
AC-225		4.89E-04	1.14E-04	7.66E-20		6.24E-14	5.41E-02	5.47E-02
AC-227		1.31E-05	1.92E-07	4.06E-20	3.44E-07	6.81E-13	2.52E-03	2.53E-03
AC-228		1.53E-03	3.03E-05	1.03E-23		2.14E-18	6.06E-04	2.17E-03
AG-110		3.13E-08	1.66E-08	1.54E-07	3.95E-09			2.05E-07
AG-110M		2.36E-06	1.25E-06	1.15E-05	2.97E-07			1.54E-05
AM-241		1.46E+02	2.37E+01	6.62E-03		4.86E-01	3.22E+01	2.03E+02
AM-243	<u> </u>		6.91E-04				3.98E-04	1.09E-03
AM-245							4.18E-15	4.18E-15
AT-217		4.89E-04	1.14E-04	7.66E-20		6.24E-14	5.41E-02	5.47E-02
BA-137M	1.12E+01	6.31E+03	1.88E+03	2.33E+01	2.79E+03		3.69E+04	4.79E+04
Bí-210		4.20E-01	1.73E-12	1.18E-17	3.36E-19	3.65E-33	2.73E-12	4.20E-01
BI-211		1.30E-05	1.88E-07	2.85E-20	3.37E-07	6.65E-13	2.42E-03	2.43E-03
BI-212	·	1.36E-03	1.73E-05	8.27E-25		1.16E-18	1.50E+00	1.50E+00
BI-213		4.89E-04	1.14E-04	7.66E-20		6.24E-14	5.41E-02	5.47E-02
Bl-214		2.47E+00	1.87E-11	1.53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
BK-249							2.89E-10	2.89E-10
C-14		7.18E+02	3.99E-02				2.50E+01	7.43E+02
CD-113M		1.10E-04	1.34E-07	6.05E-09	1.03E-06			1.11E-04
CE-144		1.03E+00	2.39E+01	1.45E+00	1.03E-01		1.98E+01	4.63E+01
CF-249							1,34E-02	1.34E-02
CF-250						2.01E-01		2.01E-01
CF-252	_						8.48E+00	8.48E+00
CM-243			1.52E-02				3.33E+02	3.33E+02
CM-244						1.68E+02	1.78E+03	1.95E+03
CM-245							2,20E-06	2.20E-06
CM-246						3.39E-04		3.39E-04
CM-248						6.45E-09	3.89E-04	3.89E-04
CO-58		1.12E-08	5.60E-08				2.24E-26	6.72E-08
CO-60		4.77E+03	1.68E+01	1.14E-01	5.43E+00		1.73E+03	6.52E+03

Nuclide	ANLE	HANF	INEL	KAPL	LANL	NVTS	ORNL	Total Curies
CR-51			1.80E-32					1.80E-32
CS-134		2.45E+00	1.05E+02	5.04E-03	5.00E-02		1.09E+02	2.17E+02
CS-135		2.43E-02	2.50E-05	7.30E-07	2.02E-04			2.46E-02
CS-137	1.18E+01	6.67E+03	1.99E+03	2.47E+01	2.95E+03		3.90E+04	5.07E+04
EU-152		2.83E+02	2.07E-02	3.62E-06	5.96E-04		8.75E+03	9.04E+03
EU-154		1.43E+03	8.20E-01	3.56E-04	4.34E-02		4.57E+03	6.01E+03
EU-155		5.76E+02	3.32E-01	8.11E-03	5.45E+01		9.37E+02	1.57E+03
FE-55			1.02E+00					1.02E+00
FE-59		1.53E-12	2.86E-20				4.01E-39	1.53E-12
FR-221		4.89E-04	1.14E-04	7.66E-20		6.24E-14	5.41E-02	5.47E-02
FR-223		1.81E-07	2.64E-09	5.60E+22	4.74E-09	9.40E-15	3.47E-05	3.49E-05
H-3							1.37E+01	1.37E+01
KR-85			6.78E+00			· · · · · · · · · · · · · · · · · · ·		6.78E+00
MN-54		3.45E-01	1.95E-01				2.98E-06	5.40E-01
NB-95		2.36E-10	1.51E-08	2.68E-02	6.19E-11		1.34E+00	1.37E+00
NB-95M		7.89E-13	5.06E-11	8.98E-05	2.07E-13		4.65E-03	4.74E-03
NI-63			3.56E+00					3.56E+00
NP-237		1.34E-03	7.86E-04	2.09E-09		2.87E-06	1.15E-04	2.24E-03
NP-239			6.91E-04				3.98E-04	1.09E-03
NP-240						4.92E-19	2.96E-14	2.96E-14
NP-240M					<u></u>	4.46E-16	2.69E-11	2.69E-11
PA-231		4.97E-05	1.19E-06	3.82E-18	2.03E-06	4.91E-12	2.95E-02	2.96E-02
PA-233		1.33E-03	7.85E-04	1.87E-09		2.86E-06	1.14E-04	2.23E-03
PA-234		1.34E-05	1.80E-06	1.17E-18	2.60E-08	1.80E-21	2.82E-03	2.84E-03
PA-234M		1.03E-02	1.38E-03	8.97E-16	2.00E-05	1.38E-18	2.17E+00	2.18E+00
PB-209		4.89E-04	1.14E-04	7.66E-20		6.24E-14	5.41E-02	5.47E-02
PB-210		4.20E-01	1.73E-12	1.18E-17	3.36E-19	3.65E-33	2.73E-12	4.20E-01
PB-211		1.30E-05	1.88E-07	2.85E-20	3.37E-07	6.65E-13	2.42E-03	2.43E-03
PB-212		1.36E-03	1.73E-05	8.27E-25		1.16E-18	1.50E+00	1.50E+00

Nuclide	ANLE	HANF	INEL	KAPL	LANL	NVTS	ORNL	Total Curies
PB-214		2.47E+00	1.87E-11	1.53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
PD-107		3.60E-03	3.69E-06	1.08E-07	2.99E-05			3.63E-03
PM-147		8.14E+02	2.55E+01	6.84E-01	1.79E+02			1.02E+03
PO-210		3.70E-01	1.42E-12	2.85E-18	2.29E-19	2.39E-33	1.73E-12	3.70E-01
PO-211		3.55E-08	5.13E-10	7.79E-23	9.21E-10	1.82E-15	6.60E-06	6.64E-06
PO-212		8.71E-04	1.11E-05	5.30E-25		7.43E-19	9.59E-01	9.60E-01
PO-213		4.78E-04	1.12E-04	7.50E-20		6.10E-14	5.30E-02	5.35E-02
PO-214		2.47E+00	1.87E-11	1.53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
PO-215		1.30E-05	1.88E-07	2.85E-20	3.37E-07	6.65E-13	2.42E-03	2.43E-03
PO-216		1.36E-03	1.73E-05	8.27E-25		1.16E-18	1.50E+00	1.50E+00
PO-218		2.47E+00	1.87E-11	1.53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
PR-144		1.03E+00	2.39E+01	1.45E+00	1.03E-01		1.98E+01	4.63E+01
PU-238		4.74E+01	3.57E+01	8.23E-01			4.93E+02	5.77E+02
PU-239	3.53E-02	3.35E+02	2.98E+01	3.70E-04	2.27E+02	2.36E+00	2.15E+02	8.09E+02
PU-240	4.67E-02	1.66E+02	1.13E+01	4.20E-04		2.20E-01	1.07E+00	1.79E+02
PU-241	8.23E-01	4.58E+03	5.30E+01	2.00E-01		7.26E-05	1.03E-07	4.63E+03
PU-242		4.20E-03	1.02E-03	6.40E-06		2.95E-09		5.22E-03
PU-244						4.47E-16	2.69E-11	2.69E-11
RA-223		1.30E-05	1.88E-07	2.85E-20	3.37E-07	6.65E-13	2.42E-03	2.43E-03
RA-224		1.36E-03	1.73E-05	8.27E-25		1.16E-18	1.50E+00	1.50E+00
RA-225		4.91E-04	1.15E-04	8.76E-20		6.28E-14	5.46E-02	5.53E-02
RA-226		2.47E+00	1.87E-11	1.53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
RA-228		1.53E-03	3.03E-05	1.03E-23		2.14E-18	6.06E-04	2.17E-03
RH-106		1.94E+00	2.86E-01	2.61E-01	2.13E+01		6.30E+01	8.68E+01
RN-219		1.30E-05	1.88E-07	2.85E-20	3.37E-07	6.65E-13	2.42E-03	2.43E-03
RN-220		1.36E-03	1.73E-05	8.27E-25		1.16E-18	1.50E+00	1.50E+00
RN-222		2.47E+00	1.87E-11	1,53E-15	7.59E-18	9.46E-32	7.61E-11	2.47E+00
RU-106		1.94E+00	2.86E-01	2,61E-01	2.13E+01		6.30E+01	8.68E+01
SB-125		1.12E+01	1.62E+00	7.89E-03	1.18E+02			1.31E+02

Nuclide	ANLE	HANF	INEL .	KAPL	LANL	NVTS	ORNL	Total Curies
SB-126		6.55E-03	6.71E-06	1.96E-07	5.44E-05			6.61E-03
SB-126M		4.68E-02	4.79E-05	1.40E-06	3.89E-04			4.72E-02
SE-79		2.11E-02	2.17E-05	6.33E-07	1.76E-04			2.13E-02
SM-151		7.38E+01	7.76E-02	2.44E-03	6.25E-01			7.45E+01
SN-119M		3.34E-05	1.95E-05	1.97E-04	4.34E-06			2.55E-04
SN-121M		1.38E+00	1.48E-03	4.93E-05	1.19E-02	_		1.39E+00
SN-126		4.68E-02	4.79E-05	1.40E-06	3.89E-04			4.72E-02
SR-90		5.74E+03	1.78E+03	2.46E+01	2.69E+03		9.71E+04	1.07E+05
TA-182			1.22E-05					1.22E-05
TC-99		1.21E+00	1.24E-03	3.64E-05	1.01E-02			1.22E+00
TE-125M		3.82E-14	3.19E-12	3.51E-05	4.88E+01			4.88E+01
TE-127		8.34E-08	6.35E-07	1.66E-03	1.44E-08			1.66E-03
TE-127M	· 	8.54E-08	6.51E-07	1.70E-03	1.47E-08			1.70E-03
TH-227		1.31E-05	1.89E-07	3.28E-20	3.40E-07	6.71E-13	2.46E-03	2.47E-03
TH-228		1.36E-03	1.73E-05	8.70E-25		1.16E-18	1.50E+00	1.50E+00
TH-229		4.93E-04	1.16E-04	1.05 E-19		6.34E-14	5.54E-02	5.60E-02
TH-230		2.17E-04	1.28E-08	1.06E-11	8.90E-15	1.46E-28	1.16E-07	2.17E-04
TH-231	4.22E-06	1.23E-01	5.41E-03	3.64E-13	8.31E-03	3.24E-08	3.67E+02	3.67E+02
TH-232		1.98E-03	7.50E-05	3.07E-22		7.92E-18	1.00E-03	3.06E-03
TH-234		1.03E-02	1.38E-03	8.98E-16	2.00E-05	1.39E-18	2.17E+00	2.18E+00
TL-207		1.30E-05	1.87E-07	2.84E-20	3.36E-07	6.63E-13	2.41E-03	2.42E-03
TL-208		4.89E-04	6.20E-06	2.97E-25		4.16E-19	5.38E-01	5.39E-01
TL-209		1.06E-05	2.46E-06	1.66E-21		1.35E-15	1.17E-03	1.18E-03
TL-210		5.18E-04	3.92E-15	3.20E-19	1.59E-21	1.99E-35	1.60E-14	5.18E-04
U-232							1.92E+00	1.92E+00
U-233		4.55E-01	2.41E-01	3.67E-15		1.12E-10	1.42E+02	1.42E+02
U-234		1.28E+00	4.40E-04	2.34E-06	3.35E-10	8.94E-24	5.88E-03	1.28E+00
U-235	4.22E-06	1.23E-01	5.41E-03	3.64E-13	8.31E-03	3.24E-08	3.67E+02	3.67E+02
U-236		7.63E-05	2.85E-06	1.24E-11		3.83E-08	1.25E-07	7.93E-05
U-237	2.02E-05	1.12E-01	1.30E-03	4.90E-06		1.78E-09	2.52E-12	1.14E-01
U-238		1.03E-02	1.38E-03	9.93E-16	2.00E-05	1.43E-18	2.17E+00	2.18E+00

Nuclide	ANLE	HANF	INEL	KAPL	LANL	NVTS	ORNL	Total Curies
U-240						4.46E-16	2.69E-11	2.69E-11
Y-90		5.74E+03	1.78E+03	2.46E+01	2.69E+03		9.71E+04	1.07E+05
ZR-93		2.73E-01	2.80E-04	8.19E-06	2.27E-03			2.76E-01
ZR-95		1.06E-10	6.82E-09	1.21E-02	2.79E-11		6.27E-01	6.39E-01

Site-Specific Stored Radionuclide Inventories from Draft Revision 10 IDB

Contact-Handled

CH Curies on a Site-by-Site Basis End of 1993 TRU Inventory

Nuclide	ANLE	ETEC	HANF	INEL
AC-225	8.22E-06		1.13E-01	1.34E+00
AC-227	3.78E-13		4.47E-05	4.11E-02
AC-228	2.45E-17		5.05E-02	3.02E-01
AG-109M				
AG-110			1.82E-06	1.42E-08
AG-110M			1.37E-04	1.07E-06
AM-241	5.73E+00	4.43E-01	2.98E+03	8.98E+04
AM-242			i.	
AM-242M				
AM-243	9.52E-02		9.10E-02	3.79E-01
AM-245				5.43E-09
AT-217	8.22E-06		1.13E-01	1.34E+00
BA-137M		2.27E-01	6.65E+02	5.98E+01
Bi-210	3.64E-06		5.38E-02	2.56E-02
BI-211	3.52E-13		4.42E-05	4.13E-02
BI-212	8.05E-18		2.00E-01	2.66E+01
BI-213	8.22E-06		1.13E-01	1.34E+00
BI-214	1.19E-04		3.16E-01	4.80E-02
BK-249				3.74E-04
BK-250				
C-14			5.88E+00	1.66E-01
CD-109				
CD-113M			1.44E-05	3.72E-08
CE-144			2.66E+01	1.98E-01
CF-249				1.02E-02
CF-250				
CF-251				
CF-252			5.96E+01	3.69E-03
CM-242				6.08E-07

Nuclide	ANLE	ETEC	HANF	INEL
CM-243			6.88E-02	
CM-244			1.07E+02	5.31E+02
CM-245			1.68E+01	7.36E-06
CM-246				1.53E-03
CM-247				_
CM-248			7.64E-03	4.61E-07
CO-58			1.79E-05	1.57E-11
CO-60			2.32E+01	8.13E+01
CS-134			.1.90E+00	2.48E-03
CS-135	_		2.39E-03	8.53E-06
CS-137		2.40E-01	7.03E+02	6.32E+01
ES-254				
EU-150				3.64E-05
EU-152			1.97E+00	1.80E-01
EU-154			9.47E+00	7.56E-01
EU-155			1.30E+01	5.08E-01
FE-55				3.25E-05
FE-59			9.20E-06	2.64E-16
FR-221	8.22E-06		1.13E-01	1.34E+00
FR-223	5.21E-15		6.17E-07	5.67E-04
H-3			3.08E-08	8.91E-01
l-129			4.16E-10	
KR-85				
MN-54			1.99E-03	4.30E-03
NB-95			1.61E-01	6.88E-06
NB-95M			5.39E-04	2.30E-08
N1-59				
NI-63				9.20E-05
NP-237	1.53E-03		2.61E-01	7.94E-01
NP-238				

Information Only

Nuclide	ANLE	ETEC	HANF	INEL
NP-239	9.52E-02		9.10E-02	3.79E-01
NP-240			5.07E-13	3.05E-17
NP-240M			4.60E-10	2.77E-14
PA-231			1.91E-04	1.06E-05
PA-233	6.15E-07		2.61E-01	7.91E-01
PA-234	9.89E-15		7.87E-03	1.50E-04
PA-234M	7.60E-12		6.04E+00	1.16E-01
PB-209	8.22E-06		1.13E-01	1.34E+00
PB-210	3.64E-06		-5.38E-02	2.56E-02
PB-211	3.52E-13		4.42E-05	4.13E-02
PB-212	8.05E-18		2.00E-01	2.66E+01
PB-214	1.19E-04		3.16E-01	4.80E-02
PD-107			3.53E-04	1.26E-06
PM-147			4.04E+02	4.48E+00
PO-210	1.85E-06		4.73E-02	2.43E-02
PO-211	9.60E-16		1.21E-07	1.13E-04
PO-212	5.16E-18		1.28E-01	1.71E+01
PO-213	8.04E-06		1.11E-01	1.31E+00
PO-214	1.19E-04		3.16E-01	4.80E-02
PO-215	3.52E-13		4.42E-05	4.13E-02
PO-216	8.05E-18		2.00E-01	2.66E+01
PO-218	1.19E-04		3.16E-01	4.80E-02
PR-144]	2.66E+01	1,98E-01
PU-236				1,68E-02
PU-238	2.14E+00	1.12E-01	8.18E+04	6.07E+04
PU-239	3.28E+01	1.76E+00	2.70E+04	4.01E+04
PU-240	9.42E+00	6.01E-01	6.06E+03	9.82E+03
PU-241	5.98E+01	8.06E+00	9.43E+04	1.65E+05
PU-242	1.00E-02	4.00E-05	3.70E-01	9.44E-01
PU-243			1	

Nuclide	ANLE	ETEC	HANF	INEL
PU-244			4.61E-10	2.78E-14
RA-223	3.52E-13		4.42E-05	4.13E-02
RA-224	8.05E-18	<u>- </u>	2.00E-01	2.66E+01
RA-225	8.33E-06		1.14E-01	1.34E+00
RA-226	1.19E-04		3.16E-01	4.80E-02
RA-228	2.45E-17		5.05E-02	3.02E-01
RH-106			1.30E+01	4.80E-02
RN-219	3.52E-13		4.42E-05	4.13E-02
RN-220	8.05E-18		2.00E-01	2.66E+01
RN-222	1.19E-04		3.16E-01	4.80E-02
RU-106			1.30E+01	4.80E-02
SB-125			5.09E+00	6,16E-03
SB-126			6.42E-04	2.30E-06
SB-126M			4.58E-03	1.64E-05
SE-79			2.07E-03	7,40E-06
SM-151			7.57E+00	2.56E-02
SN-119M			2.21E-03	1.76E-05
SN-121M			1.47E-01	4.76E-04
SN-126			4.58E-03	1.64E-05
SR-90		2.30E-01	7.11E+02	2.17E+00
TC-99			1.19E-01	2.19E-03
TE-125M			2.13E-04	3.97E-09
TE-127			9.99E-03	1.12E-05
TE-127M			1.02E-02	1.15E-05
TH-227	3.61E-13		4.44E-05	4.12E-02
TH-228	8.13E-18		1.99E-01	2.66E+01
TH-229	8.50E-06		1.14E-01	1.35E+00
TH-230	7.02E-10		6.91E-03	2.07E-02
TH-231	5.95E-04		5.68E-01	6.17E-02
TH-232	1.63E-16		6.38E-02	3.30E-01

Nuclide	ANLE	ETEC	HANF	INEL
TH-234	7.61E-12		6.05E+00	1.16E-01
TL-207	3.51E-13		4.41E-05	4.11E-02
TL-208	2.89E-18		7.18E-02	9.56E+00
TL-209	1.78E-07		2.45E-03	2.89E-02
TL-210	2.50E-08		6.63E-05	1.01E-05
U-232				2.58E+01
U-233	3.00E-02		7.92E+01	8.98E+02
U-234	3.10E-05		5.14E+01	5.83E+00
U-235	5.95E-04		· 5.68E-01	6.17E-02
U-236	1.35E-06		2.13E-03	4.68E-03
U-237	1.47E-03	1.97E-04	2.31E+00	4.04E+00
U-238	5.33E-05		6.05E+00	1.16E-01
U-240			4.60E-10	2.77E-14
Y-90		2.30E-01	7.11E+02	2.17E+00
ZN-65				1.21E-08
ZR-93			2.68E-02	9.58E-05
ZR-95			7.27E-02	3.10E-06
Total	1.10E+02	1.19E+01	2.16E+05	3.67E+05

Nuclide	LBL	LLNL	LANL	MOUND
AC-225	4.50E-06	1.90E-13	7.18E-02	
AC-227	1.02E-16	1.80E-12	2.47E-01	4.28E-11
AC-228	1.00E-19	5.07E-17	1.46E-03	
AG-109M			1.95E+01	
AG-110			3.07E-11	
AG-110M			2.31E-09	
AM-241	9.20E-02	1.26E+02	8.70E+03	
AM-242		3.93E-03		
AM-242M		3.95E-03		

Nuclide	LBL.	LLNL	LANL	MOUND
AM-243	3.85E-02	5.23E-03	4.75E+00	
AM-245	1.75E-13		9.49E-15	
AT-217	4.50E-06	1.90E-13	7.18E-02	
BA-137M		1.89E-06	5.03E+01	
BI-210	7.39E-03	4.29E-14	2.40E-01	3.53E-10
BI-211	9.53E-17	1.57E-12	2.48E-01	4.18E-11
BI-212	5.20E-20	4.20E-09	1.13E-03	
BI-213	4.50E-06	1.90E-13	7.18E-02	
BI-214	3.37E-02	1.19E-12	9.02E-01	3.05E-09
BK-249	1.21E-08		6.54E-10	
BK-250	5.44E-07			
C-14			5.00E-04	
CD-109			1.95E+01	
CD-113M			8.62E-07	
CE-144			9.09E-04	
CF-249	3.11E-03		9.67E-04	
CF-250	2.19E-04			
CF-251			1.58E-03	
CF-252				
CM-242		8.39E-04	7.61E-16	
CM-243			4.49E-01	
CM-244	2.20E-02	3.21E+01	1.68E+02	
CM-245	1.76E-06		1.44E-06	····
CM-246	3.71E-07	6.22E-04	4.01E-02	
CM-247			1.20E-09	
CM-248				
CO-58			1.11E-08	
CO-60			2.29E-02	
CS-134			8.77E-03	·
CS-135			2.17E-04	

Nuclide	LBL	LLNL	LANL	MOUND
CS-137		1.99E-06	5.32E+01	
ES-254	5.44E-07			
EU-150				
EU-152		1.19E-06	9.18E-04	
EU-154		3.75E-07	3.38E-02	
EU-155			3.23E-01	
FE-55				
FE-59			1.04E-10	
FR-221	4.50E-06	1.90E-13	· 7.18E-02	
FR-223	1.41E-18	2.49E-14	3.40E-03	5.90E-13
H-3				
l-129				
KR-85				
MN-54			3.08E-04	
NB-95			9,98E-09	
NB-95M			3.34E-11	
NI-59				
NI-63				
NP-237	7.22E-03	4.04E-04	2.69E-02	
NP-238		1.98E-05		
NP-239	3.85E-02	5.23E-03	4.75E+00	
NP-240				
NP-240M				·
PA-231	2.00E-15	5.71E-11	1.20E-03	2.97E-10
PA-233	7.22E-03	4.00E-04	2.64E-02	
PA-234	1.97E-14	4.43E-07	5.26E-06	·
PA-234M	1.51E-11	3.40E-04	4.04E-03	
PB-209	4.50E-06	1.90E-13	7.18E-02	
PB-210	7.39E-03	4.29E-14	2.40E-01	3.53E-10
PB-211	9.53E-17	1.57E-12	2.48E-01	4.18E-11

Nuclide	LBL	LLNL	LANL	MOUND
PB-212	5.20E-20	4.20E-09	1.13E-03	
PB-214	3.37E-02	1.19E-12	9.02E-01	3.05E-09
PD-107			3.21E-05	
PM-147			3.58E+00	
PO-210	6.67E-03	2.74E-14	2.20E-01	2.98E-10
PO-211	2.60E-19	4.28E-15	6.76E-04	1.14E-13
PO-212	3.33E-20	2.69E-09	7.24E-04	
PO-213	4.40E-06	1.86E-13	7.03E-02	
PO-214	3.37E-02	1.19E-12	9.02E-01	3.05E-09
PO-215	9.53E-17	1.57E-12	2.48E-01	4.18E-11
PO-216	5.20E-20	4.20E-09	1.13E-03	
PO-218	3.37E-02	1.19E-12	9.02E-01	3.05E-09
PR-144			9.09E-04	
PU-236				
PU-238	2.36E-04	1.97E+01	1.15E+05	7.16E+02
PU-239	7.70E-03	1.46E+02	7.33E+04	1.99E+02
PU-240	5.07E-03	6.06E+01	1.52E-01	
PU-241	2.89E-07	1.67E+03	1.77E+00	
PU-242	1.01E-02	1.92E-02	5.08E+02	
PU-243			1.20E-09	
PU-244				
RA-223	9.53E-17	1.57E-12	2.48E-01	4.18E-11
RA-224	5.20E-20	4.20E-09	1.13E-03	
RA-225	4.51E-06	1.97E-13	7.20E-02	
RA-226	3.37E-02	1.19E-12	9.02E-01	3.05E-09
RA-228	1.00E-19	5.07E-17	1.46E-03	
RH-106			4.17E-03	
RN-219	9.53E-17	1.57E-12	2.48E-01	4.18E-11
RN-220	5.20E-20	4.20E-09	1.13E-03	
RN-222	3.37E-02	1.19E-12	9.02E-01	3.05E-09

Information Only

Nuclide	LBL	LLNL	LANL	MOUND
RU-106			4.17E-03	
SB-125		4.08E-08	5.05E-02	
SB-126			5.84E-05	
SB-126M			4.17E-04	
SE-79			1.88E-04	
SM-151			6.44E-01	
SN-119M			3.47E-08	
SN-121M			1.18E-02	
SN-126			4.17E-04	
SR-90			4.92E+01	
TC-99			1.08E-02	
TE-125M			5.27E-08	
TE-127			1.51E-08	
TE-127M			1.55E-08	
TH-227	9.79E-17	1.66E-12	2.47E-01	4.22E-11
TH-228	5.22E-20	4.17E-09	1.13E-03	
TH-229	4.54E-06	2.09E-13	7.22E-02	
TH-230	7.71E-14	1.86E-09	3.90E-04	1.37E-06
TH-231	3.79E-11	1.32E-04	4.18E-01	2.06E-06
TH-232	3.69E-19	3.70E-16	2.40E-03	
TH-234	1.52E-11	3.41E-04	4.05E-03	
TL-207	9.50E-17	1.56E-12	2.47E-01	4.17E-11
TL-208	1. 87 E-20	1.51E-09	4.06E-04	
TL-209	9.71E-08	4.10E-15	1.55E-03	
TL-210	7.07E-06	2.49E-16	1.89E-04	6.41E-13
U-232				
U-233	4.81E-03	2.19E-09	4.46E+01	
U-234	3.41E-09	1.10E-04	5.19E+00	2.19E-02
U-235	3.79E-11	1.32E-04	4.18E-01	2.06E-06
U-236	1.50É-09	3.92E-06	1.95E-08	

76011**57**

Nuclide	LBL	LLNL	LANL	MOUND
U-237	7.07E-12	4.10E-02	4.34E-05	
U-238	1.53E-11	3.53E-04	4.05E-03	
U-240				
Y-90			4.92E+01	
ZN-65				
ZR-93			2.43E-03	
ZR-95			4.50E-09	
Total	4.60E-01	2.06E+03	1.98E+05	9.14E+02

Nuclide	NVTS	ORNL	PADU	PANTEX
AC-225	2.05E-03	1.19E-01		
AC-227	1.90E-04	3.11E-07		
AC-228	8.75E-17	3.03E-02		
AG-109M				
AG-110	2.22E-10	5.96E-12		
AG-110M	1.67E-08	4.48E-10		
AM-241	2.84E+02	2.33E+03		
AM-242				
AM-242M				
AM-243	1.22E+00	9.35E+00		
AM-245	2.57E-13	2.67E-09		
AT-217	2.05E-03	1.19E-01		
BA-137M	3.76E-01	2.06E+03		
BI-210	5.53E-02	9.95E-02		
BI-211	1.89E-04	3.07E-07		
BI-212	1.62E-02	2.94E-01		
Bi-213	2.05E-03	1.19E-01		
BI-214	2.50E-01	1.61E+00		
BK-249	1.77E-08	1.84E-04		

001158

Nuclide	NVTS	ORNL	PADU	PANTEX
BK-250	2.57E-10	•		
C-14	2.50E-04			
CD-109				
CD-113M	7.56E-09	2.94E-08		
CE-144	5.03E-03	1.66E-04		
CF-249	1.14E-02	1.12E+00		
CF-250	3.53E-01			
CF-251				
CF-252	2.88E-02	4.05E-01		
CM-242		3.15E-03		
CM-243				
CM-244	2.46E+02	1.25E+03		
CM-245	7.57E-06	1.64E-03		
CM-246	5.15E-04			
CM-247				
CM-248	3.48E-06	1.96E-02		
CO-58				
CO-60		1.22E-02		
CS-134	8.34E-04	1.40E-04		
CS-135	1.27E-06	9.22E-06		
CS-137	3.97E-01	2.17E+03		
ES-254	2.57E-10			
EU-150				
EU-152	1.17E+00	1.68E-05		
EU-154	5.03E-01	8.94E-04		
EU-155	5.31E-03	6.43E-03		
FE-55				
FE-59		1.44E-02		
FR-221	2.05E-03	1.19E-01		
FR-223	2.62E-06	4.30E-09		

Nuclide	NVTS	ORNL	PADU	PANTEX
H-3	7.18E-02			
1-129				
KR-85	2.24E-01			
MN-54	:			
NB-95	4.37E-14	2.33E-16		
NB-95M	1.46E-16	7.77E-19		
NI-59				
NI-63		1.11E-04		
NP-237	5.59E-03	6.03E+00	5.49E+01	
NP-238				
NP-239	1.22E+00	9.35E+00		
NP-240	1.10E-09	8.71E-13		
NP-240M	9.99E-07	7.91E-10		
PA-231	5.00E-04	1.56E-06		
PA-233	5.58E-03	6.03E+00		
PA-234	7.26E-08	3.42E-05		
PA-234M	5.58E-05	2.63E-02		
PB-209	2.05E-03	1.19E-01		
PB-210	5.53E-02	9.95E-02		
PB-211	1.89E-04	3.07E-07		
PB-212	1.62E-02	2.94E-01		
PB-214	2.50E-01	1.61E+00		
PD-107	1.88E-07	1.36E-06		
PM-147	1.87E-01	7.20E-02		
PO-210	4.99E-02	7.06E-02		
PO-211	5.15E-07	8.37E-10		
PO-212	1.04E-02	1.88E-01		
PO-213	2.00E-03	1.16E-01		8
PO-214	2.50E-01	1.60E+00		
PO-215	1.89E-04	3.07E-07		

Nuclide	NVTS	ORNL	PADU	PANTEX
PO-216	1.62E-02	2.94E-01		
PO-218	2.50E-01	1.61E+00		
P R -144	5.03E-03	1.66E-04		
PU-236				
PU-238	1.98E+02	6.78E+03		
PU-239	2.76E+03	7.95E+02	5.56E+01	5.55E-02
PU-240	1.87E+01	7.25E+02		
PU-241	2.64E+02	5.52E+04		
PU-242	8.70E-02	5.46E+00	1 k	
PU-243				
PU-244	1.00E-06	7.92E-10		
RA-223	1.89E-04	3.07E-07		
RA-224	1.62E-02	2.94E-01		
RA-225	2.06E-03	1.19E-01		
RA-226	2.50E-01	1.61E+00		
RA-228	8.75E-17	3.03E-02		
RH-106	3.90E-03	1.87E-04		
RN-219	1.89E-04	3.07E-07		
RN-220	1.62E-02	2.94E-01		
RN-222	2.50E-01	1.61E+00		
RU-106	3.90E-03	1.87E-04		
SB-125	2.38E-03	8.38E-04		
SB-126	3.42E-07	2.48E-06		
\$B-126M	2.44E-06	1.77E-05		
SE-79	1.10E-06	8.00E-06		
SM-151	4.03E-03	2.64E-02		
SN-119M	2.49E-07	6.44E-09		
SN-121M	7.80E-05	4.71E-04		
SN-126	2.44E-06	1.77E-05		
SR-90	3.44E-01	1.29E+03		

Nuclide	NVTS	ORNL	PADU	PANTEX
TC-99	6.34E-05	1.78E+01		
TE-125M	3.28E-18	1.73E-20		
TE-127	2.52E-10	1.72E-12		
TE-127M	2.58E-10	1.76E-12		
TH-227	1.89E-04	3.08E-07		
TH-228	1.62E-02	2.94E-01		
TH-229	2.07E-03	1.19E-01		
TH-230	7.98E-07	6.52E-04		
TH-231	5.61E-05	6.56E-03		
TH-232	4.59E-16	3.42E-02		
TH-234	5.59E-05	2.63E-02		
TL-207	1.88E-04	3.06E-07		
TL-208	5.82E-03	1.06E-01		
TL-209	4,42E-05	2.56E-03		
TL-210	5.24E-05	3.37E-04		
U-232	1.68E-02	2.88E-01		
U-233	1.81E+00	8.93E+01		
U-234	1.15E-02	8.90E+00		
U-235	5.61E-05	6.56E-03		
U-236	3.08E-06	2.43E-04		
U-237	6.46E-03	1.35E+00		
U-238	5.59E-05	3.53E-02		-
U-240	9.99E-07	7.91E-10		
Y-90	3.44E-01	1.29E+03		
ZN-65				
ZR-93	1.43E-05	1.04E-04		
ZR-95	1.97E-14	1.05E-16		
Total	3.78E+03	7.41E+04	1.11E+02	5.55E-02

Nuclide	RFP	SNLA	SRS	MURR	Total Curies
AC-225	9.37E-12	1.26E-19	1.13E-05		1.65E+00
AC-227	4.81E-11	5.83E-21	2.92E-07		2.88E-01
AC-228	3.36E-15		8.72E-03		3.93E-01
AG-109M					1.95E+01
AG-110					1.83E-06
AG-110M					1.38E-04
AM-241	1.08E+04	1.00E-02	1.60E+04	4.80E-02	1.31E+05
AM-242					3.93E-03
AM-242M					3.95E-03
AM-243			7.55 E-01		1.67E+01
AM-245					8.09E-09
AT-217	9.37E-12	1.26E-19	1.13E-05		1.65E+00
BA-137M			6.41E-01		2.83E+03
Bl-210	1.06E-12		7.89E-0 7		4.82E-01
Bl-211	4.43E-11	5.18E-21	2.87E-07		2.89E-01
BI-212	9.05E-16		8.08E-03		2.71E+01
BI-213	9.37E-12	1.26E-19	1.13E-05		1.65E+00
Bl-214	2.94E-11		5.54E-06		3.15E+00
BK-249					5.58E-04
BK-250					5.44E-07
C-14					6.05E+00
CD-109					1.95E+01
CD-113M					1.53E-05
CE-144			5.37E-12		2.68E+01
CF-249					1.15E+00
CF-250					3.54E-01
CF-251					1.58E-03
CF-252			6.12E-01		6.06E+01

Nuclide	RFP	SNLA	SRS	MURR	Total Curies
CM-242		,			3.99E-03
CM-243					5.18E-01
CM-244			6.57E+02		2.99E+03
CM-245					1.68E+01
CM-246					4.28E-02
CM-247					1.20E-09
CM-248			1.59E-04		2.74E-02
CO-58					1.79E-05
CO-60			5.90E-02		1.05E+02
CS-134					1.91E+00
CS-135					2.62E-03
CS-137			6.77E-01		3.00E+03
ES-254	-				5.44E-07
EU-150					3.64E-05
EU-152					3.32E+00
EU-154			3,34E-04		1.08E+01
EU-155			4.14E-06		1.39E+01
FE-55					3.25E-05
FE-59					1.44E-02
FR-221	9.37E-12	1.26E-19	1.13E-05		1.65E+00
FR-223	6.64E-13	8.04E-23	4.02E-09		3.98E-03
H-3					9.62E-01
l-129					4.16E-10
KR-85					2.24E-01
MN-54			5.03E-10		6.60E-03
NB-95					1.61E-01
NB-95M					5.39E-04
NI-59			1.25E-03		1.25E-03
NI-63			1.55E-01		1.55E-01
NP-237	9.97E-03	3.25E-09	8.62E+00	1.80E-04	7.07E+01

Nuclide	RFP	SNLA	SRS	MURR	Total Curies
NP-238					1.98E-05
NP-239			7.55E-01		1.67E+01
NP-240			1.47E-14		1.10E-09
NP-240M			1.34E-11		1.00E-06
PA-231	1.09E-09	1.87E-19	1.44E-06		1.90E-03
PA-233	9.59E-03	2.90E-09	8.61E+00		1.57E+01
PA-234			6.76E-06		8.06E-03
PA-234M			5.19E-03		6.19E+00
PB-209	9.37E-12	1.26E-19	1.13E-05		1.65E+00
PB-210	1.06E-12		7.89E-07		4.82E-01
PB-211	4.43E-11	5.18E-21	2.87E-07		2.89E-01
PB-212	9.05E-16		8.08E-03		2.71E+01
PB-214	2.94E-11		5.54E-06		3.15E+00
PD-107					3.88E-04
PM-147			2.10E-05		4.13E+02
PO-210	6.81E-13		6.85E-07		4.19E-01
PO-211	1.21E-13	1.41E-23	7.84E-10		7.89 E-04
PO-212	5.80E-16		5.18E-03		1.74E+01
PO-213	9.17E-12	1.23E-19	1.11E-05		1.61E+00
PO-214	2.94E-11		5.54E-06		3.15E+00
PO-215	4.43E-11	5.18E-21	2.87E-07		2.89E-01
PO-216	9.05E-16		8.08E-03		2.71E+01
PO-218	2.94E-11		5.54E-06		3.15E+00
PR-144			5.37E-12		2.68E+01
PU-236					1.68E-02
PU-238	3.47E+02		4.71E+05		7.37E+05
PU-239	9.93E+03	2.00E-06	8.56E+03	2.05E-02	1.63E+05
PU-240	7.21E+03		2.12E+03		2.60E+04
PU-241	5.72E+04		6.30E+04		4.37E+05
PU-242			3.75E-01		5.16E+02

Nuclide	RFP	SNLA	SRS	MURR	Total Curies
PU-243					1.20E-09
PU-244			1.34E-11		1.00E-06
RA-223	4.43E-11	5.18E-21	2.87E-07		2.89E-01
RA-224	9.05E-16		8.08E-03		2.71E+01
RA-225	9.64E-12	1.43E-19	1.14E-05		1.65E+00
RA-226	2.94E-11		5.54E-06		3.15E+00
RA-228	3,36E-15		8.72E-03	<u> </u>	3.93E-01
RH-106			8.43E-10		1.31E+01
RN-219	4.43E-11	5.18E-21	2.87E-07		2.89E-01
RN-220	9.05E-16		8.08E-03		2.71E+01
RN-222	2.94E-11		5.54E-06		3.15E+00
RU-106			8.43E-10		1.31E+01
SB-125			4.31E-05		5.15E+00
SB-126					7.05E-04
SB-126M					5.04E-03
SE-79			1.25E-07		2.28E-03
SM-151			3.18E-04	·	8.27E+00
SN-119M					2.22E-03
SN-121M					1.60E-01
SN-126					5.04E-03
SR-90			1.24E-02		2.06E+03
TC-99			4.50E-06		1.79E+01
TE-125M			1.04E-28		2.13E-04
TE-127					1.00E-02
TE-127M			·		1.02E-02
TH-227	4.57E-11	5.42E-21	2.89E-07		2.89E-01
TH-228	9,16E-16		8.08E-03		2.71E+01
TH-229	1.00E-11	1.72E-19	1.14E-05		1.66E+00
TH-230	4.73E-08		1.92E-03		3.06E-02
TH-231	2.81E-05	5.91E-15	5.45E-03		1.06E+00

001166

Nuclide	RFP	SNLA	SRS	MURR	Total Curies
TH-232	3.25E-14		1.03E-02		4.41E-01
TH-234			5.20E-03		6.20E+00
TL-207	4.42E-11	5.17E-21	2.86E-07		2.88E-01
TL-208	3.25E-16		2.90E-03		9.75E+00
TL-209	2.02E-13	2.72E-21	2.45E-07		3.56E-02
TL-210	6.18E-15		1.16E-09		6.62E-04
U-232					2.61E+01
U-233	7.53E-08	5.80E-15	8.85E-03		1.11E+03
U-234	2.85E-03		2.28E+01		9.41E+01
U-235	2.81E-05	5,91 E -15	5.45E-03		1.06E+00
U-236	4.89E-04		4.45E-02		5.20E-02
U-237	1.40E+00		1.54E+00		1.07E+01
U-238			5.24E-03	1.00E-10	6.21E+00
U-240			1.34E-11		1.00E-06
Y-90			1.24E-02		2.06E+03
ZN-65					1.21E-08
ZR-93					2.94E-02
ZR-95					7.27E-02
Total	8.55E+04	1.00E-02	5.62E+05	6.87E-02	1.51E+06

APPENDIX F

001163

APPENDIX F WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

The following tables provide a cross-correlation between the waste stream WIPP ID number, waste stream name, local identifier, TRUCON content code, and NMVP code. The WIPP ID number is used to identify the waste stream profiles. The waste stream name and local identifier are also based on information in the waste stream profiles. The local ID is a site assigned identifier. These may be waste Item Description Codes (IDCs) or other codes which were/are used by the sites in their own waste identification system, or it may be a unique identifier assigned by the site for the purposes of the WTWBIR and/or WIPP data call.

The content codes listed in the TRUCON document were originally provided as a consolidation of the site specific IDCs or codes used under previous waste identification systems. The initial consolidation of the site codes into TRUCON codes was performed in 1988. The majority of these content codes and the correlating IDCs were included in the March, 1990 version of the NMVP. The correlation of the WIPP ID numbers to the TRUCON and NMVP content codes provided in the following tables is based on using the local identifier whenever possible. In many cases, the local identifier or IDC could be traced directly to the IDCs listed in the TRUCON and/or NMVP document. When the IDCs were not provided in the waste stream profile, the correlation was based on matching the waste stream description in the waste stream profile to the descriptions for the content codes in the TRUCON document. A one-to-one correlation between the WIPP ID numbers and the TRUCON and NMVP content codes is not always possible. This is primarily due to one or more of the following reasons:

- The WTWBIR waste stream profiles are typically segregated into mixed and non-mixed waste streams. The TRUCON and NMVP did not provide this segregation.
- Since 1988, when the consolidation of waste streams for the TRUCON was performed, many of the sites have inventoried their wastes into databases, thereby allowing greater segregation and manipulation than that provided in the TRUCON document.
- The WTWBIR provides an inventory of <u>all</u> wastes destined for WIPP. The TRUCON and NMVP only list those waste streams that met the criteria of the TRUPACT-II SARP and the WIPP-WAC.

It is important to note that correlation of an WIPP ID number to a TRUCON or NMVP content code does not imply that the waste stream meets the criteria of the TRUPACT-II SARP or WIPP-WAC. The correlation is provided as guidance only, and is not meant to signify compliance with any of the WIPP criteria or governing regulations.

The first number of a TRUCON content code is a "1" or "2", to provide a distinction between newly generated and retrievably stored waste. For the purposes of the TRUCON, newly generated waste was defined as waste generated after the WIPP waste certification program had been implemented at each site. Retrievably stored waste is waste which was generated before the implementation of the certification program. The WTWBIR does not typically make this distinction, and therefore a WTWBIR waste stream that correlates to a content code listed in TRUCON as 1XX and 2XX, is listed in the correlation tables with both of these codes.

The TRUCON document contains content codes followed by an "A", "B", or "C" letter (i.e., RF 111A, ID 225A). These letters were used for varying reasons. In some cases they were used to distinguish different waste streams within a content code, or to differentiate between different packaging configurations. In other cases they were used to identify waste specifically packaged for the WIPP Test Phase. The letters are only included in the correlation tables if they were used to distinguish between different waste streams. If a letter is not used after the content code in the correlation tables, the waste stream correlates to the "A" content codes.

Correlation tables have been provided for all of the sites except Hanford and the Savannah River Site. There was inadequate information in the TRUCON document and the WTWBIR waste stream profiles to determine a correlation. The waste streams listed in the TRUCON document for these two sites were very general and all-encompassing, whereas the WTWBIR waste streams were more segregated.

ANL-E WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description®	WIPP ID	RH/ CH	TRUCON ^{b,c}	NMVP ^{b,c}
	AE-T001	СН		
	AE-T003	СН		
Aqueous Lab Packs	AE-W038	СН		
Organic Resins	AE-W039	сн		
Wastewater Treatment Sludges	AE-W040	СН	AE 111A	AE 111
Non-activated Lead	AE-W041	СН		
Cadmium containing metal debris	AE-W042	СН		
	RF	RH		

Footnotes:

- a Blank fields indicate that no waste stream name was reported in the waste stream profiles.
- b RH waste streams are not listed in the TRUCON and NMVP.
- c Local identification or Item Description Codes (IDCs) were not reported in the waste stream profiles. Crosscorrelation with TRUCON and NMVP content codes were assigned based on matching physical descriptions.

INEL WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description	LOCAL ID	RH/CH	WIPP ID	Generator	IDC	TRUCON ^{c,d}	NMVPd
Vitrified Wastes Resulting from Treatment of all Waste		СН	IN-T001		1		
Electrorefiner Salts - Ba & Cd	CH-ANL-218T	RH	IN-M001	ANL-W			
TRU-Cd Hot Cell Waste	CH-ANL-241T	RH	IN-M002	ANL-W			
Element Hardware FCF Waste	CH-ANL-243T	RH	IN-M003	ANL-W			
Electrorefiner Stripped Cadmium	CH-ANL-245T	RH	IN-M004	ANL-W			
Electrorefiner insolubles w/Cd & other met	CH-ANL-246T	RH	IN-M005	ANL-W			
Lead Contaminated Waste, Mostly Lead-Lined Gloves	CH-ANL-142T	СН	IN-M006	ANL-W			
Contaminated Lead Debris	ID-EGG-142T	RH	IN-W139				
TRU Heavy Metal Sludge	ID-EGG-291T	ян	IN-W146				
Cemented Studges/Special Setups	ID-EGG-112T-004	СН	IN-W157	RFP	004	ID 213	ID 213
Concrete/Firebrick	ID-EGG-115T-371	СН	IN-W161	RFP	371	ID 122, 222B	ID 122, 222B
Solidified Inorganic Waste	ID-EGG-112T-114	СН	IN-W166	RFP	114 ⁶	ID 114	ID 114
Cemented Sludges/Organics	ID-EGG-112T-112	СН	IN-W167	RFP	112ª	ID 112	ID 112
Combustibles/Dry Paper and Rags	ID-EGG-114T-330	СН	IN-W169	RFP	330	ID 116, 216C	1D 216C
Combustibles/Decon Waste	ID-EGG-114T-120	СН	IN-W170	ANL-E	120	AE 116A,B ^b	AE 116A,B
Combustibles/Research Generated	ID-EGG-114T-110	СН	IN-W171	ANL-E	110	AE 116A,B ^b	AE 116A,B
Combustibles	ID-EGG-114T-010	СН	IN-W172	BETTIS	010		
Cemented Studges/High Level Acid	ID-EGG-112T-834	СН	IN-W174	MOUND	834		
Cemented Studges/High Level Caustic	ID-EGG-112T-835	СН	IN-W177	MOUND	835		
Cemented Studges/High Level Studge/Cement	ID-EGG-112T-836	СН	IN-W179	MOUND	836	MD 111A ^b	MD 111A
Cemented Sludges/Laundry Sludge	ID-EGG-112T-978	CH	IN-W181	RFP	978	ID 211A	ID 211A
Combustibles	ID-EGG-114T-116	СН	IN-W186	RFP	116ª	ID 116	ID 116
Cemented Sludges/Bidg. 776 Process Sludge	ID-EGG-112T-976	СН	IN-W188	RFP	976	ID 211A	ID 211A

4O-94 1005, Revision 1 February 1995

Waste Stream Name/Description	LOCAL ID	висн	WIPP ID	Generator	IDC	TRUCON ^{c,d}	NMVP ^d
Benelex and Plexiglass/Pred. Com. Debris	ID-EGG-109T-464	СН	IN-W189	RFP	464	ID 221A	ID 221A
Combustible/Moist Paper and Rage	ID-EGG-114T-336	СН	IN-W197	RFP	336	ID 116, 216A	ID 216A
Combustibles/Plastics, Teffon, Wash & PVC	ID-EGG-114T-337	СН	IN-W198	RFP	337	ID 116, 216C	ID 216C
Combustibles/Wood	ID-EGG-114T-970	СН	IN-W202	RFP	970	ID 216A	ID 216A
Combustible Equipment Boxes, Floor Sweep.	ID-EGG-114T-826	СН	IN-W203	MOUND	826		
Combustible Equipment Drums	ID-EGG-114T-827	СН	IN-W204	MOUND	827	MD 116A ^b	MD 116A
Combustibles/Low Sp. Activity Plastics, Paper	ID-EGG-114T-900	СН	IN-W205	AFP	900	ID 216B	ID 216B
Filters, Glass Filters and Fiberglass	ID-EGG-118T-813	СН	IN-W214	MOUND	813		
Solidified Process Residues	ID-EGG-102T-001	СН	IN-W216	RFP	001	ID 211A	ID 211A
Solidified Process Residues	ID-EGG-102T-111	СН	IN-W220	ANL-E, RFP	111	ID 111, AE 116A,Bb	ID 111, AE 116A,B
Absorbed Aqueous Liquide	ID-EGG-102T-113	СН	IN-W221	AFP	113 ⁸	ID 113	ID 113
Solidified Process Residues	ID-EGG-102T-292	СН	IN-W222	RFP	292		ID NYD
Benefex and Plexiglass/Pred. Com. Debris	ID-EGG-109T-302	СН	IN-W225	RFP	302	ID 121, 221A	ID 221A
Wastewater Treatment Studges	ID-EGG-102T-002	СН	IN-W228	RFP	002	ID 211A	ID 211A
Concrete-Brick/Inorganic Solid Waste	ID-EGG-115T-122	СН	IN-W230	RFP	122ª	ID 122	ID 122
Glass Waste Debris	ID-EGG-119T-118	СН	IN-W240	RFP	1184	ID 118	ID 118
Glass	ID-EGG-119T-440	СН	IN-W243	RFP	440	ID 118, 218B	ID 218B
Unleached Rashig Rings	ID-EGG-119T-441	СН	IN-W245	RFP	441	ID 125, 225B	1D 225B
Leached Rashig Rings	ID-EGG-119T-442	СН	IN-W247	RFP	442	ID 118, 218A	ID 218A
Glass, Flasks, Sample Vials	ID-EGG-119T-810	СН	IN-W249	MOUND	810		
Leaded Rubber-Glovebox Gloves	ID-EEG-120T-123	СН	IN-W250	RFP	123 ⁸	ID 123	ID 123
Leaded Rubber Gloves and Aprons	ID-EGG-120T-339	сн	IN-W252	RFP	339	ID 123, 223A	ID 223A
Leaded Rubber Gloves and Aprons	ID-EGG-120T-463	СН	IN-W254	RFP	463	ID 223A	ID 223A
Dry Box Gloves and O-Ring	ID-EGG-120T-802	СН	IN-W256	MOUND	802		
Alpha Hot Cell Waste	ID-EGG-144T-104	СН	IN-W259	ANL-E	104		

Waste Stream Name/Description	LOCAL ID	RH/CH	WIPP ID	Generator	IDC	TRUCON ^{c,d}	NWAbq
Radioactive Sources: Solid Binary Scrap Powder	ID-EGG-144T-040	RH/CH	IN-W260	BETTIS	040		
Particulate Waste - Contaminated Soil	ID-EGG-141T-842	СН	IN-W263	MOUND	842	MD 111B ^b	MD 111B
Particulate Waste - Blacktop, Concreter, Dirt & Sand	ID-EGG-141T-374	СН	IN-W265	RFP	374	ID 121	ID 121
Particulate Wastes - Laboratory Waste	ID-EGG-141T-150	СН	IN-W269	INEL	150		
Graphite Molds & Graphites, Contam. Hg	ID-EGG-137T-814	СН	IN-W271	MOUND	814		
Debris Waste - Coarse Graphite Molds	ID-EGG-137T-312	СН	IN-W272	RFP	312	ID 115	ID 115
Debris Waste-Graphite Molds, Cruchl, Core	ID-EGG-137T-301	СН	IN-W275	RFP	301		
Debris Waste - Graphite Molds & Crucibles	ID-EGG-137T-300	СН	IN-W276	RFP	300	ID 115, 215A	ID 215A
Metal Debris - Metal, Equip., pipes, valves	ID-EGG-132T-803	СН	IN-W280	MOUND	803		
Het. Debris-Noncombustible Equip. Boxes	ID-EGG-134T-824	СН	IN-W281	MOUND	824	MD 117A ^b	MD 117A
Het. Debris-Americium Process Residue	ID-EGG-134T-241	СН	IN-W283	RFP	241	ID 125, 225A	ID 225A
Heterogeneous Debris	ID-EGG-134T-201	СН	IN-W285	BATTELLE	201		
Metal Debris-Misc., Cut-up Glovebox	ID-EGG-134T-101	СН	IN-W287	ANL-E	101		
Miscellaneous Solids	ID-EGG-134T-121	СН	IN-W289	ANL-E	121	AE-116A ^b	AE-116A
Debris Waste - Miscellaneous	ID-EGG-134T-100	СН	IN-W291	ANL-E	100		
Metal Debris - Leached Non Special Source	ID-EGG-132T-481	СН	IN-W294	RFP	481	ID 217C	ID 217C
Metal Debris- Non Special Source	ID-EGG-132T-480	СН	IN-W296	RFP	480	ID 117, 217C	ID 217C
Metal Debris - Tantalum	ID-EGG-132T-320	СН	IN-W298	RFP	320	ID 117, 2178	JD 217B
Metal Debris Waste	ID-EGG-132T-117	сн	IN-W300	RFP	117 ⁸	ID 117	ID 117
Unknown Solids, Noncompressible	ID-EGG-132T-020	СН	IN-W302	BETTIS	020		
Equipment	ID-EGG-134TN-825	СН	IN-W304	MOUND	825		
Plastic, Manipulator Boots, etc.	ID-EGG-114TN-804	СН	IN-W305	MOUND	804		
Uncategorized - Pre 73 Drums	ID-EGG-287T-9999	СН	IN-W306.1	RFP			
Uncategorized - Pre 73 Drums	ID-EGG-287T-9999	СН	IN-W306.2	AFP			
Uncategorized - Pre 73 Drums	ID-EGG-2871-9999	СН	IN-W306.3	RFP			

Information Only

-AC-94-1005, Kevision 1 February 1995

Waste Stream Name/Description	LOCAL ID	янисн	WIPP ID	Generator	Ю¢	TRUÇON ^{c,d}	NMVPd
Uncategorized - Pre 73 Drums	ID-EGG-287T-9999	СН	IN-W306.4	RFP			
Unknown Solids	ID-EGG-287T-000	СН	IN-W308	INEL/RFP	000		
Organic Setups	ID-EGG-158T-003	СН	IN-W309	RFP	003	ID 212	ID 212A
Salts: Molten Salts - 30% Unpulverized	ID-EGG-146T-409	СН	IN-W311	RFP	409		
Salts: Pyrochemical Salt Waste	ID-EGG-146T-124	СН	IN-W312	RFP	124 ⁸	ID 124	ID 124
Salts: Direct Oxide Reduction Salt	ID-EGG-146T-414	СН	IN-W314	RFP	414		
Resins: Leached and Cemented Resins	ID-EGG-145T-432	СН	IN-W317	RFP	432	ID 226A	ID 226A
Actinide Neutron Sources, Exp'tal Fuel Capsules	ID-EGG-144TN-154	ВН	IN-W322	INEL	154		
Combustible Lab Waste	ID-EGG-144T-153	RH	IN-W323	INEL	153		
Unk. Classified Parts	ID-EGG-288T-815	СН	IN-W325	MOUND	815		
Unk. Low Specific Activity Waste <100nCi/g Comb	ID-EGG-288T-847	СН	IN-W327	MOUND	847		
Unk. Low Specific Activity Waste <100nCi/g Comb	ID-EGG-288T-848	СН	IN-W329	MOUND	848		
Unk. Plastic, Tygon, Manipulator Boots	ID-EGG-288T-801	СН	IN-W330	MOUND	801		
Unk, Solidified Solutions	ID-EGG-288T-204	СН	IN-W332	BATTELLE	204		
Unk. Debris Paper, Metal, Glass	ID-EGG-288T-203	CH	IN-W334	BATTELLE	203		
Unk. Combustible Solids/Debris	ID-EGG-288T-202	СН	IN-W336	BATTELLE	202		
Unk, Americium Solids	ID-EGG-288T-200	RH	IN-W337	INEL	500		
Unk. ANL-W Anal. Chem. Lab. Misc. Liquids	ID-EGG-288T-163	СН	IN-W338	ANL-W	163		
Unk, ANL-W Anal, Chem. Lab. Misc. Solids	1D-EGG-288T-162	СН	IN-W339	INEL/ANL-w	162		
Unk, ANL-WHFEF Analytical Chem, & Met. Combust.	ID-EGG-288T-160	СН	IN-W341	INEL	160		
Unknown Miscellaneous Sources	ID-EGG-288T-157	СН	IN-W342	INEL	157		
Unknown TRU Scrap	ID-EGG-288T-155	СН	IN-W345	INEL	155		
Unknown Absorbed Liquids	ID-EGG-288T-102	сн	IN-W347	ANL-E	102		
Unknown RH-TRU Waste	ID-EGG-288T-107	RH .	IN-W349	ANL-E	107		

Waste Stream Name/Description	LOCAL ID	RH/CH	WIPP ID	Generator	IDC	TRUCON ^{c,d}	NWAbq
Unknown Special Source Material	ID-EGG-288T-106	СН	IN-W350	ANL-E	106		
Unknown Empty Bottles	ID-EGG-288T-105	СН	IN-W351	ANL-E	105		
Solidified Solutions	ID-EGG-158TN-050	СН	IN-W353	BETTIS	050		
Salts: Gibson Salts	ID-EGG-146TN-412	СН	IN-W354	RFP	412	ID 224A	ID 224A
Salts; Electrorefining Salts	ID-EGG-146TN-411	СН	IN-W355	RFP	411	ID 124, 224A	ID 124, 224A
Salts: Molten Salts - 30% Pulverized	ID-EGG-146TN-410	СН	IN-W356	RFP	410	ID 224A	ID 224A
Radioactive Sources: Pu Neutron Sources	ID-EGG-144TN-152	RH	IN-W358	INEL	152		
Radioactive Sources: Neutron Sources	ID-EGG-144TN-015	RH	IN-W359		015		
Radioactive Sources: Misc. Sources	ID-EGG-144TN-012	RH	IN-W360	BETTIS	012		
Non-metal Molds-LECO Crucible	ID-EGG-137TN-370	СН	IN-W366	RFP	370	ID 118, 222A	ID 118, 222A
Graphite Scarfed Chunks - Molds & Crucibles	ID-EGG-137TN-303	СН	IN-W369	RFP	303	ID 115	ID 115
Graphite Molds & Crucibles	ID-EGG-137TN-115	СН	IN-W370	RFP	115ª	ID 115	ID 115
Metal Debris - Zinc, Mg Alloy Metal	ID-EGG-132TN-416	СН	IN-W371	RFP	416	ID 217A	ID 217A
Metals-Unknown, Met Samples Fissile	ID-EGG-132TN-081	RH	IN-W372	BETTIS	801		
Concrete/Brick, Asphalt	ID-EGG-115TN-960	СН	IN-W374	RFP	960		

FOOTNOTES

- a. After 1985 RFP shipped waste to INEL used content code numbers similar to those presented in the TRUCON document instead of the IDCs used before and following this time. For example, content code 118 (ID-EGG-119T-118) consists of IDCs 370, 440, and 442.
- b. These are TRUCON-equivalent codes. These codes are presently approved transport in the TRUPACT-II package from their respective generators to WIPP (i.e., MD-111 can be shipped from Mound to WIPP). A revision to TRUCON will be prepared to allow transport of these codes from INEL to WIPP.
- c. The "A" and "B" trailers on some of the content codes are used in TRUCON to identify wastes within a content code that differ in one or more parameter(s), such as waste packaging, or segregation of one or more IDCs. The ID 1XX codes do not include the letter code, as all of these are assumed to be the ID 1XXA codes.
- d. A blank entry under TRUCON and/or NMVP denotes that the corresponding wastes were not included in these documents and do not have a correlating content code. Revision
 6, TRUCON and the 3/9/90 issue of the NMVP were used to determine the correlation.

CAO-94-1005, Revision 1 February 1995

LANL WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description®	LOCAL ID	WIPP ID	ян-сн	IDCp	TRUCON ^{b,c}	NMVP ^{b,c}
Mixed Metal Scrap & Incidental Combustibles	LA-T001	LA-T001	СН	001	LA 125A	LA 125A
Combustible Waste	LA-T004	LA-T004	СН	004	LA 116A	LA 116A
Non-combustible scrap	LA-T005	LA-T005	СН	005 LM 005 LG	LA 117A LA 118A	LA 117A LA 118A
Cemented Process Residues, Solidified Inorganic Process Solids	LA-T006	LA-T006	СН	006	LA 114A	LA 114A
Non-combustible hot-cell waste	LA-T007	LA-T007	СН			
Contaminated Soil	LA-T008	LA-T008	СН			
Glovebox and equipment metal in boxes	LA-T009	LA-T009	СН			
Combustible Waste, including rubber	LA-TR04	LA-TR04	RH			
Non-combustible scrap	LA-TR05 LA-T015	LA-TR05	RH RH			
Non-combustible hot-cell waste	LA-TR07 LA-T017	LA-TR07	RH RH			
Mixed Metal Scrap and Incidental Combustibles	LA-WR01 LA-W011	LA-WR01 LA-W011	RH RH			
Non-combustible Scrap	LA-WR05 LA-W015	LA-WR05	RH RH			
Mixed Metal Scrap and Incidental Combustibles	LA-W001	LA-W001	СН	001	LA 125A	LA 125A
Solidified Aqueous Waste, Cemented Sludge, Concreted Aqueous Waste	LA-W002	LA-W002	СН	002	LA 111A LA 211 A	LA 111A LA 211A
Solidified Inorganics, Dewatered Sludge	LA-W003	LA-W003	СН	003	LA 111B LA 211B	LA 111B LA 211B

Waste Stream Name/Description®	LOCAL ID	WIPP ID	пн-сн	IDCp	TRUCON ^{b,c}	NMVPb,c
Combustible Waste, including rubber	LA-W004	LA-W004	СН	004	LA 116A	LA 116A
Non-combustible Scrap	LA-W005	LA-005	СН	005 LM 006 LG	LA 117A LA 118A	LA 117A LA 118A
Cemented Process Residues, Solidified Inorganic Process Solids	LA-W006	LA-W006	СН	006	LA 114A	LA 114A
Glovebox & Equipmental Metal Waste	LA-W009	LA-W009	СН			

Footnotes:

- a The waste stream description name is from the WTWBIR waste stream profiles. The names in italic represent the name of the stream in the TRUCON and/or NMVP if different than the WTWBIR name.
- b The correlation of the WIPP# to IDCs, TRUCON codes, and NMVP identifiers has been deduced from waste stream names and material parameter information. There is not a one-to-one correlation between these codes, and the waste stream by WIPP# may include one or more waste streams as identified in the TRUCON and/or NMVP. The TRUCON and NMVP correlations codes listed may not be inclusive of all TRUCON and NMVP codes in that WIPP#, however, those listed are the only codes that could be determined from the available information.
- c There is no TRUCON or NMVP correlation for the RH wastes.

661179

LLNL WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description®	LOCAL ID	WIPP ID	RH/CH	TRUCON	NMVPb
R&D Glovebox Waste (Form 1)	Form 1 Mixed	LL-M001	CH .	LL 116	LL 116
Solidified Waste (Form 2)	Form 2 Non-mixed	LL-T001	СН	LL 111 ^c	LL 111°
R&D Glovebox Waste (Form 1)	Form 1 Non-Mixed	LL-T002	СН	LL 116	LL 116
Combined metal scrap & incidental combustible (Form 3)	Form 3 Non-Mixed	LL-T003	СН	LL 125	LL 125
Pyrochemical Salt Waste (Form 4)	Form 4 Non-Mixed	LL-T004	СН	LL 124	LL 124
HEPA Filters (Form 5)	Form 5 Non-Mixed	LL-T005	СН		
Combined metal scrap & incidental combustible (Form 3)	Form 3 Mixed	LL-W018	СН	LL 125	LL 125
Solidified Waste (Form 2)	Form 2 Mixed	LL-W019	СН	LL 111 ^c	LL 111 ^c

Footnotes:

- a · Blank fields indicate that no waste stream name was reported in the waste stream profiles.
- b Item Description Codes (IDCs) as defined in the TRUCON were not reported in the waste stream profiles. Cross-correlation with TRUCON and NMVP content codes were assigned based on matching physical descriptions provided. The content codes listed do not represent a one-to-one correlation with the WIPP waste streams. Blank fields indicate that no correlating content code could be assigned.
- The content code listed is only a subset of the WIPP waste stream. Correlating content codes are not listed in TRUCON or the NMVP for the remainder
 of the WIPP waste stream.

MOUND WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description	LOCAL ID	wire id	RH/ CH	TRUCON*	NMVP ^a
Asbestos Debris	MD-805	MD-M001	СН		
Inorganic Process Residues	MD-836	MD-T001	CH	MD 111A	MD 111A
Plastic/Rubber Debris	MD-827	MD-T002	СН	MD 116A	MD 116A
Contaminated Soil	MD-842	MD-T003	СН	MD 111B	MD 111B
Uncategorized Unknowns	MD-826	MD-T004	СН		
Contaminated soils w/ debris	MD-842	MD-T005	CH	MD 111B	MD 111B
Metal debris w/o lead or cadmium	MD-824	MD-T006	CH	MD 117A	MD 117A
Uncategorized metal debris	MD-825	MD-T007	CH		
Uncategorized Plastic and Rubber Debris	MD-804	MD-T008	СН		
Uncategorized Combustible Debris	MD-801+804	MD-T009	СН		
Uncategorized Composite Filters	MD-825	MD-T010	CH		
Predominantly Metal Debris	MD-824	MD-T011	СН	MD 117A	MD 117A
Uncategorized Heterogenous Debris	MD-825	MD-T012	СН		
Leaded gloves/aprons		MD-T013	СН		
Absorbed Aqueous Liquids	MD-833	MD-W002	СН		

Footnotes:

a - Correlating TRUCON and NMVP content codes were assigned by matching the Local ID (Column 2) to the Item Description Codes (IDCs) listed in the TRUCON and NMVP documents. Blank fields indicate that no correlating content code exists.

NTS WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description	LOCAL ID	WIPP ID	TRUCON®	NMVP*
Heterogenous Debris, Uncalegorized	LL-002	NT-W001	NT 111 NT 116 NT 211 NT 225	NT 111 NT 116 NT 211 NT 225

Footnotes:

a - This waste stream has been correlated to the TRUCON and NMVP content codes based on physical description in the waste stream profile. WIPP stream # NT-W001 includes all of the content codes listed, and may contain other waste streams not listed in TRUCON or the NMVP.

0011813 0011813

ORNL WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description	LOCAL ID	WIPP ID	RH/CH	TRUCON®,b	NMVP ^{e,b}
RH TRU Heterogenous Debris	2039	OR-W040	RH		
Inactive Storage Tank contents - MTRU Sludge	2041	OR-W042	СН		
CH TRU Heterogenous Debris	2043	OR-W044	СН	OR 125A OR 125B	OR 125A OR 125B
CH TRU Uncategorized	2044	OR-W045	сн		
Liquid Low Level Waste Storage Tanks - Sludge	2045	OR-W046	ЯН		
CH TRU Heterogenous Debris (w/liquids)	2046	OR-W047	СН		

Footnotes:

- a RH waste streams are not listed in the TRUCON and NMVP.
- b Item Description Codes (IDCs) were not reported in the waste stream profiles. Cross-correlation with TRUCON and NMVP content codes were assigned based on matching physical descriptions. This is not a one-to-one correlation between TRUCON or NMVP content codes and WIPP numbers.

RFP WASTE STREAM IDENTIFICATION CROSS-CORRELATION TABLE

Waste Stream Name/Description®	LOCAL ID	WIPP ID	IDCp	TRUCON	NMVP _b
Cemented Sludge/Solidified Inorganic Sludge	823	RF-T001	823 ^d		
Solidified Process Solids/TRM	RF-806	RF-M001	806	RF 114	RF 114
Supercompacted Combustibles/TRM	RF-2116	RF-M002	2116°	RF 116C	
Combustible Debris	821, 822, 825	RF-T002	330, 336, 337, 821, 822 ^d , 825		-
Ground Glass	444	RF-T003	444	RF 118	RF 118
Misc. Pu Recovery By-Product/TRU/Salts	411,412,414,409	RF-T004	409 ^d , 411, 412 ^d , 414 ^d	RF 124	RF 124
Particulate Sludge/TRU/Solidified Inorganic Waste/ Final waste form is RF-T06	292,299,372	RF-T005	292, 299, 372		
Solidified Process Solids/TRU/Final form for Particulate Studges after Treatment	806	RF-T006	806	RF 114	RF 114
Supercompacted Combustibles/TRU	2216	RF-T007	2216		
Soil & Cleanup Debris/TRM/Blacktop, concrete, dirt, etc.	RF-374	RF-W008	374	RF 121	RF 121
Aqueous Sludge/Solidified Process Residues	800, 803, 807	RF-T010	800, 803, 807	RF 111	RF 111
Aqueous Sludge/TRM	RF-800,803,807	RF-W010	800, 803, 807	RF 111	RF 111
Metal Debris	480	RF-T011	480, 484, 485, 486, 489, 481 ^d	RF 117	RF 117
Metal/TRM	RF-480	RF-W011	480, 481	RF 117	RF 117
Combustibles/TRM	RF-831,832,833	RF-W012	330, 336, 337, 831, 832, 833	RF 116	RF 116
Solidified Organics/TRM	RF-801	RF-W013	801	RF 112	RF 112
Used Absorbents/TRM/Absorbed Organic Liquids	RF-375	RF-W026	375	RF 122	RF 122
Lead/TRM	RF-321	RF-W028	321	RF 117	RF 117
Leaded Gloves/Apron TRM	RF-339	RF-W029	339	RF 123	RF 123
Ground Glass/TRM	RF-444	RF-W032	444	RF 118	RF 118

February 199	CAO-94-1005, Revision
1995	ion 1

Waste Stream Name/Description ^a	LOCAL ID	WIPP ID	IDCp	TRUCON	NMVP
Firebrick, Pulverized or Fines/TRU	377	RF-T036	377, 378	RF 122	RF 122
Firebrick, Pulverized or Fines/TRM	RF-377	RF-W036	377 , 378	RF 122	RF 122
Heavy Metal (non-SS)/TRU	RF-320	RF-W037	320	RF 117	RF 117
Heavy Metal (non-SS)	320	RF-T037	320	RF 117	RF 117
Solidified Lab Waste	802	RF-T038	802	RF 113	RF 113
Solidified Lab Waste/TRM	RF-802	FF-W038	802	RF 113	RF 113
Incinerator Ash/TRM (Final form is solidified process solids)	Not Reported	RF-W040	419,420, 421, 425, 428	-	
Leaded Gloves-Acid Contaminated/TRM	RF-341	RF-W041	341		
Glass/TRM	440,442,442,856	RF-W052	440, 441, 442, 856*	RF 118	RF 118
Glass Debris	440,441,442,856	AF-T052	440, 441, 442, 856°	RF 118	RF 118
Mg Oxide Crucibles/TRU/Ceramic/Brick Debris	368,370	RF-T056	368, 370, 655	RF 118	RF 118
Mg Oxide Crucibles/TRM/Ceramic/Brick Debris	RF-370,368,655	RF-W056	370, 368, 655	RF 118	RF 118
Insulation/TRM	RF-438	RF-W057	438	RF 122	RF 122
Insulation/Same as RF-W057		RF-W057	438	RF 122	RF 122
Insulation/TRU	438	RF-T057	438		
Misc. Pu Recovery Byproducts/TRW/Salt Waste	RF-411	RF-W058	365, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 418, 427, 429, 433, 434, 435, 473, 654	RF 124	RF 124
Sand, Slag & Crucibles/TRM	392,398	RF-T059	392, 398		
Sand, Slag, and Crucible/TRM/Final waste from is solidified process solids (RF-M01).	391	RF-W059	387, 390, 395, 396, 391, 392, 393, 394, 399		
Coarse Graphite/TRM	RF-303,312	RF-Wo60	303, 312	RF 115	RF 115
Coarse Debris	303,312	RF-T060	303, 312	RF 115	RF 115
Miscellaneous Liquids/TRM	070,400,401	RF-W063	070, 400, 401, 500, 503, 508, 527, 541		

Waste Stream Name/Description®	LOCAL ID	WIPP ID	IDC _p	TRUCON	NMVPb
Miscellaneous Liquids/TRU	070,400,401,501	RF-T063			<u> </u>
Calcium metal/TRM	RF-333	RF-W065	333		
Filters and Media/TRU	335,342,490,491	RF-T068	335, 342, 490, 491 , 321, 331, 376, 492	RF 119	FIF 119
Filters & Media/TRM	RF-490	RF-Wo66	328, 331, 335 , 3 42 , 376, 490 , 491 , 492	RF 119	RF 119
Cemented Filters/TRU	376	RF-T067	376, 338	RF 119	RF 119
Cemented Filters/TRM	RF-376	RF-W067	376, 338	RF 119	RF 119
Particulate Sludge/TRM/Final waste form is solidified process solids (RF-M01).	292	RF-W068	292, 299, 372, 823		
Organic Resins/TRM	430,431,809	RF-W069	430, 431, 809	RF 126	RF 126
Organic Resins	809	RF-T069	430, 431, 809	RF 126	RF 126
Process Residues/TRM	289,292,299	RF-W076	289, 292, 299, 340, 372, 422, 423		
Solidified Inorganic Waste	044,080,092	RF-T076	044,080,192	1	

Footnotes:

- a Italic Text denotes waste stream descriptions obtained from the waste stream profile used to clarify the type of waste being described.
- b Bold Text denotes IDCs that are noted as Final Waste Form #'s by the RFP.
- c Correlating TRUCON and NMVP content codes are assigned based on the final waste form numbers (bolded IDCs). Blank fields indicate that no correlating content code exists for the waste stream.
- d These IDCs are listed as INEL TRUCON codes (generated by RFP), but are not included as RFP TRUCON content codes. Therefore, no correlation exists.
- e Supercompacted combustibles are listed in TRUCON under RF 116C, but under older IDCs 831, 832, 833.

APPENDIX G

001186

APPENDIX G MWIR CODE DESIGNATIONS AND DESCRIPTIONS

Code	Description	Code	Description
D001A	High TOC Ignitable Liquids	F001-F005	Pharmaceutical Industry Wastewaters
D001B	Descr. Based on 40 CFR 261.21, High TOC Subcat., Managed CWA	F005A	Spent Nonhalogenated Solvents
D001C	Descr. Based on 40 CFR 261.21, High TOC Subcat., Non- CWA	F005B	Listed for 2-Nitropropane
D002A	Acid, Alkaline, & Other Subcat Based on 40 CFR 261.22 CWA	F005C	Listed for 2-Ethoxyethanol
D002B	Acid, Alkaline, & Other Subcat Based on 40 CFR 261.22 Non- CWA	F025A	Light Ends
D002C	High Level Wastes	F025B	Spent Fitters/Aids and Desiccants
D003A	Reactive Cyanides	K006A	Anhydrous
D003B	Reactive Sulfides	K006B	Hydrated
D003C	Explosives	K061A	High Zinc
D003D	Water Reactives	K061B	Low Zinc
D003E	Other Reactives	K069A	Calcium Sulfate
D004A	TCLP Toxic for Arsenic	K069B	Non Calcium Sulfate
D004B	High Level Wastes	K071A	Low Mercury
D005A	TCLP Toxic for Barium	K071B	High Mercury
D005B	High Level Wastes	K106A	Low Mercury
D006A	TCLP Toxic for Cadmium	K106B	High Mercury
D006B	Cadmium-containing Batteries	K106C	High Mercury Residues from RMERC
D006C	High Level Wastes	K106D	Low Mercury Residues from RMERC
D007A	TCLP Toxic for Chromium	K106E	Low Mercury Residues
D007B	High Level Wastes	K106F	Wastewaters
D008A	TCLP Toxic for Lead	P065A	High Mercury Incinerator or RMERC Residues Containing Mercury
D008B	Lead Acid Batteries	P065B	Residues That Are Not Incinerator or RMERC Residues

APPENDIX G MWIR CODE DESIGNATIONS AND DESCRIPTIONS (continued)

Code	Description	Code	Description
D008C	Radioactive Lead Solids	P065C	Low Mercury RMERC Residues Containing Mercury Fulminate
D008D	High Level Wastes	P065D	Incinerator Residues Containing Mercury Fulminate
D009A	TCLP Toxic for Mercury	P065E	Wastewaters
D009B	High Mercury (Contains Organics)	P092A	High Mercury Incinerator or RMERC Residues Containing Phenyl Mercury Acetate
D009C	High Mercury (Contains Inorganics)	P092B	Residues That Are Not Incinerator or RMERC Residues
D009D	Elemental Mercury Contaminated with Radioactive Materials	P092C	Low Mercury RMERC Residues Containing Phenyl Mercury Acetate
D009E	Hydraulic Oil Contaminated with Mercury Radioactive Material	P092D	Incinerator Residues Containing Phenyl Mercury Acetate
D009F	High Level Wastes	P092E	Wastewaters
D010A	TCLP Toxic for Selenium	U151A	High Mercury Residues from RMERC
D010B	High Level Wastes	U151B	Low Mercury Residues from RMERC
D011A	TCLP Toxic for Silver	U151C	Low Mercury Residues
D011B	Hìgh Level Wastes	U151D	Radioactive Elemental Mercury

APPENDIX H

001139

Information Only

APPENDIX H

Isotopic Mixes for INEL

Pu-52 Isotopi	c Mix for INEL	PU-83 Isotopi	c Mix for INEL
Radionculide	Mass Fraction	Radionculide	Mass Fraction
238 _{Pu} 239 _{Pu} 240 _{Pu} 241 _{Pu} 241 _{Pu} ²⁴¹ Am impurity	1.2 E-04 9.3826 E-01 5.82 E-02 3.4 E-04 2.4 E-04 200 µg/g W G Pu	236 _{Pu} 238 _{Pu} 239 _{Pu} 240 _{Pu} 241 _{Pu} 242 _{Pu}	10 ⁻⁰⁶ 8.35 E-01 1.4 E-01 2.0 E-02 4.0 E-03 1.0 E-03

LOS ALAMOS NATIONAL LABORATORY WASTE MATERIAL TYPE CODES

The Los Alamos National laboratory (LANL) uses a set of codes to specify special mixtures of special materials in waste matrices where appropriate. In the listing that follows, the codes appear on the left and the column on the right contains the specifics of the mixture. subheadings provide additional general information where thought to be helpful to the reader.

Isotopic Mixes for LANL

Type Code Type Description							
Uranium - depleted in U235							
U10	Total						
U11	<0.21% U235						
U12	0.21 to 0.24% U235						
U13	>0.24 to <0.26% U235						
U14	0.26 to <0.28% U235						
U15	0.28 to <0.31% U235						
U16	0.31 to <0.50% U235						
U17	0.50 to <0.60% U235						
U18	0.60 to <0.711% U235						
	Uranium - enriched in U235						
U20	Total						
U21	>0.711 to <0.90% U235						
U22	0.90 to <1.15% U235						
U23	1.15 to <1.60% U235						

Type Code	Type Description					
U24	1.60 to <2.00% U235					
U25	2.00 to <2.60% U235					
U26	2.60 to <2.90% U235					
U27	2.90 to <3.10% U235					
U28	3.10 to <3.40% U235					
U29	3.40 to <3.90% U235					
U30	3.90 to <4.10% U235					
U31	4.10 to <5.00% U235					
U32	5.00 to <10.0% U235					
U33	10.0 to <20.0% U235					
U34	20.0 to <35.0% U235					
U35	35.0 to <45.0% U235					
U36	45.0 to <80.0% U235					
U37	80.0 to <92.0% U235					
U38	92.0 to <94.0% U235					
U39	94.0% and above U235					
	Plutonium - 242					
Pu40	Total					
Pu41	20 to 60%					
Pu42	> 60%					
Pu43	Americium 241					
Pu44	Americium 243					
Pu45	Curium 246					
Pu46	Berkelium 249					
Pu48	Californium 252					
Plutonium - 239						
Pu50	Total					
Pu51	<4.00% Pu240					
Pu52	4.00 to <7.00% Pu240					
Pu53	7.00 to <10.0% Pu240					

Type Code	Type Description
Pu54	10.0 to <13.0% Pu240
Pu55	13.0 to <16.0% Pu240
Pu56	20.0 to <20.0% Pu240
Pu57	20.0% and above Pu240
	Uranium - enriched in U233
U70	Total
U71	< 5 ppm U232
U72	5 to <50 ppm U232
U73	50 ppm and above U232
U81	Normal Uranium - Total (0.711% U235)
U82	Nuptunium 237 - Total
U83	Plutonium 238 - Total
U88	Thorium - Total

APPENDIX I

→ OAK RIDGE NATIONAL LABORATORY

ANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC.

OR THE U.S. DEPARTMENT OF ENERGY

105 MTCHELL ROAD
POST OFFICE BOX 2008
OAK RIDGE, TENNESSEE 37831-6495
TELEPHONE: 615-576-7575
FACSIMLE: 815-576-0327

December 22, 1994

Distribution

Final Review (Sign-Off) of Transuranic Waste Section (Chapter 3) of the Integrated Data Base Report (DOE/RW-0006, Rev. 10)

Attached is the final update of this section based on DOE site information received. Please convey to either Royes Salmon or me any final comments you may have on this section no later than Friday, December 30, 1994. Royes' phone number is 615/574-6607. Your cooperation and assistance are appreciated.

Steve Storch

Stephen N. Storch Integrated Data Base Program

SNS:db

Attachment

Distribution:

F. M. Coony (WHC)

J. A. Disbrow (DOE/EIA)

P. Drez (Drez Environmental)

D. Jones (BDM)

J. A. Klein

E. W. Krieger (MACTEC)

P. W. Lurk (DOE/EM-542)

M. L. Matthews (DOE/Carlsbad)

P. J. McGinn (BDM)

J. M. Peterson (ANL-E)

R. Salmon

M. Tolbert-Smith (DOE/EM-432)

L. J. Wachter (HAZWRAP)

M. J. Zenkowich (DOE/EM-332)

SNS-RC

3. TRANSURANIC WASTE

3.1 INTRODUCTION

This chapter presents information on the inventories and characteristics of transuranic waste (TRUW) at various sites in the United States. TRUW is a waste category peculiar to DOE; it does not apply to wastes regulated by the NRC. DOE Order 5820.2A defines TRUW as waste that (1) is contaminated with alpha-emitting transuranium (i.e., atomic numbers greater than 92) radionuclides with half-lives greater than 20 years and (2) contains a total concentration of such radionuclides in excess of 100 nCi per gram of waste at the time of assay.¹

Under an earlier definition, DOE wastes containing more than 10 nCi of TRU radionuclides per gram of waste were classified as TRUW. The change to 100 nCi of TRU radionuclides per gram of waste took place in 1984. As a result of this change, some waste that had already been classified as TRUW became potentially reclassifiable as low-level waste (LLW). Some of this waste has been so reclassified, and some is still managed as TRUW with the potential of being reclassified as LLW at some future time.

DOE Order 5820.2A also states that heads of field elements can determine that other alpha-contaminated waste peculiar to a specific site must be managed as TRUW.¹ As a consequence of this provision, wastes containing radionuclides such as ²²³U, ²⁴¹Pu, and ²⁴⁴Cm, which do not meet the suict definition of TRU radionuclides because of atomic number or half-life, may be classified as TRUW at some sites.

TRUW is primarily generated by research and development activities, plutonium recovery, weapons manufacturing, environmental restoration, and decontamination and decommissioning (D&D) projects. Most TRUW exists in solid form (e.g., items such as protective clothing, paper trash, rags, glass, miscellaneous tools, and equipment that have become contaminated with TRU radionuclides). Some TRUWs are in liquid form (sludges) resulting from chemical processing for recovery of plutonium or other TRU elements. Prior to 1970, TRUW was disposed of on-site in shallow, landfill-type configurations. TRUW disposed of in this manner is referred to as "buried" TRUW. In 1970, the U.S. Atomic Energy Commission (AEC), which was a predecessor to DOE, concluded that waste containing long-lived alphaemitting radionuclides should have greater confinement from the environment. Thus, all TRUW generated since the early 1970s has been segregated from other waste types and placed in retrievable storage pending shipment and final disposal in a permanent geologic repository. This waste is referred to as "retrievably stored" TRUW.

Retrievably stored waste is contained in a variety of packagings (metal drums, wooden and metal boxes) and is stored in earth-mounded berms, concrete culverts, or other types of facilities.

TRUW packages are classified as either "contact handled" (CH) or "remote handled" (RH) depending on the radiation level at the surface of the package at the time of packaging. If this level exceeds 200 mrem/h, the package is classified as RH.

CH TRUW contains relatively small quantities of fission and activation products that produce highly penetrating radiation; typically, its emissions consist mostly of alpha particles and low-energy photons of little penetrating power. Most TRUW (more than 90% by volume) is of the CH type. RH TRUW typically contains a greater proportion of fission and activation products that produce highly penetrating radiation and therefore tends to produce a higher level of radiation at the surface of the package.

It is estimated that as much as 50 to 60% of TRUW is mixed waste, meaning that it contains, in addition to radioactive constituents, hazardous constituents defined and regulated in accordance with the Resource Conservation and Recovery Act (RCRA). Examples of mixed waste are radionuclide-contaminated spent solvents, discarded materials contaminated with both solvents and radioactive materials, scintillation fluids, and discarded contaminated lead shielding. Mixed TRUW must be managed to comply with the applicable hazardous waste regulations (e.g., RCRA) as well as those applying to radioactive TRUW only. Some TRUW may be contaminated with hazardous materials defined by other regulations. DOE is currently developing strategies for identifying and managing TRUW containing hazardous contaminants defined by regulations other than RCRA.

Under existing arrangements, retrievably stored TRUW is the responsibility of the DOE/EM Office of Waste Management (EM-30). It is planned that the retrievably stored TRUW and newly generated TRUW from defense-related activities will be shipped to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to the start of these shipments, it is planned that tests will be conducted over approximately the next 4 years to ensure that the wastes to be shipped to WIPP, and the criteria for their emplacement at WIPP, will meet all applicable federal and state requirements for TRUW and mixed TRUW. If the test phase is successful, the retrievable TRUW inventory will be disposed of in WIPP over approximately the next 20 years.

Buried TRUW and TRUW generated from site remediation activities and D&D activities are the responsibility of the Office of Environmental Restoration (EM-40). The disposition of TRUW in these categories is uncertain at this time.

3.2 TRUW INVENTORIES

3.2.1 Sources of Data

Quantitative information contained in this chapter is derived from data furnished by the DOE sites through annual data calls, as described later in this section. As programs and plans evolve or change, modifications and/or additions will be made to the data and other information in this chapter. It is expected that the quality and accuracy of the data will improve with each annual revision of this document, thus improving the usefulness of the data for program planning and decision purposes.

Early TRUW inventory practices were not as stringent as those of today in regard to requirements for waste identification, categorization, and segregation. Consequently, the early inventory data are based largely on process knowledge and on various studies and summaries related to site-specific practices.³ As these efforts continue and TRUW is further characterized by radioassay, significant revisions in the estimated overall quantities of TRUW are anticipated.

3.2.2 Site Locations—Summarized Volumes and Radioactivity

TRUW management activities (generation, retrievable storage, etc.) are performed at six major and fourteen minor DOE sites. The major sites, from the standpoint of TRUW quantities, are (1) the Hanford Site (HANF), (2) Idaho National Engineering Laboratory (INEL), (3) Los Alamos National Laboratory (LANL), (4) Oak Ridge National Laboratory (ORNL), (5) Rocky Flats Plant (RFP), and (6) the Savannah River Site (SRS). HANF and RFP no longer generate TRUW as part of weapons production processes but do generate TRUW as part of environmental restoration (cleanup) activities. The fourteen minor sites are (1) Ames Laboratory (AMES), (2) Argonne National Laboratory-East (ANL-E), (3) Bettis Atomic Power Laboratory (BAPL), (4) Knolls Atomic Power Laboratory (KAPL), (5) Lawrence Berkeley Laboratory (LBL), (6) Lawrence Livermore National Laboratory (LLNL), (7) Mound Laboratory (MOUND), (8) Nevada Test Site (NTS), (9) Paducah Gaseous Diffusion Plant (PAD), (10) Pantex Plant (PANT), (11) Sandia National Laboratory (SNL/NM), (12) (6) Santa Susana Field Laboratory (SSFL) [also referred to as the Energy Technology Engineering Center (ETEC)], (13) University of Missouri (MURR), and (14) West Valley Demonstration Project (WVDP). Figure 3.1 shows the locations of the sites that store the largest quantities of TRUW and gives an approximate indication of the relative volumes of TRUW stored at each site. Figure 3.2 shows the volumes of CH and RH retrievably stored TRUW at the major sites and clearly shows that the preponderance of TRUW volume is in the CH category. Figure 3.3 shows the decayed radioactivities of retrievably stored CH and RH TRUW at the major sites as of December 31, 1993.

3.2.3 Development of Detailed Inventory Data

Last year's IDB described recent changes in the manner in which TRUW data were collected, reviewed, and used. This year, the data collection process for the IDB was adjusted somewhat to allow for the priority collection of data for the WIPP Baseline Inventory Report.

3.2.3.1 Site data submittal process

All of the quantitative TRUW data in the IDB are ultimately derived from the site data submittals. The sites supply volumes, radionuclide compositions, and curies of each radionuclide added in each year of TRUW accumulation. This is done for each TRUW type (CH stored, RH stored, CH buried, and RH buried). The annual radioactivities in the site submittals are on an as-stored basis; that is, they represent the curies of each radionuclide added each year at the end of the year in which the waste was placed in storage. The data are entered by the sites restandardized forms. The complete set of TRUW site data submittate that thus year's IDB is listed as ref. 5 (Sect. 3.6). In a few cases, it was found necessary to use last year's submittal to the IDB because no submittal was received this year.

3.2.3.2 Site data review and modification

The site data submittals for TRUW were reviewed to make certain, insofar as possible, that the data supplied met the requirements of completeness and consistency. The data review process included modifying the formats of the data so that they could be easily converted to input data files for use in the decay calculations.

3.2.3.3 As-stored volumes and radioactivities

Tables 3. Sugh 3.3 summarize a small portion of the information in the size submittals. These tables show the volumes and cumulative as-stored (undecayed) radioactivities of retrievably stored CH and RH TRUW at each site in 5-year increments from 1970 to 1990 and at the end of 1993. Table 3.2 shows total radioactivities (i.e., all radionuclides included), and Table 3.3 shows TRU radioactivity (i.e., only TRU radionuclides included).

3.2.3.4 Calculation of annual decayed radioactivities

As described in last year's IDB report, a computer code converts the annual as-stored radioactivities to annual decayed radioactivities and accumulates these quantities to produce tables showing decayed grams, curies, and watts on a year-by-year, site-by-site, and radionuclide-by-radionuclide basis. Annual added volumes and cumulative volumes are also shown. Volumes are assumed to be unaffected by decay.

In a number of cases, the site-submitted data were not sufficiently detailed to permit the desired decay calculations. The difficulty most frequently encountered was that radionuclide compositions were not adequately specified on a radionuclide-by-radionuclide basis. In some cases, data conversion codes were used to convert site-supplied input

data to the radionuclide-specific forms required for decay calculations. These codes were used as follows:

- Where the site-supplied data called for mixtures of fission products but did not give quantitative composition data for such mixtures, the assumption was made that the isotopic composition was the same as that specified by Hanford in their submittal to last year's (Rev. 9) IDB report.
- 2. Certain parent fission products are always accompanied by short-lived daughters. Short-lived daughter fission products are added in cases where the site submittal shows the parent but does not specifically show the daughter and it is clear that the daughter must be present. For example, if a site shows 100 Ci of ⁵⁰Sr but does not show any ⁵⁰Y, it is assumed that the 100 Ci is the total activity of parent and daughter and the input is changed to 50 Ci ⁵⁰Sr and 50 Ci ⁵⁰Y. Other fission product parent-daughter combinations are handled in the same manner, using the appropriate curie ratio for each combination.

3.2.4 Results of Inventory Calculations

3.2.4.1 Retrievably stored wastes

Tables 3.4 and 3.5 show the cumulative decayed radioactivities of retrievably stored CH and RH TRUWs for each of the sites by 5-year increments from 1970 through 1990 and at the end of 1993. These tables are analogous to Tables 3.2 and 3.3, except that in Tables 3.4 and 3.5 the radioactivities are on a decayed basis; that is, they take into account the processes of radioactive decay and ingrowth of radioactive daughters. As before, Table 3.4 shows total radioactivities (all radionuclides included), and Table 3.5 shows only the radioactivities of TRU radionuclides. As previously stated, it is assumed throughout the tables that volumes of TRUW are not affected by radioactive decay.

Tables 3.6 and 3.7 summarize the total system inventories (i.e., all sites combined) of retrievably stored CH and RH TRUWs at DOE sites for the end of each year from 1970 to 1993. The cumulative masses, radioactivities, and thermal powers shown in these tables are decayed values. The difference between Tables 3.6 and 3.7 is that the masses, radioactivities, and thermal powers in Table 3.6 are based on all the radionuclides in the waste, whereas the quantities shown in Table 3.7 include only the contributions of the TRU radionuclides; daughters of TRU nuclides are not included in Table 3.7.

3.2.4.2 Buried TRUW

Buried TRUW volumes and radioactivities are shown in Tables 3.8 through 3.12. These are based on data provided in the site submittals. The form of the site-submitted data for buried waste is identical to that of the retrievably stored waste except that no distinction is made between CH and RH buried wastes. The buried waste tables (Tables 3.8 through 3.12) are analogous in form and information content to the retrievably stored waste tables (Tables 3.1 through 3.7)

and follow the same general sequence. Table 3.8 shows as-stored volumes by sites and time periods. Tables 3.9 and 3.10 show cumulative as-stored total and TRU-only radioactivities by sites and time periods. Tables 3.11 and 3.12 show cumulative decayed total and TRU-only radioactivities. In these tables, "total" radioactivity means that all radiomiclides are included, and "TRU-only" radioactivity means that only TRU nuclides are included.

3.2.4.3 Contaminated soil

Over the years, many of the older buried waste containers have developed leaks and contaminated the adjacent soil. Also, at some sites, soil has become contaminated by liquid spills or has been used as an ion-exchange medium for dilute liquid waste streams. It is difficult to make accurate estimates of the actual quantity of contaminated soil. The data reported by the sites are shown in Table 3.13. Additional characterization efforts will be required to reduce the uncertainties in these data.

3.1 ESTIMATED MIXED WASTE CONTENT OF TRUW

The sites were requested to submit estimates of the volumes of retrievably stored CH and RH TRUWs that might fall into the category of mixed TRUWs. These estimates were requested for three time periods: 1970–1986, 1987–1993, and 1994. Table 3.14 summarizes the site-submitted estimates of these volumes.

3.4 PROJECTED FUTURE QUANTITIES OF TRUW

Table 3.15 shows the data submitted by the sites for estimated future volumes of TRUW generation. The sites were not requested to estimate the radioactivities or isotopic compositions of these wastes, since it was felt that there would be little basis for such estimates. The estimated volumes are given in terms of average annual rates (m³/year) for seven time periods from 1994 to 2020. An effort was made to obtain estimated rates in three categories: (1) general operations, (2) D&D, and (3) remedial action. The estimated effect of volume-reduction processes was also requested; however, little information on this was available.

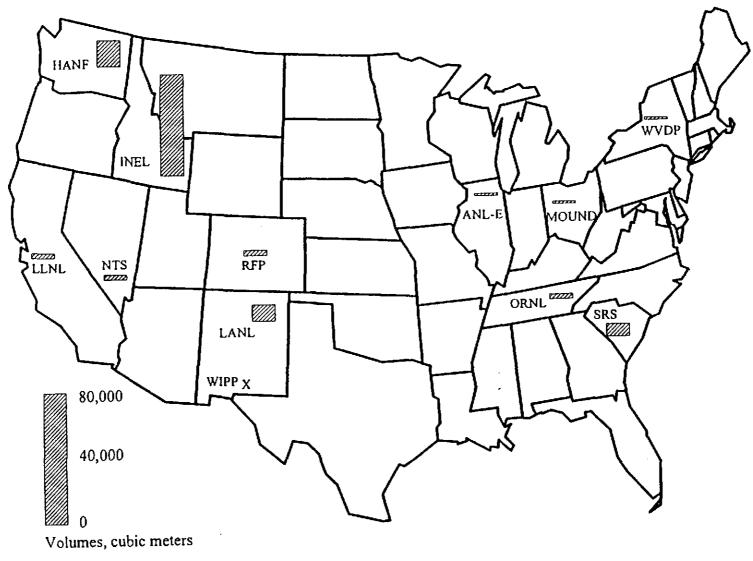
3.5 TRUW DISPOSAL

The goals of the DOE TRUW Program are to terminate interim storage and achieve permanent disposal of all DOE TRUW. One of the major efforts in this direction is the WIPP project. As stated in Public Law 96–164, the WIPP project was to be constructed ... as a defense activity of the DOE for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive

001:00 6

waste resulting from defense activities and programs of the United States." Construction of the facility is now essentially complete, and WIPP is now the only facility specifically designed for isolation of TRUW. It is designed to emplace about 175,000 m³ of TRUW 650 m below ground in a mined salt formation.

Waste received at WIPP must meet the WIPP-WAC and associated quality assurance requirements specified in WIPP/DOE-069. A number of other approvals remain to be completed before DOE can begin disposal operations at the facility. As previously stated, a test program of approximately 4 years will be conducted to ensure that the wastes to be shipped to WIPP, and their emplacement at WIPP, will comply with all applicable federal and state regulations. If the test phase is successful and all necessary approvals are obtained, it is planned that shipment and emplacement of wastes will begin and will continue through approximately the year 2018.


In 1993, the WIPP Legislative Land Withdrawal Act was passed, confirming congressional intent to have DOE continue with development and permitting of the facility. Since then, the DOE has stated its intent to accelerate processes leading to the start of waste disposal operations at the WIPP.

3.6 REFERENCES

- U.S. Department of Energy, Radioactive Waste Management, DOE Order 5820.2A, Washington, D.C. (Sept. 26, 1988).
- K. S. Hollingsworth, Policy Statement Regarding Solid Waste Burial, AEC Directive IAD No. 0511-21, Washington, D.C. (Mar. 20, 1970).
- U.S. Department of Energy, Defense Waste Management Plan for Buried Transuranic-Contaminated Waste, Transuranic-Contaminated Soil, and Difficult-to-Certify Transuranic Waste, DOE/DP-0044, Washington, D.C. (June 1987).
- U.S. Department of Energy, Integrated Data Base for 1993: U.S. Spent Fuel and Radioactive Waste Inventories. Projections, and Characteristics, DOE/RW-0006, Rev. 9, Oak Ridge National Laboratory, Oak Ridge, Tennessee (March 1994).
- 5. DOE site TRUW data submittal attachments, submitted to the IDB Program during September-December 1994. The following TRUW submittals were received and reviewed by MACTEC and the IDB Program before analysis and integration. Preceding each submittal is the site (in parentheses) to which it refers.
 - a. (AMES) Kay M. Lampe Hannasch, Ames Laboratory, Ames, Iowa, correspondence to James E. Fletcher, DOE Chicago Operations Office, Argonne, Illinois, "Data Requests for TRU Waste, WIPP Baseline Inventory, IDB Request," dated Sept. 28, 1994.
 - b. (ANL—E) Michael A. Sodaro, Argonne National Laboratory, Argonne, Illinois, correspondence to Jeff Williams, DOE Carlsbad Area Office, Argonne, Illinois, "WIPP TRU Baseline Inventory Report and Integrated Database Forecasts," dated Sept. 30, 1994.
 - c. (ANL-W) No submittal provided.

- d. (ETEC) G. G. Gaylord, Rockwell International Corporation, Canoga Park, California, correspondence to Mark L. Matthews, DOE Carlsbad Area Office, Carlsbad, New Mexico, "TRU Inventory at ETEC," 94ETEC-DRF-1667, dated Oct. 31, 1994.
- e. (HANF) R. D. Wojtasek, Westinghouse Hanford Company, Richland, Washington, correspondence to Lise Wachter, Martin Marietta Energy Systems, Inc., HAZWRAP, Oliver Springs, Tennessee, "Request for Office of Waste Management, Waste Information Update," 9305688B R1, dated Aug. 30, 1993. Also, F. M. Coony, Westinghouse Hanford Company, Richland, Washington, correspondence to E. W. Krieger, MAC Technical Services Company, Albuquerque, New Mexico, transmitting information on TRUW added to HANF inventory during CY 1993, dated Dec. 7, 1994.
- f. (INEL) Joel T. Case, DOE Idaho Operations Office, Idaho Falls, Idaho, correspondence to Jim Teek, Advance Sciences, Inc., Albuquerque, New Mexico, "Integrated Data Base (IDB) TRU Waste 1994 Data Call," OPE-WM 94-308, dated Oct. 6, 1994.
- g. (LANL) Davis Christensen, Los Alamos National Laboratory, Los Alamos, New Mexico, correspondence to Mark L. Matthews, DOE Carlsbad Area Office, Carlsbad, New Mexico, "WIPP Transuranic Waste Baseline Inventory Report," CST14-94-061, Nov. 1, 1994.
- h. (LBL) Tim Wan, University of California, Berkeley, California, correspondence to Jeff Williams, DOE Carlsbad Area Office, Carlsbad, New Mexico, "Data Package for the Waste Isolation Pilot plant TRU Waste Baseline Inventory Report," HW-94-342, dated Sept. 13, 1994.
- (LLNL) Roy Kearns, DOE Oakland Operations Office, Oakland, California, correspondence to Jeff Williams, DOE Carisbad Area Office, Carlsbad, New Mexico, "Waste Isolation Pilot Plant Transuranic Integrated Database for Lawrence Livermore," 94W399/5484.a.13, dated Oct. 18, 1994.
- j. (MOUND) Raymond J. Finney, EG&G Mound Applied Technologies, Miamisburg, Ohio, correspondence to Robert S. Rothman, DOE Miamisburg Area Office, Miamisburg, Ohio, "Response to the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) Data Package," dated Sept. 27, 1994.
- k. (MURR) W. Derek Pickett, University of Missouri, Columbia, Missouri, correspondence to Jim Teek, Advanced Sciences, Inc., Albuquerque, New Mexico, transmitting MURR TRUW information and data for the WIPP TRUW Baseline Inventory Report and the IDB report (Rev. 10), dated Sept. 29, 1994.
- (NR sites—BAPL) E. D. Shollenberger, DOE Pittsburgh Naval Reactors Office, West Mifflin, Pennsylvania, correspondence to Mark L. Matthews, DOE Carlsbad Area Office, Carlsbad, New Mexico, "Waste Isolation Pilot Project Transuranic Waste (TRU) Baseline Inventory Report and Updated Integrated Database TRU Information for the Bettis Atomic Power Laboratory," dated Oct. 21, 1994.
- m. (NTS) Joseph M. Ginanni, DOE Nevada Operations Office, Las Vegas, Nevada, correspondence to Jerry Klein, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Jim Teak, Advance Sciences, Inc., Albuquerque, New Mexico; and Jeff Williams, DOE Carlsbad Area Office, Carlsbad, New Mexico, "Nevada Test Site Transuranic and Mixed Transuranic Inventory Data for the 1994 Integrated Data Base Report (DOE/RW-0006, Rev. 10)," dated Oct. 14, 1994.
- n. (ORNL) P. E. Arakawa, Oak Ridge National Laboratory, Oak Ridge, Tennessee, correspondence to Mac Roddye, DOE Oak Ridge Operations Office, Oak Ridge, Tennessee, "Complete Review and Revision of Data Package for the WIPP Transuranic Waste Baseline Inventory Report (WTWBIR)," dated Nov. 2, 1994.
- o. (PAD) No submittal provided.

- p. (PANT) D. L. Heim, DOE Amarillo Area Office, Amarillo, Texas, correspondence to Jeff Williams, DOE Carlsbad Area Office, Carlsbad, New Mexico, "WIPP Transuranic (TRU) Waste Baseline Inventory Report and Integrated Database Report," dated Sept. 28, 1994.
- q. (RFP) G. A. O'Leary, EG&G Rocky Flats Inc., Golden Colorado, correspondence to Paul Drez, Drez and Associates, Albuquerque, New Mexico, "Transmittal of the Rocky Flats Environmental Technology Site (RFETS) Data Forms for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Baseline Inventory Report (WTWBIR)—GAO-039-94," 94-RF-10526, dated Oct. 13, 1994.
- r. (SNL/NM) No cover letter provided with site data submittal.
- (SRS) S. J. Mentrup, Westinghouse Savannah River Company, Aiken, South Carolina, correspondence to Stan Massingill, DOE Savannah River Operations Office, Aiken, South Carolina, "SRS Data Package for WIPP TRU Waste Baseline Inventory Report (U)," SWE-SWE-94-0550, dated Oct. 12, 1994.
- (WVDP) P. S. Klanian, West Valley Nuclear Services Company, Inc., West Valley, New York, correspondence to Jeff Williams, DOE Carlsbad Area Office, Carlsbad, New Mexico, "Data Package for WIPP Transuranic Waste Baseline Inventory Report (WTWBIR)," dated Nov. 14, 1994.
- U.S. Department of Energy, Long Range Master Plan for Defense Transuranic Waste Program, DOE/WIPP 88-028, Carlsbad, New Mexico (December 1988).
- U.S. Congress, Department of Energy National Security and Military Application of Nuclear Energy Authorization Act of 1980, Pub. L. 96-164 (1980).
- 8. U.S. Department of Energy, TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant, WIPP/DOE-069, Rev. 4, Carlsbad, New Mexico (December 1991).

X Waste Isolation Pilot Plant

NOTE: Sites having less than 10 cubic meters of stored TRUW are not shown.

Fig. 3.1. Locations and total volumes of retrievably stored DOE TRUW through 1993.

Fig. 3.2. Retrievably stored TRUW volumes at the end of 1993, by site.

CAO-94-1005, Revision 1 February 1995

Fig. 3.3. Retrievably stored TRUW decayed radioactivity at the end of 1993, by site.

Radioactivity (curies)

HANF -

Table 3.1. Summary of retrievably stored TRUW by sites: cumulative as-stored volumes

Site name			Cum	ulative volume at	end of calendar yes	ır, m³	
	Site acronym	1970	1975	1980	1985	1990	1993
		Contac	t handled				
			0.0	0.0	0.0	0.0	0.0
Ames Laboratory	AMES	0.0		0.0	0.0	25.5	29.1
Argonne National Laboratory-East	anl-e	0.0	0.0	0.0	0.0	1.9	1.9
nergy Technology Engineering Center	ETEC	0.0	0.0		14,668.9	15,282.3	15,608.9
lanford Site	HANF	745.2	5,541.6	10,086.3	57,615.0	64,774.0	64,774.0
daho National Engineering Laboratory	INEL	1,420.0	28,356.0	42,341.0		0.0	0.0
dano National Engineering Lacotatory	KAPL	0.0	0.0	0.0	0.0	0.8	0.9
Cnolls Atomic Power Laboratory	LBL	0.0	0.0	0.0	0.4		235.0
awrence Berkeley Laboratory	LLNL	0.0	0.0	0.0	0.0	194.5	
Lawrence Livermore National Laboratory		0.0	3,352.3	5,963.6	8,800.5	10,357.3	10,810.9
Los Alamos National Laboratory	LANL	0.0	1.7	4.7	7.7	10.7	11.9
Mound	MOUND		34.9	177.9	550.2	606.8	607.1
Nevada Test Site	NTS	0.0	541.0	726.7	901.4	1,049.6	2,015.2
Oak Ridge National Laboratory	ORNL	12.6		0.0	0.0	4.3	4.3
Paducah Gascous Diffusion Plant	PAD	0.0	0.0	0.0	0.0	0.0	0.6
Pantex Plant	PANT	0.0	0.0	-	0.0	952.0	1,040.0
Rocky Flats Plant	RFP	0.0	0.0	0.0		0.0	0.9
Rocky rists risks	SNLNM	0.0	0.0	0.0	0.0		8,925.9
Sandia National Laboratory/New Mexico	SRS	0.0	603.5	1,752.3	3,849.4	7,334.7	0.1
Savannah River Site	MURR	0.0	0.0	0.0	0.0	0.0	
University of Missouri	WVDP	0.0	0.0	0.0	0.0	0.0	49.
West Valley Demonstration Project	WADL				07.201.6	100,594.4	104,115.
Total		2,177.8	38,431.0	61,052.5	86,393.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,.
		Remo	te bandled				
		0.0	0.0	0.0	0.0	0.0	· 0.
Ames Laboratory	AMES	0.0	0.0	0.0	0.0	0.0	1.
Argonne National Laboratory-East	ANL-E	0.0		0.0	0.0	0.0	0
Energy Technology Engineering Center	ETEC	0.0	0.0	194.9	198.2	201.0	201
Hanford Site	HANF	10.3	127.8		48,8	73.8	79
Idaho National Engineering Laboratory	INEL	0.0	0.0	17.6		0.0	2
Knolls Atomic Power Laboratory	KAPL	0.0	0.0	0.0	0.0	0.0	ō
Knoils Atomic rowel Lawrency	LBL	0.0	0.0	0.0	0.0	0.0	0
Lawrence Berkeley Laboratory	LLNL	0.0	0.0	0.0	0.0	= *	91
Lawrence Livermore National Laboratory	LANL	0.0	0.0	7.9	27.4	27.4	0
Los Alamos National Laboratory	MOUND	0.0	0.0	0.0	0.0	0.0	
Mound	NTS	0.0	0.2	0.6	5.3	5.3	5
Nevada Test Sile	N12	0.0	- 				

Table 3.1 (continued)

Site name		Cumulative volume at end of calendar year, m							
	Site acronym	1970	1975	1980	1985	1990	1993		
Oak Ridge National Laboratory Paducah Gascous Diffusion Plant Pantex Plant Rocky Flats Plant Sandia National Laboratory/New Mexico Savannah River Site University of Missouri West Valley Demonstration Project	ORNL PAD PANT RFP SNL/NM SRS MURR WVDP	1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	221.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	361.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	440.3 0.0 0.0 0.0 0.0 0.0 0.0	540.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	563.9 0.0 0.0 0.0 0.9 0.0 0.0 427.6		
Total		12.0	349.3	582.2	720.0	540.6	1,373.		

Table 3.2. Summary of retrievably stored TRUW by sites: cumulative as-stored radioactivity (all radionuclides)

			Cumulative a	s-stored radioact	ivity at end of calc	endar year, 10³ Ci	
Site name	Site acronym	1970	1975	1980	1985	1990	1993
		Contact	handled				
Ames Laboratory	AMES	0.00	0.00	0.00	0.00	0.00	0.00
Argonne National Laboratory-East	ANL-E	0.00	0.00	0.00	0.00	0.12	0.13
Energy Technology Engineering Center	ETEC	0.00	0.00	0.00	0.00	0.00	0.01
Hanford Site	HANF	1.05	19.61	191.49	278.45	325.62	331.57
Idaho National Engineering Laboratory	INEL	4.22	126,46	255.92	405.07	496.42	496.46
	KAPL	0.00	0.00	0.00	0.00	0.00	0.00
Knolls Atomic Power Laboratory Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Derkeley Laboratory Lawrence Livermore National Laboratory	LLNL	0.00	0.00	0.00	0.00	0.93	2,24
Los Alamos National Laboratory	LANL	0.00	49.18	108.46	151.01	212.92	218.96
Mound	MOUND	0.00	0.15	0.39	0.63	0.88	0.98
Nevada Test Site	NTS	0.00	0.25	1.12	3.30	4.00	4.00
Oak Ridge National Laboratory	ORNL	0.05	12.48	17.80	98.19	99.65	103.57
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.11
Pantex Plant	PANT	0.00	0.00	0.00	0.00	0.00	0.00
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	48.66	93.59
Sandia National Laboratory/New Mexico	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00
Savannah River Site	SRS	0.00	277.35	376.09	575.83	654.14	664.48
University of Missouri	MURR	0.00	0.00	0.00	0.00	0,00	0.00
West Valley Demonstration Project	WVDP	0.00	0,00	0.00	0.03	0.05	0.05
Total		5.32	485.48	951.27	1,512.50	1,843.38	1,916.14
		Remote	handled				
American laboratory	AMES	0.00	0.00	0.00	0.00	0.00	0.00
Ames Laboratory	ANL-E	0.00	0.00	0.00	0.00	0.00	0.01
Argonne National Laboratory-East	ETEC	0.00	0.00	0.00	0.00	0.00	0.00
Energy Technology Engineering Center	HANF	27.09	55.69	471.47	479.90	481.88	481.8
Hanford Site	INEL	0.00	0.00	0.49	4.93	10.53	10.6
Idaho National Engineering Laboratory		0.00	0.00	0.00	0.00	0.00	0.1
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.0
Lawrence Berkeley Laboratory	LBL		0.00	0.00	0.00	0.00	0.0
Lawrence Livermore National Laboratory	LLNL	0.00		0.96	3.43	3,45	14.9
Los Alamos National Laboratory	LANL	0.00	0,00	0.90	0.00	0.00	0.0
Mound	MOUND	0.00	0.00		0.00	0.25	0.2
Nevada Test Site	гти	00,0	00,0	0.04	Ų.£3	U.L.3	0,2.

Table 3.2 (continued)

<u> </u>	Cumulative as-stored radioactivity at end of calendar year, 10°Ci								
Site name	Site acronym	1970	1975	1980	1985	1990	1993		
Oak Ridge Nation III aboratory	ORNL	0.00	0.60	0.76	0.98	167.24	178.13		
Oak Ridge National Laboratory Paducah Gascous Diffusion Plant Pantex Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.00		
	PANT	0.00	0.00	0.00	0.00	0.00	0.00		
	RFP	0.00	0.00	0.00	0.00	0.00	0.00		
Rocky Flats Plant	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00		
Sandia National Laboratory/New Mexico	== : :	0.00	0.00	0.00	0.00	0.00	0.00		
Savannah River Site	SRS	0.00	0.00	0.00	0.00	0.00	0.00		
University of Missouri West Valley Demonstration Project	MURR WVDP	0.00	0.00	0.00	0.00	0.00	0.00		
Total		27.09	56.30	473.72	489.48	663.36	685.92		

Table 3.3. Summary of retrievably stored TRUW by sites: cumulative as-stored radioactivity (TRU radionuclides only)

Site name	G:	Cumulative as-stored radioactivity at end of calendar year, 10 ³ Ci						
	Site acronym	1970	1975	1980	1985	1990	1993	
		Contact	handleð					
Ames Laboratory	AMES	0.00	0.00	0.00	0.00	0.00	0.00	
Argonne National Laboratory-East	anl-e	0.00	0.00	0.00	0.00	0.04	0.05	
Energy Technology Engineering Center	ETEC	0.00	0.00	0,00	0.00	0.00	0.00	
Hanford Site	HANF	0.19	3.22	106.81	119.34	123.87	124.82	
Idaho National Engineering Laboratory	INEL	1.52	50.87	122.85	183.83	205.34	205.35	
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00	
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00	
Lawrence Livennore National Laboratory	LLNL	0.00	0.00	0.00	0.00	0.15	0.35	
Los Alamos National Laboratory	LANL	0.00	48.66	104.85	144.69	206.42	212.47	
Mound	MOUND	0.00	0.15	0.39	0.63	0.88	0.98	
Nevada Test Site	NTS	0.00	0.24	0.97	3.01	3.29	3.29	
Oak Ridge National Laboratory	ORNL	0.01	6.28	6,59	9.89	10.01	10.73	
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.11	
Pantex Plant	PANT	0.00	0.00	0.00	0.00	0.00	0.00	
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	12.73	28.06	
Sandia National Laboratory/New Mexico	SNL/NM	0.00	0.00	0,00	0.00	0.00	0.00	
Savannah River Site	SRS	0.00	250.87	335.90	505.74	549.61	558.85	
	MURR	0.00	0.00	0.00	0,00	0.00	0.00	
University of Missouri	WVDP	0.00	0.00	0.00	0.00	0.00	0.00	
West Valley Demonstration Project	WYDP		<u> </u>					
Total		1.72	360.30	678.36	967.12	1,112.35	1,145.05	
		Remote	handled					
Ames Laboratory	AMES	0.00	0.00	0.00	0.00	0.00	0.00	
Argonne National Laboratory-East	ANL-E	0.00	0.00	0.00	0.00	0.00	0.0	
Energy Technology Engineering Center	ETEC	0.00	0.00	0.00	0.00	0.00	0.0	
Hanford Site	HANF	0.02	0.19	0.41	0.52	0.56	0.5	
Idaho National Engineering Laboratory	INEL	0.00	0.00	0.01	0.03	0.10	0.10	
	KAPL	0.00	0.00	0.00	0.00	0.00	0.0	
Knolls Atomic Power Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.0	
Lawrence Berkeley Laboratory	· ·	0.00	0.00	0.00	0.00	0.00	0.0	
Lawrence Livermore National Laboratory	LLNL			0.04	0.09	0.09	0.2	
Los Alamos National Laboratory	LANL	0.00	0.00	0.04	0.00	0.00	0.0	
Mound	MOUND	0.00	0.00		0.00	0.00	0.0	
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.0	

/~

Table 3.3 (continued)

Site name	Site acronym	Cumulative as-stored radioactivity at end of calendar year, 103 Ci						
		1970	1975	1980	1985	1990	1993	
Oak Ridge National Laboratory	ORNL	0.00	0.02	0.03	0.05	1.06	1.12	
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.00	
Pantex Plant	PANT	0.00	0.00	0.00	0 00	0.00	0.00	
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	0.00	0,00	
Sandia National Laboratory/New Mexico	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00	
Savannah River Site	SRS	0.00	0.00	0.00	0.00	0.00	0.00	
University of Missouri	MURR	0.00	0.00	0.00	0.00	0.00	0.00	
West Valley Demonstration Project	WVDP	0.00	0.00	0.00	0.00	0.00	0.00	
							-	
Total		0.02	0.21	0.49	0.69	1.81	2.01	

Table 3.4. Summary of retrievably stored TRUW by sites: cumulative decayed radioactivity (all radionuclides)

			Cumulative d	ecayed radioacti	vity at end of calcr	idar year, 10 ³ Ci	
Site name	Site acronym	1970	1975	1980	1985	1990	1993
		Contact:	handled	··			
and the start	AMES	0.00	0.00	0.00	0.00	0.00	0.00
times Laboratory Trigonne National Laboratory-East	ANL-E	0.00	0.00	0.00	0.00	0.11	0,11
nergy Technology Engineering Center	ETEC	0.00	0.00	0.00	0.00	0.00	0.01
Intergy Technology Engineering Center	HANF	1.05	18.23	183.76	244.40	229.40	218.06
daho National Engineering Laboratory	INEL	4.22	120.86	230.01	348.66	393.67	366.93
	KAPL	0.00	0.00	0.00	0.00	0.00	0,00
Cholls Atomic Power Laboratory	LBL	0.00	0.00	0.00	00.0	00.0	0.00
awtence Berkeley Laboratory	LLNL	0.00	0.00	0.00	0.00	0.89	2.00
awrence Livermore National Laboratory	LANL	0.00	48.71	102.16	140.90	195.36	198.40
os Alamos National Laboratory	MOUND	0.00	0.15	0.38	0.61	0.83	0.9
Mound	NTS	0.00	0.26	1.11	3.26	3.86	3.7
Nevada Test Site	ORNL	0.05	11.26	19.60	94.42	78.82	74.0
Oak Ridge National Laboratory	·	0.00	0.00	0.00	0.00	0.00	0.1
Paducah Gaseous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.0
Pantex Plant	PANT		0.00	0.00	0.00	47.04	85.4
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	0.00	0.0
Sandia National Laboratory/New Mexico	SNLNM	0.00	269.15	351.45	527.25	571.85	561.5
Savannah River Site	SRS	0.00		0.00	0.00	0.00	0.0
University of Missouri	MURR	0.00	0.00	0.00	0.03	0.05	0.0
West Valley Demonstration Project	WVDP	0.00	0.00	0.00	0.03		
Total		5.32	468.62	888.47	1,359.53	1,521.88	1,511.5
		Remote	handled				
	AMES	0.00	0,00	0.00	0.00	0.00	0.0
Arnes Laboratory	ANL-E	0.00	0.00	0.00	0.00	0.00	0.0
Argonne National Laboratory-East	ETEC	0.00	0.00	0.00	0.00	0.00	0.0
Energy Technology Engineering Center	HANF	27.09	28.85	293.19	64.16	45,02	38.
Hanford Site	INEL	0.00	0.00	0.58	7.03	9,10	7.
Idaho National Engineering Laboratory		0.00	0.00	0.00	0.00	0.00	0.
Knolls Atomic Power Laboratory	KAPL		0.00	0.00	0.00	0.00	0.
Lawrence Berkeley Laboratory	LBL	0.00		0.00	0.00	0.00	0.
Lawrence Livermore National Laboratory	LLNL	0.00	00.0	0.88	0.73	0.36	13.
Los Alamos National Laboratory	LANL	0.00	0.00		0.73	0.00	0.
Mound	MOUND	0.00	0.00	0.00	0.00	0.19	0.
Nevada Test Site	NTS	0.00	0.00	0.04	0.23	0.17	•

0-94-1005, Revision 1 February 1995

		Cumulative as-stored radioactivity at end of calendar year, 101 Ci								
Site name	Site acronym	1970	1975	1980	1985	1990	1993			
Oak Ridge National Laboratory Paducah Gascous Diffusion Plant Pantex Plant Rocky Flats Plant Sandia National Laboratory/New Mexico Savannah River Site University of Missouri West Valley Demonstration Project	ORNL PAD PANT RFP SNL/NM SRS MURR WVDP	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.51 0.00 0.00 0.00 0.00 0.00 0.00	0.60 0.00 0.00 0.00 0.00 0.00 0.00	295.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00	290.20 0.00 0.00 0.00 0.00 0.00 0.00			
Total		27.09	29.38	295.20	72.75	349,69	348.5			

Table 3.5. Summary of retrievably stored TRUW by sites: cumulative decayed radioactivity (TRU radionuclides only)

Site name	Cit		Cumulative	decayed radioac	tivity at end of c	alendar year, 10 ¹ (Ci
Site name	Site acronym	1970	1975	1980	1985	1990	1993
		Contact	handled				
Ames Laboratory	AMES	0.00	0.00	0.00	0.00	0.00	0.00
Argonne National Laboratory-East	anl-e	0.00	0.00	0.00	0.00	0.04	0.05
Energy Technology Engineering Center	ETEC	0.00	0.00	0.00	0.00	0.00	0.00
Hanford Site	HANF	0.19	3.25	107.01	116,77	118.79	118.24
Idaho National Engineering Laboratory	INEL	1.52	50.91	122.40	181.58	201.41	200.38
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Livermore National Laboratory	LLNL	00.0	0.00	0.00	0.00	0.15	0.39
Los Alamos National Laboratory	LANL.	0.00	48.36	101.55	137.44	194.68	197.92
Mound	MOUND	0.00	0.15	0.38	0.61	0.83	0.91
Nevada Test Site	NTS	0.00	0.24	0.96	3.00	3.27	3.27
Oak Ridge National Laboratory	ORNL	0.01	6.14	6.27	9.45	9.83	10.65
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.11
Pantex Plant	PANT	0.00	0.00	0.00	0.00	0.00	0.00
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	12.77	28.27
Sandia National Laboratory/New Mexico	SNL/NM	0.00	0.00	0.00	00 .0	0.00	0.00
Savannah River Site	SRS	0.00	243.64	318.77	473.72	499.52	497.85
University of Missouri	MURR	0.00	0.00	0.00	0.00	0.00	0.00
West Valley Demonstration Project	WVDP	0.00	0.00	0.00	00.0	0.00	0.00
Total		1.72	352.69	657.35	922.56	1,041.30	1,058.01
		Remote 1	handled				
Ames Laboratory	AMES	0.00	0.00	00,0	0.00	0.00	0.00
Argonne National Laboratory-East	ANL-E	00.0	0.00	0.00	0.00	0.00	0.0
Energy Technology Engineering Center	ETEC	0.00	0.00	0.00	0.00	0.00	0.00
Hanford Site	HANF	0.02	0.20	0.44	0.60	0.67	0.70
Idaho National Engineering Laboratory	INEL	0.00	0.00	0.01	0.03	0.10	0.10
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Livermore National Laboratory	LLNL	0.00	0.00	0.00	0.00	0.00	0.0
Los Alamos National Laboratory	LANL	0.00	0.00	0.04	0.09	0.09	0.2
Mound	MOUND	0.00	0.00	0.00	0.00	0.00	0.0
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.00

Table 3.5 (continued)

		Cumulative as-stored radioactivity at end of calendar year, 103 Ci								
Site name	Site acronym	1970	1975	1980	1985	1990	1993			
	ORNL	0.00	0.02	0.03	0.05	1.04	1.07			
Oak Ridge National Laboratory		0.00	0.00	0.00	0.00	0.00	0.00			
Paducah Gaseous Diffusion Plant Pantex Plant	PAD PANT RFP SNL/NM SRS	0.00	0.00	0.00	0.00	0.00	0.00			
		RFP	0.00	0.00	0.00	0.00	0.00	0.00		
Rocky Flats Plant				0.00	0.00	0.00	0.00	0.00	0.00	
Sandia National Laboratory/New Mexico		0.00	0.00	0.00	0.00	0.00	0.00			
Savannah River Site		0.00	0.00	0.00	0.00	0.00	0.00			
University of Missouri West Valley Demonstration Project	MURR		0.00	0.00	0.00	0.00	0.00			
	WVDP	0,00	0.00	J.00						
Total		0.02	0.22	0.52	0.76	1.91	2.10			

Table 3.6. Retrievably stored TRUW inventories and decayed characteristics, total of all sites, all radionuclides included

End of		olume (m³)	Total 1 (kg			oactivity 0 ¹ Ci)		nal power 0 ¹ W)
caicndar year	Аллиаі	Cumulative	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
			(Contact handle	d		_	_
1970	2,177.8	2,177.8	47.1	47.1	5 <i>.</i> 32	5.32	0. 0 6	0.06
1971	8,955.7	11,133.4	331.3	378.4	233.12	238.26	7.28	734
1972	7,542.4	18,675.8	1,087.9	1,466.3	69.46	305.13	1.66	8.95
1973	7,120.4	25,796.2	131.8	1,898.1	29.88	331 <i>.</i> 29	0.46	934
1974	5 ,746.9	31,543.1	3,950.9	5,549.1	69. 2 7	396.17	1.64	10.91
1975	6,887.8	38,430.9	885.6	6,434.6	78.44	468.62	0.94	11.77
1976	2,464.9	40,895.7	4,374.6	10,809.2	48.80	509.33	1.19	12.88
1977	5,651.9	46,547.6	730.3	11,539.5	64.83	565.33	1.39	14.18
1978	4,016.0	50,563.7	192.1	11,731.6	67 <i>.</i> 58	622.07	1.58	15.66
1979	5,421.1	55,984.7	3,403.2	15,134.8	91 <i>.</i> 29	707.1 7	1.77	17 <i>.</i> 35
1980	5,067.7	61,052.4	4,611.1	19,745.9	193.29	888.47	4.62	21,86
1981	5 ,255. 1	66,307.5	1,105.3	20,851.2	100.30	973.81	2.16	23.88
1982	4,967.6	71,275.1	1,082.9	21,934.2	102.40	1,059.86	2.38	26.11
1983	4,634.3	75,909_3	1,238.3	23,172.4	84.72	1,126.81	2.03	27.95
1984	5,045.9	80,95 5.2	734.0	23,906.4	154.89	1,265.86	1.31	29.07
1985	5,438.2	86,393.5	307.7	24,214.1	118.93	1,359.53	1.72	30.61
1986	5,337.0	91,730.5	3 75.8	24,589.9	114.44	1,439.14	1.30	31.68
1987	3,147.9	94,878.3	466.7	25,056.7	75.36	1,473.21	1.22	32.66
1988	2,631.6	97,509.9	294.6	25,351.2	52.01	1,491.59	0.97	33.42
1989	1,698.2	99,208.1	231.6	25,582.9	44.67	1,506.22	0.65	33.87
1990	1,386.4	100,594.4	209.1	25,792.0	44.38	1,521.88	0.61	34 <i>.</i> 30
1991	1,717.2	102,311.7	155.5	25,947.5	35.31	1,528.99	0.60	34.71
1992	361.4	102,673.0	96.4	26,043.9	26.16	1,527.58	0.25	34.78
1993	1,442.8	104,115.9	125.6	26,169.5	11.29	1,511.54	0.22	34.81
			•	Remote handle	d		,	
1970	12.0	12.0	29.6	29.6	27.09	27.09	0.32	0.32
1971	15.9	27.8	22,5	52.1	7.85	29.95	0.09	0.36
1972	94.9	122.8	12.1	64.2	2.86	28.48	0.03	0.34
1973	59.8	182.5	0.5	64.7	7.73	32.42	0.04	0.34
1974	41.1	223.6	0.8	65.4	5.88	31.46	0.02	0.31
1975	125.7	349.3	1.4	66.8	4.88	29.38	0.05	0.31
1976	76.6	425.9	2.7	69.5	5. 2 5	30.00	0.02	0.29
1977	56.6	482.5	2.1	71.6	14.35	38.75	0.16	0,41
1978	49.4	531.9	2.9	74.5	1.12	34.05	0.00	0.35
1979	23.1	555.0	8.1	82.5	234.91	265.11	1.10	1.41
1980	27.1	582.1	3.7	86.2	161.78	295.20	0.69	1.47
1981	33. 2	615.4	9.5	95.7	5.13	164.14	0.05	0.88
1982	33.1	648.4	2.9	9 8 .6	3.33	115.24	0.02	0.64
1983	34.2	682.6	15.6	114.2	3.80	92.69	0.01	0.52
1984	20.8	703.5	12.1	126.2	0.78	<i>1</i> 7.57	0.01	0.44
1985	16.5	720.0	3.1	129.3	2.73	72.75	0.01	0.40
1986	18.8	738.8	2.4	131.6	1.39	66.14	0.01	0.37
1987	88.8	827.6	6,456.0	6,587.6	19.45	97.62	0.04	0.46
1988	5.2	832.8	3.5	6,591.2	4.12	98.46	0.01	0.45
1989	3.3	836.1	153,569.2	160,160.4	144.29	355.44	0.40	1.43
1990	12.0	848.1	4,625.7	164,786.1	4.64	349.69	0.01	1.39
1991	55.9	903.9	6,475.8	171,261.9	6.12	349.21	0.02	1.38

Table 3.6 (continued)

End of		olume (m³)		mass ³ g)		Dectivity Ci)		nai power
calendar year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative	Annuel	Cumulative
		<u></u>	Remo	te handled (con	inued)			
1992	435.9	1.339.9	5,088.1	176,350.0	4.89	347.22	0.01	1.36
1993	33.3	1,373.2	2.2	176,352.3	11.56	348.53	0.04	1.34
				Total				
1970	2,189.7	2.189.7	76.7	76.7	32.41	32.41	0.38	0.38
1971	8,971.5	11,161.3	353.8	430.5	240.98	268.21	7.37	7.70
1972	7,637.3	18,798.5	1,100.0	1,530.5	72.32	333.61	1.70	9.29
1973	7,180.2	25,978.7	132.3	1,662.8	37.60	363.70	0.49	9.67
1974	5,788.0	31,766.7	3,951.7	5,614.5	75.15	427.63	1.66	11.21
1975	7,013.5	38,780.2	8,87.0	6,501.4	83 <i>.</i> 32	497.99	1.00	12.08
1976	2.541.5	41.321.6	4,377.2	10,878.7	54.05	5 39_3 4	1.22	13.17
1977	5,708.5	47,030.1	732.4	11,611.1	79.18	604.08	1.55	14.58
1978	4,065.4	\$1,095.6	195.0	11,806.1	68.70	656.12	1_59	16.01
1979	5,444.2	56,539.7	3,411.3	15,217.4	326.20	972.28	2. 87	18.76
1980	5,094.8	61,634.5	4,614.8	19,832.1	355.08	1,183.66	5.32	23. <u>3</u> 3
1981	5,288.3	66,922.9	1,114.8	20,946.9	105.42	1,137.95	2.20	24.76
1982	5,000.6	71,923.5	1,085.8	22,032.7	105.73	1,175.10	2.40	26.75
1983	4,668.5	76,592.0	1,253.9	23,286.6	88.52	1,219.51	2.04	28.47
1984	5,066.8	81,658.7	746.0	24,032.6	155.67	1,343.43	1_32	29,51
1985	5,454.8	87,113.5	310.7	24,343.4	121.66	1,432.28	1.73	31.01
1986	5,355.7	92,469.2	378.2	24,721.6	115.83	1,505.28	1.32	32.05
1987	3,236.7	95,705.9	6,922.7	31,644 <i>.</i> 3	94.81	1,570.83	1.26	33.12
1988	2,636.8	98,342.6	298.1	31,942.4	56.13	1,590.06	0.98	33.87
1989	<i>د.</i> 1, 701	100,044.1	153,800.8	185,743.2	188 <u>.9</u> 6	1,861.65	1.05	35.31
1990	1,398.4	101,442.5	4,834.8	190,578.0	49.01	1,871.57	0.63	35.69
1991 ^b	1,773.1	103.215.6	6,631.3	197,209.4	41.42	1,878.20	0.62	36.09
1992	797.3	104,012.9	5,184.5	202,393.9	31.05	1,874.81	0.27	36.13
1993	1,476.1	105,489.0	127.9	202,521.8	22.86	1,860.07	0.26	36.16

^aMass means mass of radionuclides, not of total waste.

bSRS CH waste data not available for individual years prior to 1991 but is included in totals for years 1991 and 1992.

Table 3.7. Retrievably stored TRUW inventories and decayed characteristics, total of all sites, TRU radionuclides only included^a

End of	Volume (m³)			J mass ^b (kg)		idioactivity)' Ci)		o ¹ W)
calendar year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
				Contact bandled				
1970	2,177.8	2,177.8	8.3	8.3	1.72	1.72	0.06	0.06
1971	8,955.7	11,133.4	39.3	47.6	219.37	221.09	7.26	7.31
1972	7,542.4	18,675.8	39.8	87.4	49.88	269.32	1.65	8.91
1973	7,120.4	25,796.2	40.0	127.4	12.09	279.51	0.39	9.24
1974	5,746.9	31,543.1	51.6	179.1	48.79	326.41	1.61	10.78
1975	6.887.8	38,430.9	77.6	256.7	28.46	352.69	0.93	11.64
1976	2,464.9	40,895.7	37.0	293.6	35.34	385.80	1.16	12.73
1977	5,651.9	46,547.6	64.6	358.2	41.65	425.01	1.37	14.02
1978	4,016.0	50,563.7	61.6	419.8	47.91	470.27	1.58	15.51
1979	5,421.1	55,984.7	122.8	542.6	53.31	520.67	1.75	17.16
1980	5,067.7	61,052.4	158.1	700.7	139.85	657.35	4.61	21.66
1981	5,255.1	66,307.5	154.4	855.0	65.52	718.78	2.15	23.68
1982	4,967.6	71,275.1	186.4	1,041.4	70.37	784.73	2.31	25.83
1983	4,634.3	75,909.3	165.0	1,206.4	61.74	841.67	2.02	27.70
1984	5,045.9	80,955.2	218.4	1,424.8	40.19	876.73	1.30	28.83
1985	5,438.2	86,393.5	242.6	1,667.4	50.93	922.56	1.65	30.31
1986	5,337.0	91,730.5	234.6	1,902.0	37.81	955.15	1.22	31.35
1987	3,147.9	94,878.3	155.7	2,057.7	37.04	986,94	1.20	32.38
1988	2,631.6	97,509.9	288.6	2,346.4	30.59	1,012.20	0.97	33.17
1989	1,698.2	99,208.1	221.0	2,567.4	20.63	1,027.47	0.65	33.65
	1,386.4	100,594.4	199.7	2,767.1	19.17	1,041.30	0.61	34.08
1990	1,717.2	102,311.7	142.7	2,909.8	18.89	1,054.86	0.60	34.50
1991 ^c	1,717.2 361.4	102,673.0	52.5	2,962.3	7.69	1,057.21	0.25	34.57
1992 1993	1,442.8	104,115.9	95.1	3,057.3	6.12	1,058.01	0.20	34.61
				Remote handle	đ			
	12.0	12.0	0.3	0.3	0.02	0.02	0.00	0.00
1970	12.0	27.8	0.3	0.5	0.02	0.05	0.00	0.00
1971	15.9		1.1	1.6	0.09	0.14	0.00	0.00
1972	94.9	122.8	0.3	1.9	0.03	0.17	0.00	10.0
1973	59.8	182.5	0.3	2.1	0.01	0.19	0.00	0.01
1974	41.1	223.6		2.4	0.03	0.22	0.00	0.01
1975	125.7	349.3	0. 3 0.5	2.9	0.05	0.27	0.00	0.01
1976	76.6	425.9	0.3	2.5	0,05			

Table 3.7 (continued)

End of		Volume (m³)		J mass ^b (kg)		adioactivity 0 ³ Ci)		ormal power
year year	Annual	Cumulative	Аллий	Cumulativo	Алпия	Cumulative	Annusi	Cumulativ
			Re	mote handled (cont	lnued)			
1977	56.6	482.5	0.6	3.5	0.06	0.33	0.00	0.01
1978	49.4	531.9	0.5	4.0	0.04	0.37	0.00	0.01
1979	23.1	555.0	1.t	5.1	0.09	0.47	0.00	0.01
1980	27.1	582.1	0.5	5.6	0.04	0.52	0.00	0.02
1981	33.2	615.4	0.7	6.3	0.05	0.58	0.00	0.02
1982	33.1	648.4	0.4	6.7	0.03	0.62	0.00	0.02
1983	34.2	682.6	0.6	7.3	0.07	0.70	0.00	0.02
1984	20.8	703.5	0.4	7.7	0.03	0.74	0.00	0.02
1985	16.5	720.0	0.2	7.9	0.01	0.76	0.00	0.02
1986	18.8	738.8	0.2	8.0	0.01	0.78	0.00	0.02
1987	88.8	827.6	0.7	8.7	0.13	0.92	0.00	0.03
1988	5.2	832.8	0.2	8.9	0.02	0.95	0,00	0.03
1989	3.3	836.1	2.5	11.4	0.88	1,84	0.03	0.06
1990	12.0	848.1	0.1	11.5	0.08	1.91	0.00	0.06
1991	55.9	903.9	0.1	11.6	0.04	1.95	0.00	0.06
1992	435.9	1,339.9	0.1	11.7	0.03	1.97 "	0.00	0.06
1993	33.3	1,373.2	2,2	13.9	0.13	2.10	0.00	0.07
				Total				
1970	2,189.7	2,189.7	B.5	8.5	1.74	1.74	0.06	0.06
1971	8,971.5	11,161.3	39.5 _Y	48.1	219.39	221.13	7.26	7.32
1972	7,637.3	18,798.5	40.9	89.0	49.97	269.46	1.65	8.91
1973	7,180.2	25,978.7	40.4	129.4	12.12	279.69	0.40	9.24
1974	5,788.0	31,766.7	51.8	181.2	48.80	326.60	1.61	10.79
1975	7,013.5	38,780.2	77.9	259.1	28.48	352.91	0.93	11.65
1976	2,541.5	41,321.6	37.5	296.6	35.39	386.07	1.17	12.74
1977	5,708.5	47,030.1	65.2	361.7	41.71	425.34	1.37	14.03
1978	4,065.4	51,095.6	62.0	423.8	47.96	470.65	1.58	15.52
1979	5,444.2	56,539.7	123.9	547.7	53,40	521.14	1.75	17.18
1980	5,094.8	61,634.5	158.6	706.3	139.89	657.87	4.61	21.68
1981	5,288.3	66,922.9	155.1	861.3	65.57	719.37	2.15	23.69
1981	5,000.6	71,923.5	186.8	1,048.1	70.41	785.35	2.31	25.85
1983	4,668.5	76,592.0	165.6	1,213.7	61.81	842.37	2.02	27.72

CAO-94-1005, Revision 1 February 1995

Table 3.7 (continued)

End of	· · · · · · · · · · · · · · · · · · ·	olume (m³)		U mass ^b (kg)		adioactivity 0 ³ Ci)	TRU thermal power (10 ¹ W)		
alendar		Cumulative	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative	
		· · · · · · · · · · · · · · · · · · ·		Total (continued)			<u>.</u>	
1984	5,066,8	81,658.7	218.8	1,432.5	40.22	877.47	1.30	28.85	
1985	5,454.8	87,113.5	242.8	1,675.3	50.95	923.32	1.65	30.33	
1986	5,355.7	92,469.2	234.7	1,910.0	37.82	955.93	1.22	31.37	
1987	3.236.7	95.705.9	156.4	2,066.4	37.17	987.86	1.21	32.41	
1988	2.636.8	98.342.6	288.8	2,355.3	30,61	1,013.15	0.97	33.20	
1989	1.701.5	100.044.1	223.5	2,578.8	21.51	1,029.31	0.68	33.71	
1990	1.398.4	101,442.5	199.8	2,778.6	19.24	1,043.21	0.61	34.14	
1991°	1,773.1	103,215.6	142.8	2,921.4	18.93	1,056.80	0.60	34.57	
1992	797.3	104.012.9	52.5	2,973.9	7.72	1,059.18	0.25	34.64	
1993	1.476.1	105,489.0	97.2	3,071.2	6,25	1,060.11	0.20	34.68	

^{*}Radioactive daughters of TRU radionuclides are not included.

bTRU mass means mass of TRU radionuclides, not of total waste.

cSRS CH waste data not available for individual years prior to 1991 but is included in totals for years 1991 and 1992.

Table 3.8. Summary of buried TRUW by sites: cumulative as-stored volumes

					C	umulative volu	ame at end of ea	ilendar year, m			
	Site		1950	1955	1960	1965	1970	1975	1980	1985	1993
Site name	actonym	1945	1930	1733	 		0	0	0	0	0
Argonne National Laboratory-	anl-E	0	0	0	0	0	U	v			
East				^	0	0	0	0	0	0	0
Energy Technology Engineering	ETEC	. 0	0	0	v	•			10 100	63,629	63,629 ⁸
Center			c 160	16,333	35,509	47,932	63,624	63,629	63,629		57,119
Hanford Site	HANF	779	6,159	1,789	10,539	26,299	57,119	57,119	57,119	57,119	37,100
daho National Engineering	INEL	0	0	1,707	101-21	•			0	0	0
Laboratory		^	0	0	0	0	0	0	0	ŏ	0
Knolls Atomic Power Laboratory	KAPL	0 0	0	ŏ	0	0	0	0	0	ŏ	0
Lawrence Berkeley Laboratory	LBL	0	0	Ŏ	0	0	0	0	U	· ·	
Lawrence Livermore National	LLNL	U	Ū	•			_	0	0	0	0
Laboratory	LANL	0	0	0	0	0	0	0	ő	0	0
Los Alamos National Laboratory	MOUND	0	Ō	0	0	0	0	0	ŏ	0	0
Mound	NTS	Ô	0	0	0	0	0	176	176	176	176
Nevada Test Site	ORNL	Ö	0	c	c	c	41	170	0	0	0
Oak Ridge National Laboratory	PAD	Ô	0	0	0	0	0	ā	0	0	0
Paducah Gascous Diffusion Plant	RFP	Ö	0	0	0	0	0	1.33	1.33	1.33	1.3
Rocky Flats Plant	SNLNM	Ŏ	0	0	0.14	0.85	1.33	1.55			
Sandia National Laboratory/	0.42140	•					b	4,874	4,874	4,874	4,874
New Mexico	SRS	b	b	ь	ь	b	709	1,353	1,353	1,353	1,353
Savannah River Site	WVDP	0	0	0	0	0	107	ت ت تيو ه	- •		
West Valley Demonstration	.,						·		<u> </u>		
Project						24 222	121,494	127,152	127,152	127,152	127,152
Tolal ^d		779	6,159	18,122	46,048	74,232			olume of waste.		

⁸Reference 4 states that upon retrieval of this waste, a significant amount of the soil will become contaminated and will increase the volume of waste. The estimated waste and associated contaminated soil volume is 109,000 m³. Quantities shown for Hanford are based on their submittal of Aug. 30, 1993.

bNo year-by-year breakdown available for these years. SRS shows 4,874 m³ as the total volume buried from 1952 through 1974.

[&]quot;Unknown amounts were buried prior to 1970 and are not included in totals.

dTotals do not include approximately 9,500 m³ of TRUW injected by hydrofracture at ORNL. This was included in last year's totals.

Table 3.9. Summary of buried TRUW by sites: cumulative as-stored radioactivity (all radionuclides)

				Cum	ulative as-s	tored radios	etivity at end	of calendar	ycar, 10 ^s Ci		
Site name	Site acronym	1945	1950	1955	1960	1965	1970	1975	1980	1985	1993
	ANL-E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Argonne National Laboratory- East Energy Technology Engineering	ETEC	0.00	0,00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
Laboratory Hanford Site [®]	HANF	0.56	13.89	170.14	231.13	242.85	601.02	601.67	601.68	601.68 248.83	601.68 248.83
daho National Engineering	INEL	0.00	0.00	b	11.20	58.33	248.83	248.83	248.83	240.05	
Laboratory	44 / 104	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00,0	0.00
Lawrence Livermore National	LLNL	0.00	0.00	0,00	0.00	•					
Laboratory		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Los Alamos National Laboratory	LANL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mound	MOUND		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.01	0.24	0.24	0.24	0.24
Oak Ridge National Laboratory	ORNL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paducah Gascous Diffusion Plant	PAD	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rocky Flats Plant	RFP	0.00	0,00		0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sandia National Laboratory/	SNL/NM	0.00	0.00	0.00	0.00	0.00	0,00				
New Mexico					_	_	C	33.67	33.67	33.67	33.6
Savannah River Site	SRS	C	C	C	C	с 0.00	438.00	652.00	652.00	652.00	652.0
West Valley Demonstration	WVDP	0.00	0.00	0.00	0.00	0.00	450.00	00.20	022.45		
Proj c ct										 	
Total ^d		0.56	13.89	170.14	242.33	301.18	1,287.86	1,536.41	1,536.42	1,536.42	1,536.4

^aData for HANF are based on their submittal of Aug. 30, 1993 (Rev. 9 IDB data).

bUnknown.

CSRS data submittal showed 33,670 Ci of TRU radionuclides buried from 1952 through 1974. The curies of fission products and other non-TRU radionuclides associated with this waste were listed as unknown.

dDoes not include about 680,000 Ci deposited by hydrofracture at ORNL. Last year's table included this material.

Table 3.10. Summary of buried TRUW	by sites:	cumulative as-stored radioactivity (TRU radionuclides only)
------------------------------------	-----------	---

				Cumulat	ive as-store	zd radioacti	vity at end	of calendar	year, 10 ³ C	Zi	
Site name	Site acronym	1945	1950	1955	1960	1965	1970	1975	1980	1985	1993
Argonne National Laboratory-	ANL-E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
East Energy Technology Engineering	ETEC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Laboratory	LILC	0,00	0,00								
Hanford Site	HANF	0.10	2.37	103.41	110.90	112.64	114.45	114.45	114.45	114.45	114.45
Idaho National Engineering Laboratory	INEL	8		A	4	•	£	a	a	•	
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Livermore National Laboratory	LLNL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Los Alamos National Laboratory	LANL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00
Mound	MOUND	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oak Ridge National Laboratory	ORNLb	0.00	0.00	0.00	0.00	0.00	0.01	0.10	0.10	0.10	0.10
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sandia National Laboratory/ New Mexico	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
Savannah River Site	SRS	С	c	c	c	¢	c	33.67	33.67	33.67	33.67
West Valley Demonstration Project	WVDP	0.00	0.00	0.00	0.00	0.00	438.00	652.00	652.00	652.00	652.00
Total		0.10	2.37	103.41	110.90	112.64	114.46	148.22	148.22	148.22	148.22

aINEL did not give isotopic compositions, so radioactivity for TRU radionuclides cannot be determined. See Table 3.9 for data on a total radioactivity

bQuantities shown for ORNL include ²⁴⁴Cm, which is considered a TRU radionuclide at ORNL. If ²⁴⁴Cm is omitted, the totals are reduced by 0.08 10³ Ci/year.

SRS did not give data on a year-by-year basis. Cumulative curies from 1952 through 1974 were given for TRU radionuclides only.

Table 3.11. Summary of buried TRUW by sites: decayed radioactivity (all radionuclides)

				Cum	ulative radi	oactivity at	end of cale	endar year,	10³ Ci		
Site name	Site acronym	1945	1950	1955	1960	1965	1970	1975	1980	1985	1993
Argonne National Laboratory-	ANL-E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
East Energy Technology Engineering	ETEC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Laboratory	HANF	0.56	13.40	161.70	189.75	177.37	452.07	308.59	256.77	218.37	173.41
Hanford Site Idaho National Engineering	INEL	8			a	•	4	4		•	•
Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
Cholls Atomic Power Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lawrence Berkeley Laboratory Lawrence Livermore National	LLNL	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
Laboratory	1 4377	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Los Alamos National Laboratory	LANL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mound	MOUND	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.01	23.22	20.67	660.96	543.20
Oak Ridge National Laboratory	ORNL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paducah Gaseous Diffusion Plant	PAD RFP	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rocky Flats Plant Sandia National Laboratory/	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
New Mexico	SRS	ь	ь	ь	ь	ь	ь	33.67	32.60	31.70	30.50
Savannah River Site	WVDP	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00
West Valley Demonstration Project	# 101	0.00									
Total		0.56	13.40	161.70	189.75	177.37	452.08	365.48	310.04	911.03	747.11

^aINEL data did not include any isotopic compositions, so no decay calculations could be made.

^bSRS gave cumulative radioactivity as of 1974 on an as-stored basis for TRU radionuclides only. The reduction in activity shown from 1975 through 1993 is essentially all due to the decay of ²¹⁸Pu.

Table 3.12. Summary of buried TRUW by sites: decayed radioactivity (TRU radionuclides only)

				Curr	ulative rad	ioactivity a	t end of cal	endar year,	, 10 ¹ Ci			
Site name	Site acronym	1945	1950	1955	1960	1965	1970	1975	1980	1985	1993	
Argonne National Laboratory-	ANL-E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Energy Technology Engineering Laboratory	ETEC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Hanford Site	HANF	0.10	2.38	102.95	107.53	106.50	105.61	102.95	100,32	97.72	93.80	
Idaho National Enginœring	INEL	0,15	8					a	A	8		
Laboratory												
Knolls Atomic Power Laboratory	KAPL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Lawrence Berkeley Laboratory	LBL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Lawrence Livermore National Laboratory	LLNL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Los Alamos National Laboratory	LANL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mound	MOUND	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Nevada Test Site	NTS	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00	
Oak Ridge National Laboratory	ORNL	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	
Paducah Gascous Diffusion Plant	PAD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Rocky Flats Plant	RFP	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Sandia National Laboratory/ New Mexico	SNL/NM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	
Savannah River Site	SRS	ь	ь	b	ь	b	ь	33.67	32.60	31.70	30.50	
West Valley Demonstration	WVDP	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	
Project												
Total		0.10	2.38	102.95	107.53	106.50	105.61	136.64	132.94	129.44	124.32	

bSRS gave radioactivity data on a cumulative basis as of 1974. Data after 1974 are the same as in Table 3.11 because SRS gave radioactivity of buried waste for TRU radionuclides only.

Table 3.13. Volumes and radioactivities of TRU-contaminated soil

		itaminated with		sminsted with id TRUW	
Site	Volume (m³)	Radioactivity (Ci)	Volume (m³)	Radioactivity (Ci)	
ANL-E	0	0	0	0	
ETEC	0	0	0	0	
HANF	a		32,000	80,591	
INEL.	b b 0		ь	ь	
KAPL			0	0	
LANL	c	ď	c	d	
LBL	ā	0	0	0	
LLNL	Ô	0	0	0	
MOUND	c	c	c	c	
NTS	c	c	ь	b	
ORNL	c	c	c	С	
PAD	ь	ь	ь	b	
RFP	2	40	ь	ь	
SNLNM	c	c	С	c	
SRS	0 0		0	0	
WVDP			¢	e	

^{*}Included in buried TRUW.

bListed in submittal as N/A (not applicable).

CUnknown.

dPartial data submitted.

No data submitted.

Table 3.14. Mixed TRUW volumes⁸

		Mixed Cl	H TRU volume,	m,	Mixed R	H TRU volume,	m³
Site	Category	1970–1986	1987-1993	1994	1970–1986	1987-1993	1994
AMES	Mixed Suspect mixed	0 0	0 0	0 0.3	0	0 0	0
anl-e	Mixed Suspect mixed	b b		0 0	ხ ხ		0 0
BAPLC							
ETEC	Mixed Suspect mixed	o 0	0. 2 0	0	0 0	0 0	0
HANF	Mixed Suspect mixed	0 193	170.6 0	5.9 0	0 4.46	1.4 0	27.1 0
INEL	Mixed Suspect mixed	36,400 0	2,420 0	0	29.9 0	17. 5 7.4	0
KAPLd							
LANL	Mixed Suspect mixed	0 6,796.3	619.1 0	225 0	0 2.10	0	10 0
LBLf							
LINL	Mixed Suspect mixed	b b	7.93 0	0.6 2 0	0 0	0 0	0 0
MOUNDe	Mixed Suspect mixed	0	1,020	0			
MURR	Mixed	0	0.06	0.02	0	0	0
NTS	Mixed Suspect mixed	570	1.9	0	5.3	0	0
ORNIL	Mixed Suspect mixed	176 752	6. 8 11 0	62.5 d	231 225	26.2 9.8	8 0
PAD ^e	Mixed Suspect mixed	4.34	g	g	g	8	g
RFP ^h	Mixed Suspect mixed	110 b	773 8	23 g	8 8	8 8	g
SNL/NM ⁱ	Mixed Suspect mixed	ь 0	0 0	0	0 0	0 0	0
S RS	Mixed Suspect mixed	0 4,805	166.9 1,440	55.1 0	b b	ь ь	0

Table 3.14 (continued)

Site	0-1	Mixed C	H TRU volume,	m³	Mixed RH TRU volume, m ³				
	Category	1970–1986	19 87-1993	1994	1970-1986	1987-1993	1994		
WVDP	Mixed Suspect mixed	2.08 9.78	0 20.0	0 b	0 10 .5	0 0	0		

^aCompiled from Table 4 of site submittals. The quantities shown in each column represent the total volume of a given waste type generated during the period indicated at the top of the column.

- 1. Includes only TRU waste included in SNL/NM's Disposal Request process.
- 2. With regard to instruction footnote c of Table 4: TRU material, which may be mixed and may be remote-handled material, is in storage in Technical Area V (TA-V) and the Manzano Site Structures. The years the material was generated or placed in storage is unknown. The material in TA-V is approximately 1 m³ and is listed in the 180-day report, although it may not be estegorized as waste under SNL/NM policy current at the time of this report. A recent inventory found two 55-gal containers of TRU material in the Manzanos, one contact-handled and one remote-handled. The material may be mixed and also may not yet be officially categorized as waste. None of this Manzano material was included in TRU estimates for the 180-day report. There is no activity information for the material at TA-V or the Manzanos. The TRU material at TA-V and the Manzanos has not been entered into the Disposal Request process. To be consistent with SNL/NMs approach for input into this report, no material that has not been entered into the Disposal Request process is included in the values listed in Table 4, "Mixed TRU waste and non-mixed TRU waste volumes (m²)."
- 3. The estimated waste generation for 1993 for environmental restoration waste containing TRU contaminated with RCRA constituents was estimated in Table 2-4, "Projection of mixed waste to be generated by DOE environmental restoration activities (in cubic meters)," Volume 1: U.S. Department of Energy Interim Mixed Waste Inventory Report: Waste Streams, Treatment Capacities, and Technologies, DOE/NBM-1100, April 1993, as being 1 m³. A more recent estimate puts 1993 CH TRU mixed (RCRA) environmental restoration waste generation at zero. (See Table 5, "Future generated TRU solid waste volumes—average annual.") The amount of TRU mixed operational or D&D waste in 1993 is unknown. Therefore, the volume of CH TRU waste contaminated with RCRA constituents in 1993 is unknown.
- 4. The amount of contact-handled non-mixed TRU waste to be generated by Dec. 31, 1993, is unknown.
- 5. An unknown amount of remote-handled non-mixed TRU waste has been generated in 1993 to date and it is not known what additional amounts will be generated by Dec. 31, 1993.

DUnknown.

^cNo data submitted for this table.

dKAPL estimated their TRUW contains about 10% LLW and 5% mixed waste.

Data are from previous submittal for Rev. 9 IDB report.

LBL reports that they do not generate or store TRU mixed waste.

BNot applicable.

hThere is no remote-handled TRUW at RFP.

SNL/NM appended the following notes to their Table 4 submittal:

Table 3.15. Projected future TRUW volumes generated annually

	Waste	<u>.</u>		Projected volumes generated, m ³ /year									
Site	type	1994	1995–1996	1997-2000	2001–2005	2006-2010	2011–2015	2016-2020					
AMES	CH	0.03	0.03	ь	ь	b	ъ О	Ն 0					
-TATES	RH	0	0	0	0	0	U	·					
				5.9	5.9	5.9	5.9	5.9					
anl-E	CH RH	12.8 1.7	12.8 1.7	3.9 1.7	1.7	1.7	1.7	1.7					
	KH	1.7	*.,	•		•	•	0					
BAPL	CH	0	13.3	18.1	4.9	0 0	0 0	0					
	RH	0	0.26	0.18	0.06	U	v	_					
	CIT	0	5.2	0	0	0	0	0					
ETEC	CH RH	0	0	Ö	Ō	0	0	0					
	KI	v	Ŭ	•			1.417	1,417					
HANF	CH	169	484	224	1,182	1,417	1,417 2,221	2,221					
	RH	29	161	149	1,394	2,221	2,24,						
	OTT	^	0	0	0	0	0	0					
INEL	CH RH	0 6	6	6	6	6	6	6					
	101	·	-				ď	d					
KAPL	CH	d	d	d	d	d 1.0	1.0	1.0					
	RH	0.6	0.6	0.8	1.0	1.0	1.0						
	CH	425	425	550	550	550	550	550					
LANL	RH	20	10	10	10	10	10	10					
	101					0.1	0.1	0.					
LBL	CH	0.1	0.1	0.1	0.1	0.1 0	0.1	0					
	RH	0	0	0	0	· ·	-						
11311	сн	24.6	93	93	93	93	93	93					
LLNL	RH	0	0	ő	0	0	0	0					
	101	•				1	d	d					
MOUND	CH	d	d	d	d	d d	ď	ď					
	RH	đ	đ	đ	d	u	•						
. ====	CTT	ъ	b	b	ь	b	ь	b					
ИIS	CH RH	ь	ь	ь	Ъ	Ъ	ь	ь					
	102.2	_				30	20	20					
ORNL	CH	6 3.5	55	20.3	20	20 12.4	12.4	12					
	RH	8.3	25	25	20	12.7							
DAD	CH	d	d	d	d	d	ď	d					
PAD	RH	ď	ď	d	d	d	d	d					
	•==					216	212	179					
RFP	CH	58.2	112.2	27.2	68.8	215 e	21.2 e						
	RH	ε	c	c	c	•		_					
SNL/NM	сн	0	6	ı	1	1	1	1					
PINTNW	RH	c	c	c	c	С	с	•					
						2,572	2,572	2,57					
srs ^f	CH	636	719	2,057	2,572 6.4	11 کر2 6.4		_, (
	RH	2.6	2.6	5.1	0.4	5.4							

Table 3.15 (continued)

Site	Waste		Projected volumes generated, m³/year									
	type	1994	1995–1996	1997–2000 2001–2005		2006–2010	2011–2015	2016–2020				
WVDP	CH RH	b b	ь ь	b b	b b	b	b b	b b				

⁸Compiled from Table 5 of site submittals.

Unknown.

^cQuantities are based on Hanford submittal to WIPP Baseline Inventory Report.

^dNo estimates given.

[&]quot;No RH waste at this site.

^fD&D and remedial action waste unknown in all periods.

APPENDIX J

West Valley Demonstration Project

WEST VALLEY DEMONSTRATION PROJECT (WVDP) WASTE STREAM PROFILES

The following modifications were made by the WTWBIR team in developing the WVDP waste stream profiles:

- WVDP Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID. These changes included word and spelling changes. The assigned Final Waste Form Groups are consistent with the information provided by WVDP.
- · The number of containers were corrected based on the volumes reported by WVDP.
- The volumes for the year 1993 were changed from an annual rate of generation (m³/year) to a cumulative value (m³).
- Total volumes were reported for the years 1998-2002 and 2003-2022. These were changed to volume per year.
- WVDP reported the projected volumes of some waste streams as "unknown" (UNK). Since numeric values are required in these fields, these entries were replaced with zeros.
- For the waste stream WV-T016, the SWB containers reported by the site were replaced by RH canisters.

SITE NAME WV		WASTE TYPE MTRU HAN	NDLING CH GENERATOR SITE WV
Local IS) WV-M005	TREAM NAME TRU Filters DESCRIPTION Filters generated from no	ormal site operations.
MATRIX CODE SITE FINAL FORM IDC	5410 WV-LAG.1*		
Waste Matrix Code Group	Filter	i i	
	(HEPA) litters, and roughing litters		he specific contents include pre-filters, High Efficiency Particulate Air
NO MIGRATION VARIANCE	PETITION ASSIGNMENT		TRUCON CODE
FINAL WASTE FORM DESCI	RIPTORS:		
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU X Suspect Mixed TRU Unknown	Rsearch and Devel. Was Operations Waste X Residues Decon and Decommission Environmental Restoration From Treatment of Waste	Oning N/A X On Unknown

337

TE NAME WV			WAS	WASTE TYPE MTRU HANDLING CH GENERATOR SITE WV							
WV-M005 CONTAINER: Type/Size: TYPICAL WASTE DENSITIE	dard Waste Box	lnt.	L	.7 _{m3} L	Liner Type: none Iner Material:	Number Stored: Number Projected: TYPICAL ISOTOPIC COMPOSITIO					
Material Parameters	Average	Lower Limit	Upper Limit	RATES		GENERATION	Nuclide Activ				
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	19.0 19.0 43.6 23.8 0.8 0.8 12.5	Final Form 19.0 m3 19.0 m3 43.6 m3/yr 23.8 m3/yr 0.8 m3/yr 0.8 m3/ry m3/ry 12.5 m3/yr	Cs137 Ba137m Sr90 Y90 Pu(unspec) Am241 U(unspec)	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3			
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0	0.0	0,0	TYPICA	L EPA COD	ES APPLICABLE					

Comments

'This waste stream represents 2-90ft3 and 7-70ft3 boxes currently stored in the Lag Storage Building.

As a result of the development of the Historical Waste Report (HWR) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

WV-M005 - 2

WV - 2

SITE NAME WV	WASTE TYPE MTRU HANDLING CH GENERATOR SITE WV
WASTE STREAM MWIR ID WIPP ID WV-M007 Local ID N/A MATRIX CODE 8900 SITE FINAL FORM IDC WV-LAG.3* Waste Matrix Code Group Unknown	STREAM NAME TRU General Waste (Unclassified) DESCRIPTION General site waste requiring hazardous characterization generated from normal site operations.
	unclassified (i.e., requires hazardous characterization) general site waste generated from normal site operations. The stream are unknown. TRUCON CODE
Defense TRU Waste Mixed TRU Non-Defense TRU Waste Non-Mixed TRU Commercial TRU Waste X Suspect Mixed T Unknown Unknown	Rsearch and Devel, Waste

WV-M007 CONTAINER: Type/Size:	·			r Matl: Carbo I/Ctnr: 0.20		Liner Type: none ner Material:	Number Stored: 48 Number Projected: 0		
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m3) Upper Limit	STORED RATES (ESTIMATED GENERATION	Nuclide Act	OPIC COMPOSITION	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Resign Metals Steel	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		ind of 1992: ind of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0	10.0 m3 10.0 m3 10.0 m3/yr 0.0 m3/yr	Cs137 Ba137M Sr90 Y90 Pu(unspec) Am241 U(unspec)	Curies/m3 Curles/m3 Curles/m3 Curies/m3 Curles/m3 Curies/m3 Curies/m3	
Packaging Materials, Steel Packaging Material, Plastic Comments 'This waste stream represents 4 Storage Building.	0.0	trums currently st	tored in the Lag						

As a result of the development of the Historical Waste Report (HWR) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

WV-M007 - 2

W - 4

SITE NAME WV				WAST	E TYPE MTRU HA	ANDLING CH	GENERATOR SITE	E W	
	<u> </u>	I/A 1150 W-LAG.4*				nerated from the	on-site Analyticat & Proce	ss Chemistry (A&P	C)
	ription Thi	s waste strea	nm consists of sam	ples solidified with	cement generated from	TRUCON CO	, and the second		
PINAL WASTE FORM Defense TRU WASTE TRU WASTE TRU WASTE TRU Non-Defense TRU Commercial TRU Unknown	M DESCRIP laste IU Waste	PTORS:	lixed TRU Ion-Mixed TRU uspect Mixed TRU Inknown	X	Rsearch and Devel. W Operations Waste Residues Decon and Decommiss Environmental Restora From Treatment of Wa Maintenance	vaste X	TSCA Asbestos PCBs Other N/A Unknown	X	

WASTE TYPE MTRU HANDLING CH GENERATOR SITE WV SITE NAME WV WV-M008 CONTAINER: Drum Container Matt: Carbon steel Liner Type: none Number Stored: Type/Size: 55-gallon Int. Vol/Ctnr: 0.208 m3 Liner Material: Number Projected: STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) RATES OF WASTE GENERATION Nuclide Activity **Lower Limit Upper Limit** Material Parameters Average Cs137 Curies/m3 0.0 0.0 Iron-based Metals/Alloys 0.0 Projected Final Form Ba137m Curies/m3 0.0 0.0 0.2 m3 Aluminum-Based Metals/Alloys 0.0 End of 1992: 0.2 Sr90 Curies/m3 0.0 0.2 m3 0.0 0.0 End of 1993: 0.2 Other Metals Y90 Curies/m3 0.0 0.0 0.0 m3/yr 0.0 0.0 Other Inorganic Materials 1994: Pu(unspec) Curies/m3 0.0 0.0 0.0 m3/yr 0.0 0.0 1995: Cellulosics Am241 Curies/m3 0.0 0.0 0.0 1996: 0.0 0.0 m3/yr Rubber Curies/m3 U(unspec) 0.0 0.0 0.0 1997: 0.0 m3/ry 0.0 Plastics. 0.0 0.0 0.0 m3/yr 0.0 0.0 1998-2002: Solidified, inorganic matrix 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 0,0 Soils TYPICAL EPA CODES APPLICABLE 131.0 Packaging Materials, Steel 0.0 Packaging Material, Plastic Comments

*This waste stream represents 1 55-gallon drum currently stored in the Lag Storage Building.

As a result of the development of the Historical Waste Report (HRW) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

WV - 6

SITE NAME WV		WASTE	E TYPE MTRU HANDLING CH GENERATOR SITE WV
WASTE STREAM MWIR IC WIPP IC Local IC	WV-M010		TRU Spent Absorbents Spent absorbents generated from site operations.
MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	3190 WV-LAG.6*		
Site Matrix Description	This waste stream consists of sp	ent absorbents gener	rated from site operations. The media absorbed is not known for this waste stream.
NO MIGRATION VARIANCE	L		TRUCON CODE
PINAL WASTE FORM DESCI Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU	U X I	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown

WV-M010 - 1

WV - 7

ENAME WV			WAS	TE TYPE MTRU	HANDLI	NG CH GEN	ERATOR SITE	W
WV-M010 CONTAINER Type/Size TYPICAL WASTE DENSIT	: 55-gallon	INAL WASTE	int.	ner Matt: Carbon Vol/Ctnr: 0.208	m3 Lir	Liner Type: none ler Material: ESTIMATED GENERATION	Nun	lumber Stored: nber Projected: TOPIC COMPOSITIO
Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0			Final Form 0.4 m3 0.4 m3	Nuclide Ar Cs137 Ba137m Sr90	ctivity Curies/m3 Curies/m3 Curies/m3
Other Inorganic Materials Cellulosics Rubber	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1994: 1995: 1996:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Y90 Pu(unspec) Am241 U(unspec)	Curles/m3 Curles/m3 Curles/m3 Curles/m3
Plastics Solidified, Inorganic matrix Solidified, Organic matrix	0.0	0.0	0.0	1997: 1998-2002: 2003-2022:	0.0 0.0 0.0	0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	O(unspec)	Odries/iii3
Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 131.0 0.0	0.0	0.0	TYPICAL	EPA CODE	S APPLICABLE		
Comments								

As a result of the development of the Historical Waste Report (HWR) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

SITE NAME WV	WASTE TYPE MTRU HANDLING CH GENERATOR SITE WV
WASTE STREAM MWIR ID WIPP ID WV-M012 Local ID N/A MATRIX CODE SITE FINAL FORM IDC WV-LAG.8* Waste Matrix Code Group Unknown Site Matrix Description This waste stream consists of a	STREAM NAME TRU Glove Boxes (Unclassified) DESCRIPTION Glove boxes and general waste requiring hazardous evaluation generated from previous decomissioning and decontamination activities and normal site operations. a glove box and general waste generated from the laboratory on-site as a result of previous decommissioning and
decontamination activities and r	normal site operations. The specific contents represented hy the "general waste" are not known. This radiologically gulres further evaluation to complete the hazardous characterization. TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown Mixed TRU Non-Mixed TRU Suspect Mixed T Unknown	Rsearch and Devel. Waste Operations Waste RU X Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos DCBS Other N/A X Unknown

WV-M012 - 1

WV - 9

ENAME WV			WAS	TE TYPE MTRU	HANDL	ING CH GEN	ERATOR SITE	V
WV-M012 CONTAINER: Type/Size: TYPICAL WASTE DENSITE Material Parameters Iron-based Metals/Alloys	55-gallon S FOR F Average 0.0	Lower Limit	Int,	RATES OF	m3 LI	Liner Type: none ner Material: ESTIMATED GENERATION Final Form	Numb TYPICAL ISOTO Nuclide Act Cs137	mber Stored: er Projected: DPIC COMPOSITION ivity Curies/m3
Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel Packaging Material, Plastic	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0	0.2 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Ba137m Sr90 Y90 Pu(unspec) Am241 U(unspec)	Curies/m3 Curies/m3 Curies/m3 Curies/m3 Curies/m3
Comments *This waste stream represents 1 storage Building.	55-gallon dru	m currently store	ed in the Lag	i				

As a result of the development of the Historical Waste Report (HWR) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

WV-M012 - 2

WV - 10

SITE NAME WV	WASTE TYPE MTRU HANDLING CH GENERATOR SITE W
WASTE STREAM MWIR ID WIPP ID WV-M013 Local ID N/A MATRIX CODE SITE FINAL FORM IDC WV-LAG.9* Waste Matrix Code Group Solidified Inorganics	STREAM NAME TRU Sweeping Compound DESCRIPTION Grid and floor debris generated from normal site operations.
waste stream is classified as he contaminated paint chips. NO MIGRATION VARIANCE PETITION ASSIGNMENT	sweeping compound generated from normal site operations. The specific contents include grid and floor debris. This razardous/radioactively contaminated based on the assumption that the waste contains lead and chromium TRUCON CODE
PINAL WASTE FORM DESCRIPTORS: Defense TRU Waste	

WV-M013 - 1

WV - 11

WV-M013 CONTAINER: Type/Size:	<u> </u>	- - -		iner Matl: Carbo Vol/Ctnr: 0.20		Liner Type: none iner Material:		ber Stored:
TYPICAL WASTE DENSITE	Average	Lower Limit	Upper Limit	···	OF WASTE	GENERATION	TYPICAL ISOTOP Nuclide Activ Cs137	
Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1992: End of 1993: 1994: 1995: 1996: 1997: 1998-2002: 2003-2022:	1.5 1.5 0.0 0.0 0.0 0.0 0.0 0.0	1.5 m3 1.5 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Bat37m Sr90 Y90 Pu(unspec) Am241 U(unspec)	Curies/m: Curies/m: Curies/m: Curies/m: Curies/m:
Packaging Materials, Steel Packaging Material, Plastic Comments *This waste stream represents 7 Storage Building.	131.0 0.0 55-gallon dr	ums currently sto	ored in the Lag					

SITE NAME WV	WASTE TYPE MTRU HANDLING RH GENERATOR SITE WV
WASTE STREAM MWIR ID WIPP ID WV-M015 Local ID N/A MATRIX CODE SITE FINAL FORM IDC WV-CPC.2* Waste Matrix Code Group Unknown	STREAM NAME Chemical Process Cell General Waste DESCRIPTION General waste generated from the Chemical Process Cell.
Previously used to repro	generated as a result of the decommissioning and decontamination of the Chemical Process Cell (CPC). The CPC was beess spent fuel rods. The specific contents of this container are not known. TRUCON CODE
Defense TRU Waste Mixed TR Non-Defense TRU Waste Non-Mixe Commercial TRU Waste X Unknown Unknown	Assessor Operations Waste PCBs Mixed TRU X Residues Other

WV-M015 - 1

WV - 13

SITE NAME WV WASTE TYPE MTRU HANDLING RH GENERATOR SITE WV CONTAINER: RH Cannister WV-M015 Container Matt: Steel Liner Type: Number Stored: Type/Size: Int. Vol/Ctnr: 0.89 m3 Liner Material: Number Projected: TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC COMPOSITION RATES OF WASTE GENERATION Nuclide Activity **Material Parameters** Average **Lower Limit Upper Limit** Cs137 Curies/m3 fron-based Metals/Alloys 0.0 0.0 0.0 Projected Final Form Ba137m Curies/m3 0.0 0.0 Aluminum-Based Metals/Alloys 0.0 End of 1992: 10.5 10.5 m3 Sr90 Curies/m3 Other Metals 0.0 0.0 0.0 End of 1993: 10.5 m3 10.5 Y90 Curies/m3 0.0 0.0 Other Inorganic Materials 0.0 0.0 m3/yr 1994; 0.0 Pu(unspec) Curies/m3 Cellulosics 0.0 0.0 0.0 1995: 0.0 0.0 m3/yr Am241 Curies/m3 0.0 0.0 Rubber 0.0 1996: 0.0 0.0 m3/yr U(unspec) Curies/m3 0.0 0.0 Plastics 0.0 1997: 0.0 0.0 m3/ry 0.0 0.0 0.0 Solidified, Inorganic matrix 1998-2002: 0.0 0.0 m3/yr 0.0 0.0 0.0 Solidified, Organic matrix 2003-2022: 0.0 0.0 m3/yr

0.0

Comments

Packaging Materials, Steel Packaging Material, Plastic

Soils

*This waste stream represents 1 370.3fl3 box currently stored in the Chemical Process Cell - Waste Stream Area.

0.0

0.0

435.0

0.0

As a result of the development of the Historical Waste Report (HWR) in support of the Federal and State Facility Compliance Agreement (FSFCA), these wastes were identified as radiologically contaminated but require further evaluation to perform a complete hazardous characterization.

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

WV-M015 - 2

WV - 14

2/28/95

TYPICAL EPA CODES APPLICABLE

SITE NAME WV	WAST	E TYPE TRU HANDLING CH	GENERATOR SITE WV
WASTE STREAM MWIR ID WIPP ID WV-TO Local ID N/A MATRIX CODE SITE FINAL FORM IDC WV-RE Waste Matrix Code Group Heteroge Site Matrix Description This was	DESCRIPTION R.1*		ous decontamination and decommissioning activities. d decommissioning activities. The specific contents
- 1	UNO fillers, vacuum cans, glove box debris,	•	
FINAL WASTE FORM DESCRIPTORS Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	PCBs Other N/A Unknown

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION Nuclide Activity U235 0.00E+00 Curies/m3 O.00E+00 Curies/m3 O.00E+00 Curies/m3 O.00E+00 O.00E+00 Curies/m3 O.00E+00 O	WV-T001 CONTAINER: Type/Size:				iner Mati; Carbo Vol/Ctnr: 0.20		Liner Type: none ner Material:		umber Stored: 1 ber Projected:
Aluminum-Based Metals/Alloys 0.0 0.0 0.0 0.0 0.0 End of 1992: 3.7 3.7 m3					n3) STORED RATES			Nuclide Act	tivity
	Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	End of 1993: 1994: 1996: 1996: 1997: 1998-2002: 2003-2022:	3.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0	3.7 m3 3.7 m3 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr 0.0 m3/yr	Pu239 0.00 U(unspec) 0.00	0E+00 Curies/m3 0E+00 Curies/m3

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

SITE NAME WV		WASTE TYPE TRU HANDLING CH GENERATOR SITE WV
Local ID MATRIX CODE SITE FINAL FORM IDC	WV-T002 N/A 6900 WV-RER.2*	STREAM NAME Fissile Material - Alpha Lab Liquids DESCRIPTION Liquid waste stream with associated fissile material generated from previous decontamination and decommissioning activities.
	his waste stream consists of liq ictivities. The specific contents	uld waste stream with associated fissile material generated from previous decontamination and decommissioning include Alpha laboratory liquids.
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	RIPTORS: Mixed TRU	Rsearch and Devel. Waste TSCA Asbestos X Operations Waste PCBs

WW - 17

WV-T002 CONTAINER: Type/Size:				ainer Matt: Carbon Vol/Ctnr: 0.208		Liner Type: none ner Material:		nber Stored: r Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/			ESTIMATED	TYPICAL ISOTO	PIC COMPOSITION
Material Parameters	<u>Average</u>	Lower Limit	<u>U</u> pper Limit	RATES OF	WASTE	GENERATION	Nuclide Activ	/ity
Iron-based Metals/Alloys	0.0	0.0	0.0	=	olected	Final Form	U235	Curles/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.6	0.6 m3	Pu239	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	0,6	0,6 m3	U(unspec)	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu(unspec)	Curies/m3
Cellulosics	0.0	0.0	0.0	1995;	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002;	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICAL	EDA CODE	S APPLICABLE		
Packaging Materials, Steel	131.0			TTPICAL	EFA CODE	3 APPLICABLE		
Packaging Material, Plastic	0.0							
Comments								

The typical waste material weights (kg/m3) are not available for this waste stream.

Typical activity (curies/m3) is unknown for these radionuclides.

SITE NAME WV		WASTE TYPE TRU HANDLING CH GENERATOR SITE WV	
	1 ID WV-T003 1 ID W/A 1 130 WV-RER.3*	STREAM NAME Fissile Material-UNH Solution DESCRIPTION Liquid waste stream with associated fissile material generated from previous decontamination and decommissioning activities.	
	n This waste Stream consists of li	quid waste stream with associated fissile material generated from previous decontamination and decommissioning include Uranyl Nitrate Hexahydrate (UNH) solution. TRUCON CODE	
PINAL WASTE FORM DES Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Ste Non-Mixed TRU	Rsearch and Devel, Waste TSCA Asbestos X Operations Waste PCBs	

WV-T003 CONTAINER: Type/Size:				iner Matt: Carbo		Liner Type: none		ber Stored:
rypersize	55-gailon		ini.	Vol/Ctnr: 0.20	alma r	ner Material:	Numbe	r Projected:
TYPICAL WASTE DENSITI	ES FOR F	NAL WASTE	FORM (kg/r	n3) STORED		ESTIMATED	TYPICAL ISOTOR	IC COMPOSIT
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide Activ	<u>ity</u>
Iron-based Metals/Alloys	0.0	0.0	0.0		Projected	Final Form	U235	Curies/n
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	0.2	0.2 m3	Pu239	Curies/m
Other Metals	0.0	0.0	0.0	End of 1993:	0.2	0.2 m3	U(unspec)	Curies/n
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Ри(илѕрес)	Curies/m
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr		
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry		
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	L		٠ لــــــــــــــــــــــــــــــــــــ		
Packaging Materials, Steel	131.0		LJ	TYPICAL	EPA CODE	S APPLICABLE		
Packaging Material, Plastic	0.0							
Comments								
*This waste stream represents 1 Equipment Room.	55-gallon dru	m currently star	ed in the Ram					

SITE NAME WV		WASTE TYPE TRU HAND	DLING CH GENERATOR SITE WV
Local ID MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group [1] Site Matrix Description [7]	WV-T004 N/A 8900 WV-RER.4*	uld waste with associated fissile material genera	d from previous decontamination and decommissioning activities. Tated from previous decontamination and decommissioning activities.
NO MIGRATION VARIANCE P	ETITION ASSIGNMENT		RUCON CODE
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU X Suspect Mixed TR Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	PCBs Other N/A Unknown

WV-T004 - 1

W - 21

WV-T004 CONTAINER: Type/Size:			Container Matt: Carbon S Int. Vol/Ctnr: 0.208		Number Stored: 2 Number Projected: 0
TYPICAL WASTE DENSITI Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Celfulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils	8 FOR F Average 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	NAL WASTE Lower Limit	RATES OF Pro	RU WASTE ESTIMATED WASTE GENERATION O.4 O.4 m3 O.4 O.4 m3 O.0 O.0 m3/yr O.0 TYPICAL ISOTOPIC COMPOSITION Nuclide Activity U235 Curies/m3 Pu239 Curies/m3 U(unspec) Curies/m3 Pu(unspec) Curies/m3	
Packaging Materials, Steet Packaging Material, Plastic Comments	131.0 0.0		TYPICAL E	EPA CODES APPLICABLE	
*This waste stream represents 2 Equipment Room. The typical waste material weigh Typical activity (curies/m3) is unit	ts (kg/m3) ar	e not available fo			

WV-T004 - 2

WW - 22

SITE NAME WV		WASTE TYPE TRU HANDLING CH GENERATOR SITE WV
Local I MATRIX CODE SITE FINAL FORM IDC Waste Matrix Code Group	D WV-T006 D N/A 5490 WV-LAG.2* Heterogeneous This waste stream consists of cl	STREAM NAME TRU General Waste (Classified) DESCRIPTION Radiologically and hazardous classified general site waste generated from normal site operation. Classified (i.e., radiologically and hazardous) general site waste generated from normal site operations. The specific
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	ited to anticontamination clothing, hoses, glove bags, and tools. TRUCON CODE
Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU e Non-Mixed TRU	Rsearch and Devel, Waste Comperations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A Unknown

WV-T006 - 1

WV - 23

TYPICAL WASTE DENSITIES FOR FINAL WASTE FORM (kg/m3) STORED TRU WASTE ESTIMATED RATES OF WASTE GENERATION STORED TRU WASTE ST	WV-T006 CONTAINER: Type/Size:				iner Matt: Carbo Vol/Ctnr: 0.20		Liner Type: none ner Material:	N	Number Stored: 50 umber Projected: 192
Iron-based Metals/Alloys					RATES				OTOPIC COMPOSITION
Aluminum-Based Metals/Alloys Other Metals Other Metals Other Inorganic Materials Other Inorganic				,		Projected	Final Form		Curies/m3
Other Metals 0.0 0.0 0.0 0.0 End of 1993: 10.4 10.4 10.4 m3 Y90 Curies/m3 Other Inorganic Materials 0.0 0.0 0.0 1994: 8.4 8.4 8.4 m3/yr Pu(unspec) Curies/m3 Cellulosics 0.0 0.0 1995: 3.9 3.9 m3/yr m3/yr Am241 Curies/m3 Rubber 0.0 0.0 1996: 3.9 3.9 m3/yr m3/yr Am241 Curies/m3 Plastics 0.0 0.0 1997: 3.9 3.9 m3/yr m3/yr m3/yr M241 U(unspec) Curies/m3 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 3.9 3.9 m3/yr m3/yr Soils 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE TYPICAL EPA CODES APPLICABLE	•		1						
Other Inorganic Materials 0.0 0.0 0.0 1994: 8.4 8.4 m3/yr Pu(unspec) Curies/m3 Cellulosics 0.0 0.0 0.0 1995: 3.9 3.9 m3/yr Am241 Curies/m3 Rubber 0.0 0.0 1996: 3.9 3.9 m3/yr Am241 Curies/m3 Plastics 0.0 0.0 1997: 3.9 3.9 m3/yr U(unspec) Curles/m3 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 3.9 3.9 m3/yr U(unspec) Curles/m3 Soils 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Materials, Steel 131.0 131.0 TYPICAL EPA CODES APPLICABLE	·	} 	0.0	0.0	End of 1993:	l1	1		, -
Cellulosics 0.0 0.0 0.0 1995: 3.9 3.9 3.9 m3/yr Am241 Curies/m3 Rubber 0.0 0.0 0.0 1996: 3.9 3.9 m3/yr Am241 Curies/m3 Plastics 0.0 0.0 1997: 3.9 3.9 m3/yr U(unspec) Curies/m3 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 3.9 3.9 m3/yr 3.9 m3/yr Soils 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Packaging Materials, Steel 131.0 TYPICAL EPA CODES APPLICABLE	Other Inorganic Materials	0.0	0.0	0.0	1994:	8.4	8.4 m3/yr		
Rubber	Cellulosics	0.0	0.0	0.0	1995:	3,9			
Plastics 0.0 0.0 0.0 1997: 3.9 3.9 m3/ry Curies/m3 Solidified, Inorganic matrix 0.0 0.0 1998-2002: 3.9 3.9 m3/ry Soils 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Packaging Materials, Steel 131.0 Packaging Material, Plastic 0.0 0.0 TYPICAL EPA CODES APPLICABLE	Rubber	0.0	0.0	0.0	1996:	3,9	3.9 m3/yr		• • •
Solidified, Inorganic matrix 0.0 0.0 0.0 1998-2002: 3.9 3.9 m3/yr Solidified, Organic matrix 0.0 0.0 0.0 2003-2022: 0.0 0.0 m3/yr Soils 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE Packaging Material, Plastic 0.0 0.0 0.0 TYPICAL EPA CODES APPLICABLE	Plastics	0.0	0.0	0.0	1997:	3.9		U(unspec)	Curles/m3
Soils Packaging Materials, Steel Packaging Material, Plastic 131.0 Packaging Material, Plastic 131.0	Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	3.9			
Packaging Materials, Steel Packaging Material, Plastic 131.0 TYPICAL EPA CODES APPLICABLE 0.0	Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Packaging Materials, Steel 131.0 Packaging Material, Plastic 0.0	Soils	0.0	0.0	0.0	TYDICA	1 PDA CODE	C ADDI ICADI C		
<u> </u>	Packaging Materials, Steel	131.0			TTPICA	L EFA CODE	3 AFPLICABLE		
Comments	Packaging Material, Plastic	0.0							
	Comments								

WV-T006 - 2

Typical activity (curies/m3) is unknown for these radionuclides.

001258

WV - 24

SITE NAME WV			WAST	TE TYPE TRU HAND	DLING CH	GENERATOR SI	TE W
WASTE STREAM	MWIR ID WIPP ID WV-T00	99		TRU General Laboratory			
MATRIX CODE SITE FINAL FORM ID	5490 WV-LA		DESCRIPTION	General laboratory waste	generated on-site.		
Waste Matrix Code Site Matrix Des		e stream consists of ge	neral laboratory was	te generated on-site. The	specific contents Inc	elude anticontamii	nation clothing, bags, wipes,
NO MIGRATION VA				<u> </u>	RUCON CODE		
Defense TRU V Non-Defense Ti Commercial TR Unknown	RU Waste	Mixed TRU Non-Mixed TRU Suspect Mixed TR Unknown	U X	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ing X	Asbestos PCBs Other N/A Unknown	×

WV-T009 - 1

WV - 25

Material Par Iron-based M Aluminum-Ba Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	etals/Alloys sed Metals/Alloys	55-gallon ES FOR FII	NAL WASTE Lower Limit 0.0 0.0 0.0 0.0	Int.	RATES C	8m3 Lin	Liner Type: none ner Material: ESTIMATED GENERATION Final Form 0.6 m3		Curies/m3 Curies/m3
Material Par Iron-based M Aluminum-Ba Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	VASTE DENSITII ameters etals/Alloys sed Metals/Alloys	Average 0.0 0.0 0.0 0.0	0.0 0.0 0.0	FORM (kg/s Upper Limit 0.0 0.0 0.0	n3) STORED RATES C	TRU WASTE DF_WASTE Projected 0.6	ESTIMATED GENERATION Final Form 0.6 m3	TYPICAL ISOTOP Nuclide Activi Cs137 Ba137m	Curies/m3
Material Par Iron-based M Aluminum-Ba Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	ameters etals/Alloys sed Metals/Alloys	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	Upper Limit 0.0 0.0 0.0	RATES C	Projected 0.6	GENERATION Final Form 0.6 m3	Nuclide Activi Cs137 Ba137m	ity Curies/m3 Curies/m3
Iron-based M Aluminum-Ba Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	etals/Alloys sed Metals/Alloys	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	End of 1992; [Projected 0.6	Final Form 0.6 m3	Cs137 Ba137m	Curies/m3 Curies/m3
Aluminum-Ba Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	sed Metals/Alloys	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	End of 1992: [0.6	0.6 m3	Ba137m	Curies/m3
Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	•	0.0	0.0	0.0	End of 1992;	0.6	0.6 m3		
Other Metals Other Inorga Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	•	0.0		0.0			 -	5:90	
Cellulosics Rubber Plastics Solidified, Ind Solidified, Or	nic Materials		0.0	0.0		0.01	l 0,6 m3		Curies/m3
Rubber Plastics Solidified, Ind Solidified, Or		0.0			1994:	2.6	2.6 m3/yr	Y90	Curles/m3
Plastics Solidified, Ind Solidified, Or			0.0	0.0	1996:	1.6	1.6 m3/yr	Pu(unspec)	Curies/m3
Solidified, Inc. Solidified, Or		0.0	0.0	0.0	1996:	1.6	1.6 m3/yr	Am241	Curies/m3
Solidified, Or		0.0	0.0	0.0	1997:	1.6	1.6 m3/ry	U(unspec)	Curies/m3
•	rganic matrix	0.0	0.0	0.0	1998-2002:	1.6	1,6 m3/yr		
	ganic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils		0.0	0.0	0.0	TVDICA	CERA CORE	C A DDU IO A DU E		
Packaging M	aterials, Steel	131.0	·		TTPICAL	L EPA CODE	S APPLICABLE		
Packaging M	aterial, Plastic	0.0							
Comments									
	tream represents 3	55-gallon drui	ms currently sto	ored in the Lag					

SITE NAME WV	WAST	E TYPE TRU HANDLING CH	GENERATOR SITE WV	
Waste Matrix Code Group Uncat	DESCRIPTION O C-LAG.7* tegorized Metal	TRU Glove Boxes (Classified) Radiologically and hazardous classi decontamination activities.		_
	waste stream consists of classified (i.e., radiologities. The specific contents include glove boxes a			d decontamination
FINAL WASTE FORM DESCRIPTO Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU X Suspect Mixed TRU Unknown	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance	TSCA Asbestos PCBs Other N/A Unknown	×

WV-T011 CONTAINER:	Drum	- w	Conta	iner Matt: Carbo	n steel	Liner Type: none		Number Stored:
Type/Size:	55-gallon		Int.	Voi/Ctnr: 0.20	18 m3 L	iner Material:	Nur	mber Projected:
TYPICAL WASTE DENSITION	ES FOR F	INAL WASTE	_	RATES (E-ESTIMATED GENERATION	TYPICAL ISO	TOPIC COMPOSITI
Iron-based Metals/Alloys	0.0	0.0	Upper Limit 0.0		Mandanda d	Fig. 1 P	Cs137	Curies/m
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	Projected 0.4	Final Form	Ba137m	Curles/m:
Other Metals	0.0	0.0	0.0	End of 1993:	0.4	0.4 m3 0.4 m3	Sr90	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.4 m3/yr	Y90	Curles/m
Cellulosics	0.0	0.0	0.0	1995:	0.0	0.0 m3/yr	Pu(unspec)	Curies/m
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Am241	Curies/m:
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U(unspec)	Curies/m:
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0			<u> </u>		
Packaging Materials, Steel	131.0			TYPICA	L EPA CODE	ES APPLICABLE		
Packaging Material, Plastic	0.0							
Comments								
*This waste stream represents 2 Storage Building.	55-gailon dru	ıms currently sto	red in the Lag					

SITE NAME WV			WAST	E TYPE TRU HANDL	LING RH	GENERATOR SI	TE W
WI	PP ID WV-T014 cal ID N/A			Chemical Process Cell Ves Vessels removed from the G		ss Cell.	
MATRIX CODE SITE FINAL FORM IDC	5420 WV-CPC.1*						
Waste Malrix Code Gr Site Matrix Descrip	tion This waste str	eam was generated as a		l ecommissioning and deconta is, condensers, etc. These i			Cell. The specific contents of process spent fuel rods.
NO MIGRATION VARIA		SIGNMENT		TRU	UCON CODE		
Defense TRU Waste Non-Defense TRU V Commercial TRU W Unknown	Naste X	Mixed TRU Non-Mixed TRU Suspect Mixed TRU Unknown	×	Rsearch and Devel, Waste Operations Waste Residues Decon and Decommissionin Environmental Restoration From Treatment of Waste Maintenance		A Asbestos PCBs Other N/A Unknown	X

WV-T014 CONTAINER:	RH Canniste	·r	Contai	ner Mati: Steel		Liner Type:	Num	nber Stored:
Type/Size:			Int. V	/ol/Ctnr: 0.8	9 m3 Li	ner Material:	Numbe	r Projected:
TYPICAL WASTE DENSITE	ES FOR F	NAL WASTE	FORM (kg/m			ESTIMATED	TYPICAL ISOTO	PIC COMPOSITION
Material Parameters	Average	Lower Limit	Upper Limit	RATES C	F WASTE	GENERATION	Nuclide Activ	<u>rity</u>
Iron-based Metals/Alloys	0.0	0.0	0,0	,	Projected	Final Form	Cs137	Curies/m3
•		0.0	0.0	End of 1992:	269.7	269.7 m3	Ba137m	Curies/m3
Aluminum-Based Metals/Alloys	0.0	└	<u> </u>				Sr90	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	269.7	269.7 m3	Y90	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	Pu(unspec)	Curies/m3
Celtulosics	0.0	0,0	0,0	1995:	0.0	0.0 m3/yr	Am241	Curies/m3
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	U(unspec)	Curies/m3
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	· (anopos)	2200207770
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYDICAL	EDA CODE	S APPLICABLE		
Packaging Materials, Steel	435.0			TTPICAL	L EPA GODE	3 APPLICABLE		
Packaging Material, Plastic	0.0							
Comments								
*This waste stream represents 9 currently stored in the Chemical				city				

Typical activity (curies/m3) is unknown for these radionuclides.

SITE NAME WV				WAST	E TYPE TRU	HANDLING RH	G	ENERATOR S	SITE WV	
	WIR ID VIPP ID W	V-T016		STREAM NAME	Chemical Process	Cell Miscellaneou	ıs Equipme	ent	······································	
L	ocal ID N/	Ά		DESCRIPTION	Miscellaneous equ	ipment generated	from the C	hemical Proc	ess Cell	
MATRIX CODE SITE FINAL FORM IDC	ļ	V-CPC.3*								
Waste Matrix Code G	roup Unca	ategorized M	letai]					
	of the	ese containe	ers include miscella	neous equipment,	etc. The CPC was	s previously used i	to reproces	ss spent fuel re	ods.	
NO MIGRATION VARIA	ANCE PET	TTION ASSI	GNMENT			TRUCON C	ODE			
FINAL WASTE FORM	DESCRIPT	rors:								
Defense TRU Was Non-Defense TRU Commercial TRU V Unknown) Waste	X St	xed TRU on-Mixed TRU uspect Mixed TRU uknown		Rsearch and Deve Operations Waste Residues Decon and Decom Environmental Res From Treatment of Maintenance	omissioning X	TSCA	Asbestos PCBs Other N/A Unknown	X	

001265

WV-T016 CONTAINER:	RH Canniste	5.L	Contai	ner Matl; Steel		Liner Type:	Num	ber Stored:
Type/Size:			int,	Vol/Ctnr: 0.89	п3 Li	ner Material:	Number	r Projected:
TYPICAL WASTE DENSITI	ES FOR F	INAL WASTE	FORM (kg/m			E-ESTIMATED GENERATION	TYPICAL ISOTOR	
Material Parameters	<u>Average</u>	Lower Limit	Upper Limit	<u> </u>			Nuclide Activ	_
Iron-based Metals/Alloys	0.0	0,0	0.0	Pr	olected	Final Form	Cs137	Curies/m3
Aluminum-Based Metals/Alloys	0.0	0.0	0.0	End of 1992:	146.8	146.8 m3	Ba137m	Curies/m3
Other Metals	0.0	0.0	0.0	End of 1993:	146.8	146.8 m3	Sr90 Y90	Curies/m3
Other Inorganic Materials	0.0	0.0	0.0	1994:	0.0	0.0 m3/yr	,	Curies/m
Cellulosics	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr	Pu(unspec) Am241	Curies/m
Rubber	0.0	0.0	0.0	1996:	0.0	0.0 m3/yr		Curies/mi Curies/mi
Plastics	0.0	0.0	0.0	1997:	0.0	0.0 m3/ry	U(unspec)	Curies/m
Solidified, Inorganic matrix	0.0	0.0	0.0	1998-2002:	0.0	0.0 m3/yr		
Solidified, Organic matrix	0.0	0.0	0.0	2003-2022:	0.0	0.0 m3/yr		
Soils	0.0	0.0	0.0	TYPICAL	PA CODE	S APPLICABLE		
Packaging Materials, Steel	435.0			TITIOAL		S AFFEIGABEL		
Packaging Material, Plastic	0.0							
Comments								
*This waste represents 12 432ft3	boxes curre	ntly stored in the	Chemical Proc	ess				

Typical activity (curles/m3) is unknown for these radionuclides.

SITE NAME WV		WASTE TYPE TRU HANDLING CH GENERATOR SITE WV	
	ID WV-T017 ID N/A 3190	STREAM NAME Spent Filter Media DESCRIPTION Spent filter media generated from normal site activities.	
SITE FINAL FORM IDC Waste Matrix Code Group	WV-FRS.1*		
Site Matrix Description	This waste stream consists of s	ent filter media generated from the Fuel Receiving & Storage pool used to store the remaining spent fuel rods.	
NO MIGRATION VARIANCE	PETITION ASSIGNMENT	TRUCON CODE	
PINAL WASTE FORM DESC Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	Mixed TRU Non-Mixed TRU	Research and Devel. Waste X Operations Waste Residues Decon and Decommissioning Environmental Restoration From Treatment of Waste Maintenance TSCA Asbestos PCBs Other N/A X Unknown From Treatment of Waste	

01267

ENAME WV			WASTE TYPE TRU	HANDLING CH	GENERATOR S	ITE W
Type/Size: Type/Size: Type/Size: Type/Size: Type/Size: Typical Waste Densiti Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Alloys Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Solidified, Organic matrix Soils Packaging Materials, Steel Packaging Material, Plastic Comments		NAL WASTE	DRM (kg/m3) STORED RATES OF RA	TRU WASTE ESTIMATE DF WASTE GENERATION Projected Final Form 2.3 2.3 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ED TYPICAL ON Nuclide Cs137 Ba137m Sr90 m3/yr m3/yr Pu(unspector) m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr m3/yr	Curies/m3
*This waste stream represents 84 High Integrity Container. The typical waste material weight Typical activity (curies/m3) is unlessed.	ts (kg/m3) ar	e not available for				

SITE NAME WV			WAST	TE TYPEMTRU	HANDLING CH	GENERATOR SIT	EW	
	e Group Lead	V-W02 4 A	sly used as lead shiel	Elemental Lead			areas of the plant. The	e
NO MIGRATION VA FINAL WASTE FOR Defense TRU V Non-Defense T	RM DESCRI <u>PT</u> Vasle	TTION ASSIGNMENT FORS: Mixed TRU Non-Mixed TRU	×	Rsearch and Deve		E TSCA Asbestos PCBs	<u> </u>	
Commercial TR Unknown		X Suspect Mixed T Unknown	RU	Residues Decon and Decon Environmental Re From Treatment o Maintenance	nmissioning X storation	Other N/A Unknown	×	

2/28/95

Drum		Contains Matte Contains and	,
		Int Validation in cool of	
			ected:
ES FOR F	INAL WASTE	FORM (kg/m3) STORED TRU WASTE ESTIMATED TYPICAL ISOTOPIC C	OMPOSITIO
Average	Lower Limit	RATES OF WASTE GENERATION Number And Addition	
0.0		Co127	Curies/m3
0.0	 	Ba137m	Curies/m3
0.0	L	Stoo	Curies/m3
0.0	0.0	V90	Curies/m3
0.0	0.0	Pu(unspec)	Curies/m3
0.0	0.0	Am241	Curies/m3
0.0	0.0		Curies/m3
0.0	0.0		
0.0	0.0		
0.0	0.0	00	
131.0	L		
0.0		D008C	
55-gallon dr	um currently store	ed in the Lag	
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S5-gallon S5-g	S5-gallon

SITE NAME WV		WAST	ETYPEMTRU HANG	DLING CH C	SENERATOR SITE	W
	WV-W041 WV-W041 N/A 3131		TRU Paint (Dry) with Meta Paint chips/solids	als		
SITE FINAL FORM IDC Waste Matrix Code Group S	W-PNT.1*					
Site Matrix Description T	his waste stream consists of tra ne development of the Historical	nsuranic dried paint Waste Report (HWF	t) In support of the Federal	d., lead and chromit land State Facility C	nm). This waste was ompliance Agreeme	s newly identified as a result of nt (FSFCA).
FINAL WASTE FORM DESCR Defense TRU Waste Non-Defense TRU Waste Commercial TRU Waste Unknown	IPTORS: Mixed TRU Non-Mixed TRU X Suspect Mixed TR Unknown	v	Rsearch and Devel. Waste Operations Waste Residues Decon and Decommission Environmental Restoration From Treatment of Waste Maintenance	ning	Asbestos PCBs Other N/A Unknown	×

NAME WV	,	 	WASTE TYPE MTRU HANDLING CH GENERATOR SITE WV	
Type/S TYPICAL WASTE DEN Material Parameters Iron-based Metals/Alloys Aluminum-Based Metals/Allo Other Metals Other Inorganic Materials Cellulosics Rubber Plastics Solidified, Inorganic matrix Soils Packaging Materials, Steel	Average 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Int. Vol/Ctnr: 0.208 m3 Liner Material: Number	
Packaging Material, Plastic	0.0		D008A	
Comments *This waste stream represents Storage Building. The typical waste material waste mate	eights (kg/m3) ai	re not available fo	ored in the Lag or this waste stream.	;